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PACS 46.32.+x – Static buckling and instability
PACS 46.70.De – Beams, plates, and shells
PACS 62.20.D- – Elasticity

Abstract – The preference of thin flat sheets to bend rather than stretch, combined with results
from geometry, mean that changes in a thin sheet’s Gaussian curvature are prohibitively expensive.
As a result, an imposed curvature in one principal direction inhibits bending in the other: the so-
called curvature-induced rigidity. Here, we study the buckling behaviour of a rectangular strip of
finite thickness held horizontally in a gravitational field, but with a transverse curvature imposed
at one end. The finite thickness of the sheet limits the efficacy of curvature-induced rigidity in two
ways: i) finite bending stiffness acts to “uncurve” the sheet, even if this costs some stretching en-
ergy, and ii) for sufficiently long strips, finite weight deforms the strip downwards, releasing some
of its gravitational potential energy. We find the critical imposed curvature required to prevent
buckling (or, equivalently, to rigidify the strip), determining the dependence on geometrical and
constitutive parameters, as well as describing the buckled shape of the strip well beyond the thresh-
old for buckling. In doing so, we quantify the intuitive understanding of curvature-induced rigidity
that we gain from curving the crust of a slice of pizza to prevent it from drooping downwards as
we eat.

Copyright c© EPLA, 2019

Introduction. – From everyday experience, one knows
that bending the crust of a slice of pizza prevents it from
drooping under its weight. Insight into this intuitive
solution to a meal-time conundrum comes from Gauss’
Theorema Egregium [1–3], which states that changes in
Gaussian curvature require an energetic cost associated
with stretching. In the case of thin sheets, for which bend-
ing is energetically favourable over stretching, imposing
curvature in the transverse direction induces a resistance
to bending in the longitudinal direction since the sheet
must then stretch in order to deform (see fig. 1).

This curvature–induced rigidity [4] is limited, however,
by the finite thickness of the sheet. A naturally flat rect-
angular strip can be bent isometrically into a cylindri-
cal shape, maintaining zero Gaussian curvature, only if
suitable bending moments are prescribed along all four
edges to counter the bending resistance of the strip. This
resistance to bending means that, without any imposed
edge-moments, a strip with finite thickness will try to
“uncurve”, even at the expense of incurring some stretch-
ing energy. For large imposed curvature, Barois et al. [5]
showed that the transverse curvature relaxes with distance

from the end at which it is imposed, vanishing beyond
a persistence length Lp that is determined by a balance
between the curvature and stretching of the strip. This
persistence length is given in scaling terms as

Lp

W
∼ W

(tR)1/2
(1)

where W and t are the width and thickness of the strip,
respectively, while R is the imposed radius of bending.

A second consequence of finite thickness is a non-zero
weight: a strip held horizontally in a gravitational field
also deforms longitudinally (i.e., in the direction orthogo-
nal to the imposed transversal curvature) to release some
of its gravitational potential energy. In this paper, we
study how these two consequences of finite thickness com-
bine to limit the efficacy of curvature-induced rigidity in
a gravitational field. We anticipate that as the ratio of
bending to gravitational energies decreases, the longitudi-
nal curvature in the strip increases. It is therefore instruc-
tive to examine the total energy of the system as a function
of the longitudinal curvature. A description of the rela-
tions between stability, curvatures and convexity of this
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Fig. 1: A slice of pizza droops under its own weight (left).
To prevent drooping, one instinctively bends the crust; this
imposed curvature increases the effective rigidity of the slice,
preventing drooping (right).

energy functional can be found in related studies [6,7]. For
a clamped transversely flat cantilever beam [8], the total
energy functional is a convex function of the imposed cur-
vature: increases in the longitudinal curvature result in in-
creased, yet continuous, bending of the beam. In contrast,
a strip with uniform transverse curvature (e.g., a meter
tape) can buckle suddenly [9], attaining large changes in
shape as a result of small changes in longitudinal curva-
ture. This potential for buckling is a direct consequence
of the non-convexity of the total energy functional and
corresponds physically to a change in the sign of the gra-
dient in the moment required to impose a particular cur-
vature. The situation we consider here has properties that
lie between these two limiting cases, and the longitudinal
curvature is induced by gravity acting on the strip of fi-
nite thickness. It is therefore natural to ask how a strip
with imposed curvature at one end will respond to in-
creasing gravitational loading or, equivalently, decreasing
the imposed transverse curvature with fixed gravitational
loading.

The geometry we consider is shown in fig. 2. There are
four length scales in the problem: the geometrical proper-
ties of the strip (its length L, width W and thickness t),
together with the radius of curvature that is imposed at
one end, R. From the first three lengths, we construct two
dimensionless parameters that characterize the geometry
of the strip:

λ =
L

W
, τ =

t

L
. (2)

To rescale the imposed radius of curvature R we bear
eq. (1) in mind and let

κ =
W 2

8Rt
(3)

(the factor 8 being chosen so that κ = Z0/t with Z0 =
(W/2)2/(2R) the apparent thickness of the curved strip
at the end where curvature is imposed). With this choice,
eq. (1) becomes Lp/W ∼ κ1/2, and is found to hold pro-
vided that κ � 5 [5].

To account for the role of gravity, we note that our
strip has Young’s modulus E and density ρ, and denote

L

Lg
p

W

RR

xy

z

g

increasing κ

Fig. 2: Geometry of an elastic strip and its shape accommo-
dation as a response to an increasing imposed curvature for a
given gravitational load. For large enough imposed curvature,
the strip is effectively rigidified against its own weight.

the gravitational acceleration by g. By balancing the
bending modulus B = Et3W/12 of a strip of rectangu-
lar cross-section with the weight of the strip per unit
length ρgtW , we extract an elasto-gravitational length
ℓeg = (B/ρgtW )1/3 [3,10]. The relative strength of gravity
is then given by the dimensionless parameter

G =
L3

ℓ3
eg

=
ρgtW

B
L3 =

12ρgL3

Et2
. (4)

(Note that here we have taken the classical choice of the
elasto-gravitational length, based on the heavy elastica
equation [10]. However, we shall see that buckling is, in
fact, controlled by the value of G/τ , rather than G alone.)

Given the plethora of dimensionless parameters in this
problem, there are numerous ways in which limitations on
the effectiveness of the curvature-induced stiffness could
be quantified. In what follows, we shall assume that the
strip’s properties are given, so that the question reduces
to determining the critical value of the curvature, κ =
κ(c)(λ, τ, G), at which the strip is effectively rigidified.

A simple view of the buckling threshold. – The
state of the system is determined by a balance between
a number of energetic terms. To better understand the
balances involved we first recall the derivation [5] of the
persistence length in the absence of gravity, L0

p: this is
obtained at a scaling level by optimizing the sum of the
stretching energy US ∼ Et · (Z2

0/L2
p)

2 ·LpW (which penal-
izes small Lp) and the bending energy UB ∼ B ·(1/R)2 ·Lp

(which penalizes large Lp). Choosing LP to minimize the
sum U(G = 0) = UB +US leads directly to the scaling (1),
while a more detailed calculation [5] suggests that the pref-
actor in (1) is αBarois = 2/

√
35. In the presence of gravity,

however, we expect that the gravitational potential energy
of the strip will play an important role, possibly reducing
the length of the curved region, Lg

p, from its value in the
absence of gravity. As a simple “toy” model of the effect of
gravity in this problem, we consider the gravitational po-
tential energy of just the flat portion of the strip (beyond
the part that is curved), i.e., Lg

p < x < L. Modelling this
portion as an uncurved cantilever, the vertical deflection of
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the strip’s end under gravity, wend ∼ ρgtW (L − Lg
p)

4/B;
the gravitational potential energy of this portion of the
strip is thus UG ∼ (ρgtW )2(L−Lg

p)
5/B. Combining these

energies, we have the total energy Utot, which may be
written in dimensionless form as

Utot

Et5w/L3
= −αG

(

G

τ

)2

(1−L̃g
p)

5+αS
κ4

(L̃g
p)3

+αBλ4κ2L̃g
p,

(5)

where L̃g
p = Lg

p/L < 1 is the proportion of the strip that
remains curved. (We have explicitly introduced the con-
stants of proportionality αG, αS and αB to label the rele-
vant terms as originating with the gravitational, stretching
and bending energies, respectively.)

To understand the effect of gravity better, we assume
that its effect is perturbative, that is that Lg

p = L0
p + δL

for some δL/L0
p ≪ 1. Minimizing the energy in (5) we find

that L0
p = (3αS/αB)1/4κ1/2W , in accord with the scaling

of (1) and, further, that

Lg
p − L0

p

L
∼ −G2

τ2

(1 − L̃0
p)

4(L̃0
p)

5

κ4
. (6)

L̃0
p = L0

p/L. As expected, this leading-order expression
shows that the effect of gravity is to reduce the portion of
the strip that remains curved, decreasing Lg

p from its value
in the absence of gravity. To see the effect of this decrease
in Lp, note that the vertical deflection of the strip’s end,
wend ∼ −ρgtW (L − Lg

p)
4/B, and hence

wend

L
∼ −G

(

L − L0
p

L

)4
⎡

⎣1 + α
G2

τ2λ8

(

L − L0
p

L0
p

)3
⎤

⎦ (7)

for some constant α. Hence, as the strength of the gravita-
tional field increases, the deflection of the far end increases
also, as should be expected. To highlight the effect of the
gravity-induced lengthening of the flat portion (shorten-
ing of the curved region), we consider the rate at which
|wend(G)| increases as G increases: even for small G, in-
creases in G increase |wend| since the flat end is displaced.
However, the shortening of the curved region enhances this
effect, as can be seen by considering the rate of change of
wend(G), w′

end(G), relative to its value as G → 0. We find
that

w′

end(G)

w′
end(0)

− 1 ∼ G2

τ2λ8

(

L − L0
p

L0
p

)3

. (8)

In particular, when G = Gc with

Gc

τλ4
∼

(

L − L0
p

L0
p

)−3/2

, (9)

we expect a large increase in the rate at which the deflec-
tion of the end of the strip increases with further increases
in the strip weight G.

For this toy problem the energy, Utot(L̃
g
p), of (5) may

be readily minimized numerically for various values of the
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Fig. 3: The buckling transition is evidenced in the evolution
of the height of the strip end, wend, as the strength of gravity
changes. In particular, results from the toy model described
here (dash-dotted curve) and finite element simulations (solid
curve), described in the next section, show a marked increase
beyond a critical value of G/τ . In both models, buckling is
defined to be where this parameter reaches a critical threshold
of 1.05, indicated by the stars. (Here κ = 45, λ = 12.)

parameters κ, λ and G/τ and chosen values of the coeffi-
cients αG, αS and αB. Here we take αS/αB = α4

Barois/3,
to ensure we recover the result of Barois et al. as G/τ → 0
and αG/αB = 1/5 for convenience. The associated end
displacement wend(G) can also be calculated, at a scaling
level, leading to plots for w′

end(G) such as that shown by
the dash-dotted curve of fig. 3. The results of such com-
putations reveal a transition in w′

end(G) at a critical value
of G that is consistent with the scaling in (9): the criti-
cal gravitational strength required to induce buckling in-
creases as the length of the strip approaches (from above)
the persistence length of the imposed curvature in the ab-
sence of gravity, L0

p. Physically, this scaling suggests that
buckling is brought about by gravity reducing the length
of the curved region, Lg

p, to the point that the uncurved
region becomes long enough to bend significantly under its
own weight. To test the relevance of this simple-minded
approach to the buckling transition of a strip under grav-
ity, we now turn to a series of finite element simulations.

Numerical simulations. – A finite element model
of the problem is implemented in the commercial soft-
ware ABAQUS 6.14 (Dassault Systèmes Simulia Corp.,
Johnstone, RI, USA). The strip is represented by a mesh of
4-node, doubly-curved shell elements (S4) and using a lin-
early elastic Hookean material. The analysis is carried out
in two steps: in the first step, the transverse curvature is
imposed at one extremity with no imposed gravity; the nu-
merical problem is then to determine the variation of the
curvature within the strip. In the second step, the magni-
tude of the gravitational load is increased via a sequence
of static increments. It is worth noting that numerically it
is easier to change G than to change the geometry of the
strip (i.e., κ). No numerical stabilization is introduced.

Our simulations allow us to calculate w′

end(G), with
the behaviour observed qualitatively similar to that ob-
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Fig. 4: The critical gravitational strength, Gc, plotted as a
function of the ratio of the uncurved:curved portions of the
strip in the absence of gravity, (L − L0

p)/L0
p. Numerical re-

sults are shown as points with colour coded according to the
value of λ, as given in the colourbar. Plotted in this way,
the prediction of the simplified model (9) becomes y = x−3/2

(dashed line), and is recovered for sufficiently large values of
(L − L0

p)/L0
p.

served in the toy model (see fig. 3). In these simulations,
we define the buckling to be the smallest G such that
w′

end(G)/w′
end(G = 0) = 1.05 (the stars in fig. 3). We

then test the scaling suggested by eq. (9): in fig. 4, circles
indicate the numerically calculated threshold, Gc, while
the dashed line shows the scaling of (9). We see that
the agreement is reasonable when L ≫ L0

p, i.e., cases for
which the strip is mostly uncurved in the absence of grav-
ity; however, the scaling prediction (9) breaks down when
L − L0

p � L0
p – such strips are more rigid than would be

expected from (9).

Further results for the behaviour in this critical region
are shown in fig. 5. Note that in this study, we do not con-
sider cases for which L < L0

p (the hatched area in fig. 5).

To understand how a finite strip thickness influences the
critical curvature for buckling/rigidification, fig. 5 shows
the qualitatively different behaviours that can be obtained
for fixed values of λ, G/τ and ν = 0 (here, λ = 3 and
G/τ ≈ 2.86 × 103). We obtain three types of behaviour
as the imposed radius of curvature, κ, is varied: (A) For
strong imposed curvature (large κ), the effect of gravity on
the strip shape is negligible (variations in the transverse
curvature result solely from the finite bending stiffness
“uncurving” the strip); (B) close to the buckling thresh-
old, the strip starts to feel the effect of gravity, deforming
slightly downwards, and the imposed transverse curvature
decays over a shorter distance than in (A); (C) for rela-
tively small κ, the strip exhibits large-amplitude buckling
with the far end of the strip orientated parallel to the di-
rection of gravity. In this third case the strip comprises
two distinct regions: an approximately horizontal region
in which the transverse curvature decays with distance
along the strip and a larger, approximately vertical, region
in which the strip has lost any memory of the imposed
transverse curvature, and is curved (in the longitudinal

direction) solely by the effect of gravity. We revisit the
behaviour in this highly deformed region later, but focus
for now on further understanding the buckling transition.

Experiments. – The results of our numerical simula-
tions suggest that the efficacy of curvature-induced rigid-
ification is significantly enhanced for strips of comparable
length to the persistence of curvature L0

p, or λ close

to κ1/2. This feature was not captured by our analysis of
the toy energy functional (5). To test this conclusion fur-
ther, we performed a set of experiments on strips of plastic
(RS Pro Shim Kit, RS Components Ltd., Northants, UK).
In particular, thickness and width values in the ranges
100 ≤ t ≤ 484 μm and 30 ≤ W ≤ 91 mm were used,
with the strip density 898 kg m−3 ≤ ρ ≤ 1464 kg m−3,
Young’s modulus 1.0 GPa ≤ E ≤ 4.1 GPa and Poisson’s
ratio ν = 0.4. (Young’s modulus was determined via ten-
sile tests using an Instron 3345 (Instron, Massachusetts,
USA).) Strips were clamped in a holder with radius of cur-
vature R = 4 cm or R = 5 cm in such a way that the length
of the strip L could be varied (G and λ were simultane-
ously varied whilst maintaining a constant κ). The strip
was imaged using a DSLR camera (D7000, Nikon), with a
spatial resolution of 0.02 mm/pixel, positioned orthogonal
to the major axis of the strip. The profile of the strip was
extracted from the images using detection techniques de-
veloped in Matlab (Mathworks, Massachusetts, USA).
This enabled measurement of the variation in apparent
thickness along the strip length and the deflection of the
centreline of the strip, shown in the inset to fig. 6. The
critical length at which buckling occurred could then be
determined from measurements of the displacement of the
free end; the threshold was identified from abrupt changes
in the displacement of the distal end that were observed
as L was increased. These critical conditions κ(c)(λ, G/τ)
for buckling are represented by markers in fig. 6, to be
compared with a further theoretical analysis.

Doubly curved model. – Returning to the buckling
transition for L−L0

p � L0
p, we now present a more detailed

analysis of an analogue system. We begin by assuming
that in this limit the primary effect of gravity is to impose
a longitudinal curvature on the transversely curved ribbon
(since there is very little uncurved ribbon remaining); we
therefore consider the effect of an imposed curvature in
the longitudinal (orthogonal) direction, KL, (see fig. 7)
and neglect any other effect of gravity. We shall find that
there is a critical curvature Kc

L at which the ribbon buckles
and then estimate the buckling threshold under gravity
by equating this critical curvature to that induced by the
weight of the strip.

For compactness, we describe here only the main ideas
while the details are presented in the Supplementary Ma-
terial given in ref. [11]. In the absence of gravity, we
assume that the displacement field in the strip has the
form u = ax(x), v = 0 and w = az(x) + Z, where
Z = c(x)y2/2 is the out-of-plane displacement relative

14001-p4
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A: Pure opening B: Gravity-induced 
buckling

C: Well-developed 
buckling
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Fig. 5: Phase diagram for the imposed curvature at the onset of buckling as a function of the slenderness λ. The critical
imposed curvatures κ(c) (λ, G/τ ) for G/τ = 2.8 ± 0.1 × 103 obtained from FEM simulations are shown as green filled circles.
The theoretical prediction from the doubly curved model is given by the continuous blue curve. To illustrate the behaviour as κ
is varied with fixed λ and G/τ , the images on the right show the strip shapes obtained from finite element simulations; shapes
with λ = 3, G/τ = 2.86 × 103 and three values of κ corresponding to the red open circles in the main plot.
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Fig. 6: Main panel: the critical curvature κ(c) at which buck-
ling occurs for a given G/τ (with the value of G/τ represented
by the colour coding indicated in the colourbar) as a function
of the strip slenderness λ = L/W . The theoretical predictions
from the doubly curved model (background colour) are com-
pared with the experimental data (markers). (Perfect agree-
ment would lead to experimental points being camouflaged
against the background colour.) Square markers represent sub-
critical buckling under cyclical loading, while inverted triangles
represent supercritical buckling. Inset: the displacement of the
free end when buckling is subcritical (yellow squares) and when
buckling is supercritical (blue inverted triangles); coloured ar-
rows indicate the point at which buckling is determined to oc-
cur for the two cases shown.

to the displacement of the centreline, which is in turn de-
termined from the functions az(x) and ax(x) [5]. Rescal-
ing curvatures by a factor 1/R the following dimensionless
quantities can be introduced:

γ = cR; ξ =
x

L
; η =

y

W
; ω(ξ, η) = w(x, y)

R

W 2
;

αx(ξ) = ax(x)
R2L

W 4
; αz(ξ) = az(x)

R

W 2
.

(10)

1

R
= c0

1

rdc
= cdc(x)

1

r
= c(x)

1

RL
= KL

Fig. 7: The shape of a strip with a single imposed curvature
(blue) is compared with the shape of a doubly curved strip
(orange). The transverse curvature is assumed positive and
the longitudinal curvature negative, i.e., −KL.

We denote the dimensionless transverse curvature accom-
modated by the ribbon after the application of the dimen-
sionless longitudinal curvature κL = RKL by γdc(ξ); in
general, the transverse curvature γdc(ξ) is different from
that of a strip opening purely under the presence of bend-
ing stiffness effects [5]. The relevant (dimensionless) ener-
getic contributions are the stretching and bending energies
in this regime, which we denote by Udc

S and Udc
B , respec-

tively, and may be written

Udc
S = 768κ2

∫ Lp/L

0

∫ 1

2

−
1

2

(

ǭdc − λ−2ǭ
)2

dξdη (11)

and

Udc
B =

∫ Lp/L

0

∫

1
2

−
1
2

[

(

κL + λ−2 d2αz

dξ2

)2

+(γdc − γ)2

]

dξdη

+

∫ 1

Lp/L

∫ 1

2

−
1

2

κ2
Ldξdη (12)

where the stretching contribution is given by the dimen-
sionless strain ǭdc = −η2γdcκL minus the longitudinal
strain present before the application of κL, and disregard-
ing the higher-order terms as in Barois et al. [5,11], as ǭ =

dαx/dξ + (1/2) (dαz/dξ)(dγ/dξ)η2 + (1/8) (dγ/dξ)
2
η4.

14001-p5
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Given this functional, we compute the transverse cur-
vature γdc(ξ) that minimizes the total energy Udc

tot =
(

Udc
B + Udc

S

)

and, in turn derive the (minimized) energy.
This energy is non-convex as a function of the longitu-
dinal curvature κL, so that buckling occurs [9,12] at a

critical longitudinal curvature κ
(c)
L where κ

(c)
L (G/τ, λ) =

{κL: ∂2Udc
tot/∂κ2

L = 0}.
Having determined the critical imposed longitudinal

curvature κ
(c)
L for a doubly curved strip, we estimate the

averaged longitudinal curvature in a ribbon with imposed
transversal curvature under the influence of gravity. Since
we assumed that buckling occurs while deformations re-
main small, we might imagine that both the transver-
sal curvature and the persistence length do not change
substantially compared to the case without gravity, i.e.,
Lg

p ≈ Lp (this approach is therefore not suitable to char-
acterize strips with L ≤ Lp). Within this approximation
and using Mathematica (Wolfram Research Inc., Cham-
paign, IL), it is possible to minimize the energy to derive
analytical expressions for the deflections in the curved and
flat parts, ωC

g and ωF
g , so that the averaged longitudinal

curvature (in the small strain approximation) in the rib-
bon is given by

ω̄′′ =
∫ Lp/L

0

(

d2ωC

g

dξ2

)

dξ +
∫ 1

Lp/L

(

d2ωF

g

dξ2

)

dξ

=
dωF

g

dξ

∣

∣

∣

∣

ξ=1

− dωC

g

dξ

∣

∣

∣

∣

ξ=0

(13)

when continuity of the first derivative at ξ = Lp/L is im-
posed. We take as the condition for the onset of buckling
that the curvature of the strip induced by gravity, ω̄′′,
matches the critical imposed curvature at which the same
strip will buckle, i.e.,

ω̄′′ = κ
(c)
L . (14)

The result of this theoretical analysis is shown by the
continuous curve in fig. 5 and the background colourmap
in fig. 6. The utility of this theoretical description is con-
firmed by comparisons between its predictions and the ex-
perimental measurements shown in fig. 6: here the critical
curvature κ(c) at buckling is plotted as a function of λ
for different G/τ . Both experiments and theory show
that, for a given slenderness, λ, the curvature required
to rigidify a strip against gravity increases with the ra-
tio of gravitational to bending energy, G/τ . A further
experimental observation is that buckling is supercritical
for small λ yet subcritical for large λ (discussed further in
the Conclusion); even so, the predicted buckling thresh-
old is in reasonable agreement with experiments in both
cases. We note that, this analysis, and that provided ear-
lier for strips long compared to L0

p, give predictions for

κ(c) (λ, G/τ) when the persistence length Lg
p is not signif-

icantly changed from that in the absence of gravity; we
now turn to consider how the persistence length of curva-
ture, Lg

p, varies far beyond the buckling threshold.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

Fig. 8: The persistence length Lg
p well beyond the buckling

threshold, measured for different geometrical and constitutive
parameters (reported in the Supplementary Material given in
ref. [11]) in experiments (closed symbols) and finite element
simulations (open symbols), collapses onto a single trend upon
normalization: the slope of the black dash-dotted line is derived
as the best fit of the FEM data to be 0.025.

Behaviour well beyond threshold. – Finally, we
turn to the behaviour well beyond the buckling threshold;
we assume again that the effect of the gravitational contri-
bution in the domain C can be neglected and that Lg

p → 0,
so that we may return to the earlier toy model. In this
case, the gravitational energy of (5) must be revisited: now
the displacement of the end is limited by the length of the
strip, wend ∼ −(L−Lg

p), and hence UG ∼ ρgtW (L−Lg
p)

2.

We therefore replace the term αG(1 − L̃g
p)5(G/τ)2 of (5)

with αG(1 − L̃g
p)2(G/τ). Moreover, we neglect the effect

of the bending energy in (5) (since G ≫ 1 and Lg
p ≪ 1,

we anticipate gravity and stretching dominate instead).
We see from the modified (5) that minimizing the stretch-
ing energy requires the horizontal segment of the beam
to be as long as possible (increasing Lg

p) while the re-
lease of gravitational potential energy pushes the system
to decrease Lg

p. Minimizing the total energy allows us to
determine the optimal persistence length of the imposed
curvature:

Lg
p

W
∼ λτ1/2G−1/4κ, (15)

where we require Lg
p ≪ L. In terms of physical parame-

ters, we find

Lg
p

W
∼

(

E

ρgL

)1/4
W

R
. (16)

This prediction is evaluated in fig. 8 using experiments
and FEM simulations: we observe a reasonable collapse,
showing that our prediction is qualitatively correct.

Conclusion. – The weight of a rectangular ribbon of
finite thickness, with an imposed transverse curvature at
one end, acts to bend the strip against the imposed cur-
vature. Our analysis has shown that for strips that are
long, (L − L0

p)/L0
p ≫ 1, the effect of gravity is to de-

crease the persistence length of the imposed curvature,
enhancing the bending of the flat portion of the strip. In
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particular, eq. (9) suggests in dimensional terms that the
critical length of the flat portion of the strip is given by

L − L0
p

ℓeg
∼ ℓegt

1/6

R1/2W 2/3
, (17)

where ℓeg = (B/ρgt)1/3 is the length beyond which a flat
cantilever bends significantly [10].

As the strip length L ց L0
p, a more detailed study of

the energy of the system is required. We note that the
structure of the energy functional we derived has simi-
larities with the one discussed by Xuan and Biggins [13]
for bead-on-string formation in stretched elastic cylinders
subject to superficial tension. In our case, the destabilizing

contribution is the increased applied longitudinal curva-
ture that plays the same role that the applied stretch did
in ref. [13]; this phenomenon is mainly controlled by the
competition between the two orthogonal curvatures: the
increasing longitudinal bending forces the strip to open
transversely, partly relieving the longitudinal stretching.
However, we have only considered strips of length L > L0

p;
to our knowledge, the problem of how buckling occurs
for sufficiently weak curvatures that L < L0

p remains
open.

Our experiments also suggest that the nature of the
buckling changes depending on the imposed curvature. In
the experiments, the buckling threshold is approached for
a given G by varying L cyclically, and the tip deflection
exhibits hysteresis for large imposed curvature. A formal
understanding of this phenomenon is beyond the scope of
this paper, but we note that the transition from subcriti-
cal (denoted by squares in fig. 6) to supercritical (denoted
by inverted triangles in fig. 6) occurs for κ ≈ 60, and the
slenderness seems to have a minor effect. The subcritical
nature of the buckling presents an additional danger for
pizza-eaters, since, even within the stable, rigid regime,
a small perturbation may cause a catastrophic reconfigu-
ration of the strip from an almost horizontal configuration
to the buckled shape, with the distal end of the slice orien-
tated vertically, and with very messy consequences. Aside
from the implications for eating habits, the work presented

here provides a mechanical understanding of curvature-
induced rigidity that might prove useful in applications
such as the design of dielectric elastomer actuators with
variable stiffness and tunable load capacity [14].
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