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Impact on floating thin elastic sheets: A mathematical model
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We investigate impact of a sphere onto a floating elastic sheet and the resulting formation
and evolution of wrinkles in the sheet. Following impact, we observe a radially propagating
wave, beyond which the sheet remains approximately planar but is decorated by a series
of radial wrinkles whose wavelength grows in time. We develop a mathematical model to
describe these phenomena by exploiting the asymptotic limit in which the bending stiffness
is small compared to stresses in the sheet. The results of this analysis show that, at a
time t after impact, the transverse wave is located at a radial distance r ∼ t1/2 from the
impactor, in contrast to the classic r ∼ t2/3 scaling observed for capillary–inertia ripples
produced by dropping a stone into a pond. We describe the shape of this wave, starting
from the simplest case of a point impactor, but subsequently addressing a finite-radius
spherical impactor, contrasting this case with the classic Wagner theory of impact. We
show also that the coarsening of wrinkles in the flat portion of the sheet is controlled
by the inertia of the underlying liquid: short-wavelength, small-amplitude wrinkles form
at early times since they accommodate the geometrically imposed compression without
significantly displacing the underlying liquid. As time progresses, the liquid accelerates
and the wrinkles grow larger and coarsen. We explain this coarsening quantitatively
using numerical simulations and scaling arguments, and we compare our predictions with
experimental data.
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I. INTRODUCTION

When a solid impacts a liquid–air interface, the response varies from dramatic deceleration of
the solid by hydrodynamic forces (in the case of ship slamming [1,2]), to the more peaceful “plop”
heard when a pebble is dropped into a pond and the resulting cavity collapses [3,4]. The large
hydrodynamic forces that are generated during such impacts allow animals to run on the surface of
water [5], provided that they can move their feet out of the cavity before it collapses [6–8]. While the
splashes induced by such impacts has proved a fertile area for research, various strategies have been
proposed for avoiding splash, including modifying the coating of the impactor [9]. As an alternative
to modifying the impactor, the addition of a thin elastic sheet at the liquid–air interface also changes
its behavior and has been proposed as a way of modifying (or reducing) splash [10–12].

The mechanics of very thin elastic sheets, and their interaction with liquid–air interfaces, is a
subject of considerable interest in its own right. Such sheets exhibit deviations from the classic
Young–Dupré equation for the contact angle of a drop [13,14] and may wrinkle in response to
capillary forces [15,16] or localized indentation [17–19]. Previous studies have largely focused
on static scenarios in which the state of the system, including the number of wrinkles, may be
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determined by equilibrium arguments such as energy minimization. Some dynamic experiments
[20] have attempted to resolve the propagation of wrinkles as the equilibrium state is approached,
and suggest that the number of wrinkles reaches its equilibrium value before the wrinkles have
grown to their equilibrium length. This appears to conflict with the standard equilibrium picture in
which the wrinkle length is determined by the minimization of a dominant energy while the number
of wrinkles is determined by the minimization of a subdominant energy [21].

Previous work on dynamic impact-induced wrinkling has focused on situations in which the
sheets are relatively extensible: Vermorel et al. [22] studied a sheet with zero applied background
stress impacted by a sphere, which shows the propagation of a longitudinal sound wave in the sheet
followed by wrinkling. More recently, impact onto a floating sheet has been considered in two-
dimensional [23] and axisymmetric [24] configurations. Again, these experiments demonstrated
that a tensile wave emanates from the point of impact and travels through the sheet at the speed of
sound. This is followed by a transverse wave and, in axisymmetric sheets, the formation of wrinkles
as the sheet is compressed in the azimuthal direction. However, in these scenarios the stretching of
the elastic sheet was significant and the in-plane stresses were not in quasistatic equilibrium.

In this paper, we study the dynamic response to impact of a very thin elastic sheet floating at
a liquid–air interface, following experiments presented elsewhere [25]. These sheets have very
small resistance to bending (in a way that we shall make precise in due course), which leads to
significant modifications of previous work in the fluid dynamics of impact, while the dynamics of
impact change the wrinkle phenomenology compared to previous static work. We begin in Sec. II
by describing the important related research areas: we summarize results from previous studies on
static wrinkling as well as impact at a liquid–air interface (which will both serve as comparisons
with the dynamic scenario studied here) and then give an overview of experimental observations of
impact on a floating elastic sheet. In Sec. III, we develop a dimensionless model for the response of
a thin elastic sheet floating on an inviscid fluid to a point impactor moving at constant velocity. We
consider the asymptotic limit in which the sheet provides minimal resistance to bending, and the
wrinkle wavelength is very small. In Sec. IV, we derive a simplified model for the transverse wave
that propagates radially in the sheet. We determine the self-similar shape adopted by the floating
sheet at early times, and estimate the radial retraction of the sheet that this deformation causes. In
Sec. V we extend our model to account for finite impactor size, spanning between the point and
large impactor limits. This allows us to compare the predictions of our model quantiatively with
experimental observations. In Sec. VI, we focus on wrinkle evolution: We find that the inertia of the
underlying fluid dictates that the wrinkles are initially very fine, but then gradually coarsen, while a
geometric constraint causes deviation from the power-law coarsening one might naively expect.
We investigate this through the numerical solution of a simple model governing the amplitude
of different wrinkle modes that results from azimuthal compression. In Sec. VII, we discuss the
dynamic behavior observed here in the context of previous studies on static wrinkling patterns as
well as viscosity-dominated wrinkle coarsening. Finally, in Sec. VIII, we summarize our findings
and discuss areas that require further investigation.

II. RELEVANT PHYSICAL PHENOMENA

A. Static wrinkling: Summary

Numerous studies have examined static wrinkles in floating elastic sheets that are indented so
that their center lies a depth � below the free surface [17–19,26–28]. As the indentation depth � is
increased quasistatically, the sheet transitions from unwrinkled to wrinkled, and the wrinkles then
evolve as � is increased further—here we give a brief overview of the relevant results for ease of
later comparison; the interested reader is referred to Ref. [27] for a more detailed discussion.

For very small indentation depths, the sheet experiences approximately uniform, isotropic tension
and vertical deflections are limited to a horizontal length comparable to the capillary length
�c = √

γ /ρg, where γ is the surface tension of the liquid–air interface, ρ is the density of the
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liquid and g is the acceleration due to gravity. The vertical deflection of the sheet pulls material
circles radially inwards, which in turn leads to a relative compression in the hoop (azimuthal)
direction: The perimeter of a material circle is too large for its new position, and it must therefore
compress slightly. This relative compression increases as the indentation depth increases. Beyond a
critical indentation depth, the radial retraction of the sheet is large enough that the sheet experiences
absolute compression in the azimuthal direction. If the floating sheet is very thin (or highly
“bendable”), then it is unable to sustain a compressive stress and instead forms radial wrinkles,
which in turn alter the stress profile in the sheet. In particular, where the sheet is wrinkled, the
azimuthal stress σθθ ≈ 0 [21], which combined with in-plane equilibrium (∇ · σ = 0) gives a
radial tension σrr ≈ C/r for some constant C (which in general depends on �). Wrinkles initially
form within an annulus away from both the indenter and the edge of the sheet r = R f , but as
the indentation depth increases they rapidly reach the edge of the sheet [27]. This occurs at an
indentation depth � = (γ /Eh)1/2�1/3

c R2/3
f , and beyond this, the constant C = γ R f for the remainder

of the experiment. The equilibrium vertical deflection of the sheet, w(r), is then [17,18,27]

w(r) ≈ �
Ai(r/�curv)

Ai(0)
, (1)

where Ai(x) is the Airy function that decays in the far field and

�curv = R1/3
f �2/3

c (2)

is the horizontal length scale over which the sheet is curved; for r � �curv the sheet is flat. The new
length scale �curv depends on the sheet radius as well as the classical capillary length �c = (γ /ρg)1/2.
Like the classical capillary length, �curv corresponds to a balance between the hydrostatic pressure
in the fluid and the pressure jump across the interface but is modified because the interfacial tension
now varies radially as a result of wrinkling. We note that, once wrinkles have reached the edge of
the sheet, this horizontal length scale of the vertical deflection is constant and is not affected by
further increases in indentation depth.

The microscopic structure of the wrinkle pattern is governed by a balance between the bending
stiffness of the elastic sheet (which prefers larger wavelengths) and a resisting stiffness (which
prefers smaller wavelengths) [29]. For a sheet of bending stiffness B = Eh3/[12(1 − ν2)] (with E
its Young’s modulus, h its thickness, and ν its Poisson ratio), there is a locally energetically favorable
wavelength λ (in the absence of tension) given by [18]

λ = 2π

(
B

K

)1/4

, (3)

where K denotes an effective substrate stiffness which may be simply the true substrate stiffness
or may be augmented by curvature along the wrinkles [18,29]. The situation becomes more
complicated when the geometry of the system necessitates the nucleation of new wrinkles to attain
the locally favorable λ, or when tension along the wrinkles introduces a new energetic cost, but
we will not address these complications here. For quasistatic indentation of a floating sheet, a
curvature-induced stiffness dominates the curved part of the sheet so that K ∼ Eh(w′′)2 [18] and
the number of wrinkles m ∼ √

�/h increases as � increases. By contrast, in the flat portion of
the sheet, hydrostatic pressure within the liquid dominates the substrate’s response so that K = ρg
and the number of wrinkles (and hence the wrinkle wavelength) does not change with increasing
confinement.

We shall see that the two key features of static wrinkling mentioned in this brief review (namely
a constant horizontal length scale �curv = R1/3

f �2/3
c and fixed wrinkle wavelength in the flat portion

of the sheet) are qualitatively different when wrinkling is induced by impact.
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B. Hydrodynamic impact: Summary

In this section we summarize the main results for impact at a bare liquid–air interface. We focus
on the case where gravity is unimportant, since that is the limit we will consider below for impact
on a floating elastic sheet. When an object impacts at a liquid–air interface, it imparts momentum to
the fluid, inducing a flow. For an inviscid irrotational fluid, this flow can be described in terms
of a velocity potential φ, with the fluid velocity v = ∇φ; if the fluid is further assumed to be
incompressible, then the velocity potential is governed by ∇2φ = 0 in the bulk. The pressure p
associated with this flow must satisfy an appropriate condition at the liquid interface, yielding a
Bernoulli equation of the form

p = −ρ

(
∂φ

∂t
+ 1

2
|∇φ|2

)
(4)

at the interface. Surface tension at the liquid–air interface induces a pressure jump across that
interface, with

[p]+− = γ κ, (5)

where γ is the surface tension coefficient and κ the curvature of the surface. We can now consider
two limiting cases, corresponding to small or large values of the Weber number We = ρV 2L/γ ,
where V is the impact speed and L is the size of the impactor. When We � 1, the velocity
and pressure induced by the impact are relatively small and surface tension makes a significant
contribution to the pressure, while for We � 1 the velocity and pressure associated with impact are
relatively large, and the effect of surface tension is negligible.

In the limit We � 1, the disturbance in the fluid is moderated by surface tension at the interface,
leading to so-called capillary waves emanating from the impact point. At early times when fluid
velocities are small, the nonlinear term in Eq. (4) may be neglected, and the hydrodynamic pressure
p ≈ −ρ∂φ/∂t balances the pressure jump due to surface tension. To determine the curvature of
the interface and close the problem, we impose a kinematic boundary condition ∂w/∂t = ∂φ/∂z
relating the motion of the interface (which is at height w) to the fluid velocity. A straightforward
scaling argument then yields the result that the wavefront rm will propagate according to rm ∼
(γ t2/ρ)1/3. This scaling was proposed by Keller and Miksis [30] and appears in many surface
tension driven flows (see, e.g., Refs. [30–32]).

By contrast, if We � 1, then surface tension is negligible, but the fluid at the interface must move
to conform to the shape of the impactor. For small deadrise angles, the leading-order hydrodynamic
pressure is again p ≈ −ρ∂φ/∂t [33]. Provided the impactor is smooth, the shape of the contact
region can be approximated by a surface height w = −t + r2/2Rs, where Rs is a constant dependent
on the curvature of the impactor. This yields a different self-similar response with radial extent
r ∼ t1/2 introduced by Philippi et al. [2]. This model is appropriate for systems such as ship
slamming where the impactor size and velocity are very large, and dates back to the work of
Wagner [34].

C. Dynamic wrinkling: phenomenology

A related study [25] presented experiments in which thin polystyrene sheets (thickness in the
range 150 nm � h � 530 nm, radius in the range 5.7 mm � R f � 17.7 mm) are floated on a bath of
water. A steel sphere impacts the center of the sheet at a speed V , deforming it out of plane; at the
same time, a series of fine-scale wrinkles form, as illustrated in Fig. 1. However, this system also
evolves dynamically: At first [Fig. 1(a), 0.1 ms after impact], very small-amplitude creases appear
to propagate radially outward from the point of impact. Next, an axisymmetric transverse wave
forms and, immediately, fine wrinkles are observed to decorate the otherwise flat portion of the
sheet [Fig. 1(b)]. Finally, as the transverse wave propagates, the wrinkles in this flat portion coarsen,
increasing in wavelength [Figs. 1(c) and 1(d)]. We do not address the (very) small-amplitude creases
that appear immediately (within 0.1 ms) upon impact, but rather focus on the evolution of the
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FIG. 1. Snapshots of a steel sphere, of radius Rs = 1.25 mm and mass 0.063 g, impacting a floating
polystyrene sheet (of radius Rf = 17.46 mm and thickness h = 350 nm) at a vertical speed V = 0.69 m/s.
Images are shown at times t = 0.1, 0.8, 1.5, and 2.1 ms after impact.

axisymmetric wave and the exterior wrinkles. Typical experimental parameter values are given in
Table I, while a more detailed description of the experiments is given in Ref. [25].

In this paper, we develop a mathematical model to quantitatively describe these experiments. In
particular, our aim is to describe both the propagation of the transverse wave and the coarsening of
the wrinkles, since both of these features are in contrast with what has been observed in static
scenarios (see Sec. II A): the typical horizontal extent of the curved region of a quasistatically
indented, wrinkled sheet is known to be a constant independent of the indentation depth. Similarly,
the quasistatic arguments presented in Sec. II A would suggest that the number of wrinkles in the
flat portion of the sheet should be determined by buoyancy and be independent of indentation depth,
but in the dynamic experiment shown in Fig. 1 we see that the number of wrinkles decreases with
time (which corresponds to increasing indentation depth).

Despite the qualitative differences between previous static experiments on wrinkling and the
current dynamic study, the phenomena outlined above are more familiar in hydrodynamic settings:
the propagation of a transverse wave is at least qualitatively similar to the capillary waves that
propagate when a stone is dropped into a pond, as suggested by [24] in a related problem.
Similarly, the coarsening of the wrinkles is qualitatively similar to the coarsening of wrinkles in
an elastic sheet on a thin viscous layer [35,36]. In this paper we shall show that both of these
phenomena are indeed governed by hydrodynamics, although we shall also see that the very fine-
scale wrinkling of the sheets leads to a number of novel quantitative results, including new scaling
laws.

TABLE I. Typical parameter values for the experimental study of impact-induced wrinkling
studied presented in Ref. [25].

Parameter Symbol Range Units

Sheet thickness h 1.5–5.3 × 10−7 m
Sheet radius Rf 5.51–17.72 × 10−3 m
Young’s modulus E 3.46 × 109 Nm−2

Poisson’s ratio ν 0.33
Sheet density ρe 1.05 × 103 kgm−3

Impactor radius Rs 0.5–1.75 × 10−3 m
Impactor speed V 0.78–2.85 ms−1

Impactor density ρs 7720 kgm−3

Density of water ρ 103 kgm−3

Surface tension coefficient γ 73 × 10−3 Nm−1
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III. MATHEMATICAL MODEL: DYNAMIC POINT IMPACT

We consider a circular thin elastic sheet of radius R f and thickness h, floating on the surface of an
inviscid liquid of density ρ and surface tension coefficient γ . We use a cylindrical coordinate system
centered on the center of the sheet, r = 0, with z = 0 the initial vertical position of the undeformed
sheet and with k̂ the unit vector in the positive z direction. At time t = 0, a point impacts the center
of the sheet, moving downward at a fixed speed V as illustrated in Fig. 2.

The elastic sheet deforms as a result of the impact; the components of this elastic deformation
may be written u = (ur, uθ ,w), with each component varying in both space and time. (Note
that throughout this paper we shall use u to denote the elastic displacements and v to denote
fluid velocities.) The components of the elastic displacement are coupled to one another: vertical
deflections of the sheet pull material circles radially inward, leading to a radial displacement ur < 0,
which in turn causes the azimuthal (hoop) compression that leads to wrinkling.

In the static indentation problem considered previously [17,18] and summarized in Sec. II A, the
response of the elastic sheet to loading is determined by the hydrostatic pressure within the liquid,
the tension of the bare liquid–air interface and the mechanical properties of the elastic sheet. This
balance leads to the emergence of the horizontal length scale over which the sheet is curved �curv ∼
R1/3

f �2/3
c , given in Eq. (2). As already discussed, �curv is independent of the depth of indentation but

here the dynamic analog of �curv grows in time, as shown in Fig. 1. We must therefore consider the
motion of the fluid beneath the sheet due to impact, and the effect of this flow on the sheet.

A. Fluid flow

Since the impact occurs “fast” (the Reynolds number Re = ρV Rs/μ ∼ 103) and the fluid is
initially stationary, we assume that the flow is a potential flow, i.e., that the fluid velocity field
v = ∇ϕ, for some velocity potential ϕ(r, θ, z, t ). (We note that the reduced Reynolds number
Re∗ = ρV λ/μ, calculated using the wrinkle wavelength as a length scale, may be smaller, but for
the smallest measured wavelengths λ = O(100 μm) in Ref. [25], we still find Re∗ ∼ 102 � 1.)
Assuming further that the fluid is incompressible, we have that

∇2ϕ = 0, (6)

for 0 � r < ∞, −∞ < z � w(r, θ, t ), where w(r, θ, t ) denotes the shape of the deformed fluid
interface (i.e., the sheet and liquid surface). Far from the sphere, we expect the velocity potential to
decay, so we choose ϕ → 0 as r2 + z2 → ∞, and at the origin we apply the symmetry condition
that ∂ϕ/∂r = 0 at r = 0.

The fluid flow is forced by the kinematic boundary condition on the interface, z = w(r, θ, t ),
which reads

∂ϕ

∂z
= Dw

Dt
, (7)

with D/Dt = ∂/∂t + v · ∇ the convective derivative.

FIG. 2. Schematic diagram: a point impact on a floating elastic sheet, causes a vertical deflection of the
sheet, w(r, θ, t ), as well as fluid flow beneath the sheet.
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For a point impactor, the surface is at w = −V t at r = 0 but free elsewhere, so we require a
dynamic boundary condition to close the problem. To write down this condition, we must examine
the behavior of the elastic sheet at the interface in more detail.

B. Elastic deformation

The location of the free surface z = w(r, θ, t ) is not known a priori, and must be determined as
part of the solution. The deformation of the elastic sheet at this interface is governed by the vertical
force balance [37]

ρeh
∂2w

∂t2
= p[r, θ,w(r, θ, t ), t] − B∇4w + ∇ · (σ · ∇w), (8)

provided |∇w| � 1, i.e., for small slopes. Here p(r, θ, z, t ) is the pressure within the liquid
(measured relative to atmospheric pressure above the sheet), ρe and B = Eh3/[12(1 − ν2)] are the
density and bending stiffness of the elastic sheet, respectively (with E and ν the Young’s modulus
and Poisson’s ratio, respectively), and σ is the two-dimensional (thickness-integrated) stress in the
sheet. We will later assume the sheet radius is large compared with the wavefront position, so we
will not concern ourselves with the deformation of the liquid–air interface beyond the sheet.

To progress further, we need to determine the unknown pressure p(r, θ, z, t ) in the liquid just
beneath the elastic sheet. If the fluid velocity potential is known, then p may be determined from
the Bernoulli equation

ρ

(
∂ϕ

∂t
+ 1

2
|∇ϕ|2

)
+ p + ρgz = c(t ), (9)

with c(t ) to be determined. We can then eliminate the pressure from Eq. (8) by evaluating Eq. (9) at
the free surface to arrive at

ρ

(
∂ϕ

∂t
+ 1

2
|∇ϕ|2

)
+ ρeh

∂2w

∂t2
+ B∇4w − ∇ · (σ · ∇w) + ρgw = 0, (10)

where c(t ) = 0 has been chosen by an appropriate choice of ϕ.
The final piece of the puzzle is to determine the stress distribution within the solid sheet, σ,

governed by

ρeh
∂2u
∂t2

= ∇ · σ, (11)

with the radial tension in the sheet equal to the surface tension at the adjacent liquid–air interface,
i.e.,

σrr (r = R f ) = γ . (12)

In addition to satisfying Eq. (11), the in-plane stresses within the sheet are related to the
displacement field via the strain tensor ε and Hooke’s law [37]:

1

Eh
(σrr − νσθθ ) = εrr = ∂ur

∂r
+ 1

2

(
∂w

∂r

)2

, (13a)

1

Eh
(σθθ − νσrr ) = εθθ = ur

r
+ 1

r

∂uθ

∂θ
+ 1

2

(
1

r

∂w

∂θ

)2

, (13b)

1 + ν

Eh
σrθ = εrθ = 1

2

(
1

r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

)
+ 1

2

(
∂w

∂r

)(
1

r

∂w

∂θ

)
. (13c)

These equations may be used to relate the horizontal and vertical displacement components
and ultimately determine how much length must be absorbed by wrinkling. For sufficiently stiff
materials that (σrr, σθθ )/(Eh) → 0, Eq. (13b) shows the amplitude of the wrinkles is set by ensuring
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they absorb all of the excess length generated by pulling material circles to a smaller radial position,
ur < 0.

C. Nondimensionalization

To nondimensionalize, we need to identify an appropriate length scale. The scaling argument of
Ref. [25] was based on a radial stress in wrinkled sheets σrr = γ R f /r, and showed that the radial

wavefront of the transverse wave rm ∼ (γ R f t2/ρ)1/4. Comparing fluid inertia and radial tension
terms in Eq. (10), with ∂ϕ/∂t ∼ V 2 and ∂2/∂r2 ∼ 1/r2

m, then suggests a horizontal length scale

�∗ =
√

γ R f

ρV 2
. (14)

We shall see below that this length scale is associated with the constant radius of curvature of the
impact “center.”

Based on these observations, we introduce dimensionless variables

(r̂, ẑ, ŵ) = (r, z,w)/�∗, t̂ = V

�∗
t, ϕ̂ = ϕ/(V �∗), (15a)

ûi = ui/�∗, σ̂i j = σi j/σ
rr
∗ , (15b)

where σ rr
∗ = γ R f /�∗. We can immediately see that the effects of sheet inertia and gravity in

Eqs. (10) and (11) are negligible over these scales: the inertia of the sheet relative to the fluid inertia
in Eq. (10) and relative to the stress term in Eq. (11) is approximately ρeh/ρ�∗ = O(10−3), and
the importance of gravity relative to dynamic pressure is given by the square of the inverse Froude
number g�∗/V 2 = O(10−3)–O(10−2).

Finally, for very thin sheets the bending stress term B∇4w in Eq. (10) will be small compared to
the other terms. However, it is known that the limit of very small bending stiffness is singular [21]:
This term is therefore expected to become important over very short length scales, as is the case, for
example, with very fine scale wrinkles. Therefore, we turn our attention to the wrinkle length scale
before completing our nondimensionalization.

D. The wrinkling length scale

Previous analyses of highly wrinkled elastic sheets [17,21,38] consider the vertical deflection of
the sheet to be composed of a leading-order axisymmetric displacement, w̄(r), decorated by small
amplitude, short wavelength wrinkles with a well-defined wave number m � 1, i.e., they use an
ansatz

w(r, θ ) = w̄(r) + m−1 f (r) cos mθ, (16)

where the function f (r) is assumed to be an O(1) quantity and the appearance of 1/m � 1 encodes
the expectation that the wrinkles have a short wavelength and small amplitude, but collectively
absorb the O(1) amount of excess length that is introduced via the leading-order mean shape w̄(r).
As with previous static studies [18,38], we shall assume that spatial variations in the wrinkle wave
number m occur over a length scale that is large compared to the wrinkle wavelength. From a
perturbation methods point of view, a new complication of the current problem is that this wrinkle
number may vary with time, so using m−1 as our asymptotically small parameter would introduce
unnecessary complications. Instead, we define a small parameter δ � 1 such that the wavelength
λ = O(δ�∗), i.e., m = O(δ−1). Comparing the ur and w terms in the expression for azimuthal strain
(13b), we observe that when a radial contraction of O(�∗) induces wrinkles of wavelength O(δ�∗),
those wrinkles must have height O(δ�∗). This tells us that both the wavelength and the amplitude
of the wrinkles are smaller than the global length scale by the unknown factor δ � 1. We note
that, although the amplitude and wavelength of the wrinkles are of the same order of magnitude in
comparison to �∗, the slope of the wrinkles is small throughout their evolution, as we shall verify in
due course.
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To progress further, we must determine the parameter δ (the mismatch between the wrinkling
and global length scales) in terms of physical parameters. In static problems, δ is determined by
minimizing the energy in the system [38]; since the system under consideration here is dynamic,
Hamilton’s principle of minimal action may be used to determine the appropriate relationship. For
simplicity, however, we use here a dominant balance argument. We consider the various terms of
Eq. (10), neglecting the inertia of the sheet itself and the effect of gravity based on the arguments in
Sec. III C. Since we do not yet know the timescale or the size of the velocity potential associated with
wrinkling, we first seek a balance between the bending, compression, and tension terms associated
with wrinkling in Eq. (10) to find

Bm4(�∗/m)

�4∗
∼ σ θθ

∗ m2�∗/m

�2∗
∼ σ rr

∗ �∗/m

�2∗
, (17)

where σ θθ
∗ is the characteristic size of the hoop stress.

Examining the balance between the second and third terms in Eq. (17), we immediately see
that σ θθ

∗ ∼ m−2σ rr
∗ � σ rr

∗ ; when used to estimate the size of terms in the equation of in-plane
equilibrium Eq. (11), we find that ∂ (rσrr )/∂r ≈ 0 and hence, using the boundary condition Eq. (12)
verify our choice σ rr

∗ ∼ γ R f /�∗. Balancing with the bending term then gives

m ∼
(

γ R f �∗
B

)1/4

, (18)

and hence we choose

δ =
(

B

γ R f �∗

)1/4

� 1. (19)

We note that the scaling for m in Eq. (18) is similar to the typical static scaling m ∼ (T R2/B)1/4 for
static wrinkles formed by a tension T over some length scale R [21]; our definition of δ is essentially
the fourth root of the inverse bendability defined by Davidovitch et al. [21]. We now rescale θ and
introduce a wrinkling length scale and timescale according to

θ = δθ̃ , z = δ�∗z̃. (20)

Finally, we turn our attention to the momentum term on the left-hand side of Eq. (10), and ask
when fluid inertia will affect wrinkling behavior. In the flat portion of the sheet, we anticipate that the
advective term which is quadratic in velocity will be small, and the effect of inertia will be limited
to the acceleration term, ρ∂φw/∂t , where φw is the velocity potential associated with wrinkling.
Seeking a balance both in the kinematic boundary condition Eq. (7) [with vertical scale z̃ = O(1)]
and between the inertia term in Eq. (10) and the other terms highlighted in Eq. (17), we observe that
this is only possible on a shorter timescale t = O(δ1/2).

We emphasize that wrinkling takes place on a timescale that is a factor δ−1/2 faster than that used
in the nondimensionalization Eq. (15). This suggests that as δ → 0 the wrinkles in the flat portion
of the sheet should appear quasistatic on the timescale associated with impact and the propagation
of the axisymmetric wave. However, for the experiments reported in Ref. [25], δ1/2 ≈ 0.3; these
timescales are therefore not well-separated and we expect the wrinkles to continue to coarsen at
the same time as impact proceeds—as is observed experimentally. Nevertheless, considering the
asymptotic limit δ → 0 allows us to derive simplified models approximating the evolution of both
the axisymmetric wave and the wrinkles.

E. Dimensionless governing equations

We treat the two vertical variables z and z̃ (associated with global deformation and wrinkling,
respectively) as independent, so that, using the chain rule, spatial derivatives in the vertical direction
are rewritten δ−1∂/∂ z̃ + ∂/∂z. We now substitute the dimensionless variables Eqs. (15) and (20) into
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the governing Eqs. (6)–(10). Taking care to include the derivatives associated with all length and
timescales, the Laplace Eq. (6) for the velocity potential is transformed to[

1

r

∂

∂r

(
r
∂ϕ

∂r

)
+ ∂2ϕ

∂z2

]
+ 2δ−1 ∂2ϕ

∂z∂ z̃
+ δ−2

[
1

r2

∂2ϕ

∂θ̃2
+ ∂2ϕ

∂ z̃2

]
= 0, (21)

where here, and henceforth, we have dropped hats from dimensionless variables. The kinematic
condition Eq. (7) is transformed to

δ−1 ∂ϕ

∂ z̃
+ ∂ϕ

∂z
= ∂w

∂t
+ ∂w

∂r
+ ∂ϕ

∂r

∂w

∂r
+ δ−2

(
1

r

∂ϕ

∂θ̃

)(
1

r

∂w

∂θ̃

)
. (22)

Based on the scaling arguments in Sec. III C, we neglect the inertia of the sheet so that the
Bernoulli Eq. (10) and horizontal force balance Eq. (11) are transformed to

∂ϕ

∂t
+ 1

2

[(
∂ϕ

∂r

)2

+
(

∂ϕ

∂z

)2
]

+ δ−1 ∂ϕ

∂z

∂ϕ

∂ z̃
+ 1

2
δ−2

[(
1

r

∂ϕ

∂θ̃

)2

+
(

∂ϕ

∂ z̃

)2
]

+
[
δ2 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂θ̃2

]2

w − σrr
∂2w

∂r2
− σθθ

(
δ−2 1

r2

∂2w

∂θ̃2
+ 1

r

∂w

∂r

)
= 0, (23)

and

1

r

∂

∂r
(rσrr ) + δ−1 1

r

∂σrθ

∂θ̃
− σθθ

r
= 0, (24a)

1

r

∂

∂r
(rσrθ ) + δ−1 1

r

∂σθθ

∂θ̃
+ σrθ

r
= 0, (24b)

respectively, where we have used Eq. (24) to rewrite the last two terms in Eq. (23). The horizontal
force balance Eq. (24) must be solved subject to the stress conditions

σrr = 1

R f /�∗
, σrθ = 0 at r = R f

�∗
. (25)

The stress–strain relationships Eq. (13) are now given by

σ rr
∗

Eh
(σrr − νσθθ ) = εrr = ∂ur

∂r
+ 1

2

(
∂w

∂r

)2

, (26a)

σ rr
∗

Eh
(σθθ − νσrr ) = εθθ = ur

r
+ δ−1 1

r

∂uθ

∂θ̃
+ 1

2
δ−2

(
1

r

∂w

∂θ̃

)2

, (26b)

σ rr
∗

Eh
(1 + ν)σrθ = εrθ = 1

2

(
δ−1 1

r

∂ur

∂θ̃
+ ∂uθ

∂r
− uθ

r

)
+ 1

2
δ−1

(
∂w

∂r

)(
1

r

∂w

∂θ̃

)
. (26c)

The conditions at the origin are

w = −t,
∂ϕ

∂r
= 0 at r = 0, (27)

and the far-field conditions are

ϕ → 0 as r2 + z2 → ∞, (28a)

∂ϕ

∂θ̃
,

∂ϕ

∂ z̃
→ 0 as z̃ → −∞, (28b)

w → 0 as r → ∞, (28c)

where we have required that the perturbation to the fluid flow arising from wrinkling be localized
near the interface.
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F. Oscillatory and nonoscillatory components

Throughout our analysis we will find it beneficial to split variables into oscillatory and
nonoscillatory components, i.e., we write

f = f̄ + f̂ , with
1

2(π/δ)

∫ π/δ

−π/δ

f d θ̃ = f̄ . (29)

We will also split the governing equations into averaged and oscillatory components, when it is
useful to do so.

G. High-bendability limit

We now consider the limit δ → 0, which corresponds to the sheet having a low bending
stiffness, or being highly “bendable” [21]. Based on the static case [17], we anticipate that the
sheet experiences azimuthal compression and wrinkles everywhere except in some small region
near the impactor, where the absolute azimuthal stress becomes positive again. We will initially
assume that this “tensile core” is small, and verify this in Sec. IV D. We begin by focusing on
the sheet dynamics on the O(1) timescale associated with the axisymmetric deformation of the
sheet. Following from our nondimensionalization Eq. (15), the variables associated with this motion
should appear at O(1). Recalling our argument in Sec. III C, we expect that the vertical deformation
associated with wrinkling (and hence depending on θ̃ ) should appear at O(δ). We therefore propose
an asymptotic expansion of the form

w = w̄(0)(r, t ) + δw(1)(r, θ̃ , t ) + · · · , (30)

and similarly for other dependent variables. Focusing on the velocity potential, we make two notes:
(i) since the “short” vertical variable z̃ is associated with wrinkling and θ̃ -dependence, we assume
that dependence on z̃ appears at the same order as θ̃-dependence, and (ii) a velocity potential
associated with the wrinkles must be induced through the kinematic boundary condition Eq. (43),
and therefore is of size δ2 (recalling that, for the moment, we consider only the t = O(1) timescale,
rather than the faster, wrinkling, timescale. Based on these observations, we write

ϕ = ϕ̄(0)(r, z, t ) + δϕ̄(1)(r, z, t ) + δ2ϕ(2)(r, θ̃ , z, z̃, t ) + · · · . (31)

IV. AXISYMMETRIC ELASTOCAPILLARY WAVE

A. Asymptotic analysis

We now derive a simplified model governing the leading-order axisymmetric out-of-plane
deflection caused by a point impactor; we do this by substituting our asymptotic expansion into
the dimensionless governing Eqs. (21)–(28), focusing first on the azimuthally averaged velocity
potential, and evaluating the Laplace Eq. (21) order-by-order. At leading order, we find

1

r

∂

∂r

(
r
∂ϕ̄(0)

∂r

)
+ ∂2ϕ̄(0)

∂z2
= 0, (32)

with

∂ϕ̄(0)

∂r
= 0 on r = 0, (33a)

ϕ̄(0) → 0 as r2 + z2 → ∞. (33b)

At the free surface z ≈ w̄(0)(r, t ), the fluid velocity and the motion of the elastic sheet are coupled
through the kinematic condition Eq. (22),

∂ϕ̄(0)

∂z
= ∂w̄(0)

∂t
+ ∂ϕ̄(0)

∂r

∂w̄(0)

∂r
. (34)
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At r = 0, the deformation of the elastic sheet is simply

w̄(0) = −t, ū(0)
r = ū(0)

θ = 0. (35)

For r > 0, the profile of the interface is not known a priori, and so the kinematic condition must be
supplemented by the force balance and stress-strain relations Eqs. (23)–(26). We now examine the
forces outside the contact region order by order.

We first observe that if there is wrinkling with ∂2w(1)/∂θ̃2 �= 0, then the vertical force balance
Eq. (23) dictates that σθθ = O(δ) at most, so the hoop stress collapses, as is known in the limit of
high bendability for static deformations [17,18,21]. Examining the horizontal force balances and
using the boundary conditions Eq. (25), we can now deduce that

σrr = 1

r
+ O(δ), σrθ = δ2σ̂

(2)
rθ + O(δ3),

∂σθθ

∂θ̃
= O(δ3). (36)

Similarly, evaluating the vertical force balance Eq. (23) at O(1), separating out axisymmetric and
oscillatory components, and using the fact that σθθ is independent of θ̃ before O(δ2), we find that
the leading-order variables satisfy

∂ϕ̄(0)

∂t
+ 1

2

[(
∂ϕ̄(0)

∂r

)2

+
(

∂ϕ̄(0)

∂z

)2
]

= 1

r

∂2w̄(0)

∂r2
, (37)

together with the result that σ̄
(1)
θθ = 0, so that the leading-order hoop stress is δ2σ̄

(2)
θθ , and the far-field

condition

w̄(0) → 0 as r → ∞. (38)

Physically, the result Eq. (37) may be interpreted as the hydrodynamic pressure in the liquid [the
left-hand side of Eq. (37)] being balanced by the pressure jump across the sheet (σrrκrr), with σrr

being the stress in the wrinkled sheet, which is qualitatively altered by wrinkling.
We now have a complete description of the leading-order stresses, out-of-plane deformation

w̄(0), and velocity potential ϕ̄(0). We can also write down the leading-order in-plane deformation
at this stage: examining the stress–strain relations Eq. (26) we see that ū(0)

θ = 0, while the radial
deformation is given by

dū(0)
r

dr
= −1

2

(
dw̄(0)

dr

)2

+ σ �
rr

Eh

1

r
, ū(0)

r (r = 0) = 0. (39)

By considering the high-bendability limit, δ → 0, we have determined that the leading-order
sheet profile, together with the stress state within it, are axisymmetric; wrinkles are smaller in
amplitude, with a wavelength O(δ�∗) dictated by the bending stiffness in the sheet. We shall now
solve the leading-order problem for the velocity potential ϕ̄(0)(r, z, t ) and the mean vertical surface
deformation w̄(0)(r, t ). We will find that this leading-order behavior admits a similarity solution,
which describes the propagation of the ripple that is observed experimentally [25].

B. Similarity solution

In dimensionless terms, the sheet edge is located at r = R f /�∗, which lies in the range 9.77 �
R f /�∗ � 44 in the experiments of Ref. [25]. At this point in our analysis, we further simplify our
model by considering the limit R f /�∗ → ∞, so that the elastic sheet has infinite extent. The leading-
order, axisymmetric motion is described by a velocity potential ϕ̄(0) and vertical surface deformation
w̄(0), governed by the bulk Eq. (32) together with boundary conditions Eqs. (33)–(38). We shall
focus on the early-time behavior of the sheet, when the mean deflection w̄(0)(r, t ) is small enough to
neglect hydrostatic pressure, and time-derivatives dominate advection. (We note that, since we have
assumed that the sheet is completely wrinkled, our analysis only concerns intermediate times in a
sense that we quantify in Sec. IV D.)
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The scaling estimates of Ref. [25] suggests that an evolving horizontal length scale ∝ t1/2 should
be expected here, in contrast with the r ∼ t2/3 scaling expected for impacts dominated by a constant
tension [24,30,32,39]. Based on these observations, we seek a self-similar early-time solution,

w̄(0)(r, t ) ≈ tH0(ξ ), ϕ̄(0)(r, z, t ) ≈ t1/2 f0(ξ, ζ ), (40)

with similarity variables

(ξ, ζ ) =
(

r√
t
,

z√
t

)
. (41)

Carrying out a change of variables, the Laplace Eq. (32) yields

1

ξ

∂

∂ξ

(
ξ
∂ f0

∂ξ

)
+ ∂2 f0

∂ζ 2
= 0. (42)

The boundary conditions at the free surface should be applied at ζ = w/
√

t ≈ √
tH0(ξ ). For t � 1,

this corresponds to the fixed boundary ζ = 0, which reflects the fact that for t � 1 the free surface
is only slightly deformed. The kinematic free-boundary condition Eq. (34) is transformed to

∂ f0

∂ζ
= H0 − 1

2
ξ

dH0

dξ
, (43)

and the dynamic boundary condition Eq. (37) is transformed to

1

2

(
f0 − ξ

∂ f0

∂ξ

)
− 1

ξ

d2H0

dξ 2
= 0, (44)

both on ζ = 0. We note that the nonlinear terms in both boundary conditions are neglected in the
limit t � 1. Finally, the conditions at r = 0 Eq. (33a) and in the far field Eqs. (33b) and (38) may
be written

H0 = −1, (45a)

∂ f0

∂ζ
= −1,

∂ f0

∂ξ
= 0, (45b)

at ξ = 0, and

H0 → 0 as ξ → ∞, (46a)

f0 → 0 as ζ 2 + ξ 2 → ∞. (46b)

We note from Eq. (44) that the radial curvature ∂2w(0)/∂r2 ≈ d2H0/dξ 2 is independent of time. We
deduce that, in dimensional terms, the curvature ∼1/�∗; this reaffirms that the length scale �∗ is the
most natural choice for our nondimensionalization.

The Eqs. (42)–(46) were solved numerically using second-order finite differences. We note that
there are no free parameters, so the problem only needs to be solved numerically once. The free
surface is illustrated (together with numerical results for a finite-size impactor, see Sec. V) in Fig. 4.
We emphasize that this self-similar solution is different to the one described by Philippi et al. [2]:
our solution is valid in the limit of a point impactor on a floating elastic sheet where surface tension
dominates, while the solution of Ref. [2] is valid in the limit of a large impactor at an interface
where surface tension is negligible and fluid flow dominates the governing equations.

C. Radial retraction

Having determined the mean deflection profile of the sheet induced by impact, we now turn our
attention to the corresponding radial displacement of material inwards, since this is what drives the
observed wrinkling. The amount of retraction, ur

(0), is determined by the axisymmetric similarity
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solution described above (to leading-order in the high-bendability limit δ → 0). Comparing terms
in Eq. (39), we note that the tension term is smaller than the vertical deformation terms by a factor
ρV 2�∗/Eh = O(10−3), and may be neglected; we therefore find the radial retraction at early time

ū(0)
r (ξ ) ≈ −1

2
t3/2

∫ ξ

0

(
dH0

dξ ′

)2

dξ ′. (47)

Taking the limit ξ → ∞, we find that the retraction of the edge −u(0)
r (∞) ≈ 0.41t3/2. This radial

retraction in turn drives the formation of wrinkles in the sheet, which we investigate in Sec. VI.
Finally, we note that the radial retraction of the sheet over the liquid surface will induce a

Blasius-like viscous boundary layer in the underlying fluid, and that this may in turn be expected
to exert a shear on the sheet, slowing down the retraction. To assess the importance of this viscous
boundary layer, we consider a flat plate moving at a variable speed vr = ∂ur/∂t ∼ t1/2 across the
fluid surface. Including viscous terms in the horizontal force balance, we find that they balance
with the inertial term ∼∂vr/∂t over a dimensionless depth z ∼ √

t/ Re. We estimate the effect of
the shear ∼∂vr/∂z on the radial stress in the sheet, and find it induces a relative change of size
1/

√
Re � 1, independent of time and radial position. We deduce that viscous shear should not have

a significant effect on the retraction of the sheet.

D. Conditions for a fully wrinkled sheet

In our analysis of the elastic sheet deformation caused by impact, we have considered a scenario
in which the entire sheet is covered with radial wrinkles. This simplifies matters considerably, since
even the static case is very involved when a partially wrinkled sheet is considered [27]. We now
provide scaling estimates of when this assumption, and hence our analysis, is valid. Before impact,
the sheet is flat with a uniform, isotropic tension, and disturbances can be expected to propagate
according to the usual capillary wave relationship (in dimensionless terms) rm ∼ (�∗/R f )1/3t2/3.
When the impact depth is sufficiently small, the change in the stress in the sheet is also small,
and the sheet remains under approximately isotropic tension with σrr ≈ σθθ ≈ γ /σ rr

∗ . The vertical
deformation induces a change in this stress, so writing σrr = γ /σ rr

∗ + σ̄rr and considering the
stress–strain relationship Eq. (26a) we find σ̄rr ∼ (Eh/σ rr

∗ )(∂w/∂r)2. We expect that the sheet will
become wrinkled when the stress induced by impact is comparable to the pre-stress due to surface
tension. Using the scalings rm ∼ (�∗t2/R f )1/3, w ∼ t suggests that this wrinkle initiation occurs at
a dimensionless time

twrinkle ∼
(

γ

Eh

)3/2
�∗
R f

. (48)

For the parameters in Table I, twrinkle = O(10−7), corresponding to dimensional times on the order
of 10−10 s, significantly earlier than any experimental observation in Ref. [25].

Wrinkling is synonymous with an anisotropic and inhomogenous stress field in the sheet: the
sheet does not wrinkle everywhere at the same time. Based on the static case studied in detail in
Ref. [27] we consider a wrinkled annulus LI < r < LO and determine how the wrinkled annulus
grows as time (and impact depth) increases. In r > LO, the sheet is wrinkled and the stresses are
given by the Lamé solution

σrr/θθ = R f

�∗

1

(R f /�∗)2 + L2
O

[
1 ± L2

O

r2

]
. (49)

In the wrinkled region LI < r < LO, the hoop stress collapses, σrr ∼ 1/r, and matching yields

σrr = R f

�∗

2LO

r

1

(R f /�∗)2 + L2
O

, σθθ ≈ 0. (50)
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In r < LI , we estimate the stress σrr ∼ (∂w/∂r)2 using LI as the natural length scale, and match
with the stress in the wrinkled region at r = LI to obtain a relationship between LI , LO, and t . We
use the boundary conditions Eqs. (22) and (23) to eliminate L3

I ∼ σrr (LI )t2 and determine that the
time at which wrinkles reach the sheet edge (i.e., LO ∼ R f /�∗) is given by

tedge ∼
(

σ rr
∗

Eh

)2/3

; (51)

for the parameters in Table I this is tedge = O(10−2), corresponding to a dimensional time on the
order of 100 μs and indentation depth on the order of 100 μm. This explains why experiments
[25] report the sheet being covered in wrinkles from very soon after the beginning of impact. We
also note that the corresponding dimensional indentation depth � ∼ (σ rr

∗ /Eh)2/3R2/3
f �

1/3
∗ , which is

different to the static case (cf. Sec. II A).
Finally, we ask how big the tensile zone r < LI is and whether it affects the bulk solution. In

r > LI the stress is simply σrr = 1/r, σθθ ≈ 0, and we expect elastocapillary waves to propagate
according to rm ∼ t1/2. Imposing continuity of radial stress at r = LI then suggests

LI ∼ σ rr
∗

Eh
t−1, (52)

so the tensile core is small and shrinking at the times of interest, for example at t = tedge ≈ 10−2 we
already have LI ≈ 10−1.

Inside the tensile core, we briefly assess how the velocity potential and surface height behave,
and whether they change significantly. Starting with the velocity potential, we note that ϕ and
∂ϕ/∂r should be continuous across r = LI , and ∂ϕ/∂r = 0 at r = 0. Since the velocity potential
is governed by Laplace’s equation with a vertical length scale set by the bulk motion, we infer
that ϕ and ∂ϕ/∂r do not change across the short tensile zone, and that it is appropriate to apply
a boundary condition ∂ϕ/∂r = 0 to the bulk solution as r → 0. At the interface, the dynamic
boundary condition may be rewritten rσrr (∂w/∂r) = constant = O(1), so w does not change an
O(1) amount over a distance LI � 1. We therefore expect the problem in the wrinkled bulk to be
largely unaffected by the tensile core.

V. ROLE OF FINITE IMPACTOR RADIUS

In Sec. II B, we described previous work on impact at a bare liquid–air interface, resulting in
self-similar behavior with radial extent r ∼ t2/3 for We � 1 and r ∼ t1/2 for We � 1. In Sec. III,
we outlined a mathematical model for the impact of a point impactor onto a thin elastic sheet floating
at a liquid–air interface (presenting a self-similar solution with lateral scale r ∼ t1/2 in Sec. IV). In
this section, we investigate the role of a finite impactor radius on the resulting dynamics and see
that impactor radius enters the problem as a modified Weber number. We shall see below that, for
impact on a floating sheet, the lateral scale r ∼ t1/2 for any modified Weber number, allowing us to
smoothly connect the limiting cases in which surface tension dominates or is negligible.

A. Mathematical model

At time t = 0, a sphere of radius Rs and velocity v = −V k̂ impacts the sheet, as illustrated in
Fig. 3. The region in which the sheet is in contact with the sphere evolves dynamically and so is
written 0 � r � rc(t ). We approximate the sphere’s surface by a paraboloid—an approximation that
is valid provided that rc � Rs, and so is expected to hold at early times. In the contact region (in
dimensional terms) we immediately have

w(r, t ) = −V t + r2

2Rs
, 0 � r < rc(t ). (53)
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FIG. 3. Schematic diagram: a sphere of radius Rs, with velocity −V k̂, impacts a floating elastic sheet,
causing a vertical deflection of the sheet w(r, θ, t ). The contact region r � rc(t ) between the sphere and sheet
is highlighted in red.

The contact radius rc(t ) is not known a priori and so must be determined as part of the solution of
the problem. Requiring the surface height and the vertical fluid velocity to be continuous across the
contact line is equivalent to assuming that the sheet height, w, and slope, ∂w/∂r, are both continuous
at r = rc(t ). We shall also assume that the sheet wraps the sphere without stretching significantly,
so that ur = −r3/(6R2

s ) and uθ = 0 in r � rc(t ). We note that, alternatively, the sheet may wrap the
sphere without pulling additional material radially inward, so that ur = uθ = 0 in r � rc(t ). We find
below that these different boundary conditions are experimentally indistinguishable.

We nondimensionalize and derive the same dimensionless governing equations as before; now,
however the point impact conditions at r = 0 are replaced by new equations describing the
deformation inside the contact region r � rc. In line with the asymptotic expansions in Sec. III G,
we expand rc in powers of δ, with r (0)

c denoting the leading-order contact position in the limit δ → 0.
At leading order in the high-bendability limit δ → 0, the conditions Eq. (35) are replaced by

w̄(0) = −t + r2

2α
, ū(0)

r = − r3

6α2
, ū(0)

θ = 0, (54)

throughout 0 < r � r (0)
c (t ), where

α = Rs

�∗
= ρV 2Rs

σ rr∗
(55)

is the dimensionless sphere radius and can be interpreted as a modified Weber number, with the
impactor radius Rs providing the appropriate length scale and σ rr

∗ = γ R f /�∗ the typical tension. We
note that, for the experiments presented in Ref. [25], α lies in the range 0.34 � α � 4.65; we shall
see that this finite-α model is required to accurately describe the observed behavior.

We require the surface height and its slope to be continuous at the edge of the contact region, so

w̄(0) = −t +
(
r (0)

c

)2

2α
,

∂w̄(0)

∂r
= r (0)

c

α
at r = r (0)

c . (56)

We now apply the dynamic boundary condition Eq. (44) in r > r (0)
c only.

We propose a similarity solution of the same form as before, but with an additional variable,

r (0)
c = t1/2ξ ∗

0 . (57)

In similarity variables, the kinematic boundary condition Eq. (43) is replaced with

∂ f0

∂ζ
=

{−1, ξ � ξ ∗
0

H0 − 1
2ξ dH0

dξ
, ξ > ξ ∗

0
, (58)
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FIG. 4. Numerical solution of the early-time similarity problem Eqs. (42)–(46) showing the similarity
profile of the deformed surface for a point impactor (black), and of the early-time finite-radius problem
Eqs. (42), (44), (46), (58), and (59) for dimensionless sphere radii α = 0.5 (red), 1 (purple), 2 (blue). For
the finite-radius impactor (α > 0), dashed curves show the region in which the sheet is in contact with the
impacting sphere; the location of the wavefront (defined as the first local minimum of the interface beyond
the contact in Ref. [25]) is indicated by a large circle. Inset: the similarity coordinate of the contact point,
ξ ∗

0 = rc/t1/2, as a function of dimensionless sphere radius α. The dashed lines show the point impactor
prediction ξc ≈ 0.86α, valid for α � 1, and the α → ∞ prediction ξc = √

3α, valid for α � 1 [2].

and the dynamic boundary condition is applied in ξ > ξ ∗
0 . Imposing the condition of continuity of

the surface and its radial derivative at ξ = ξ ∗
0 , Eq. (56), we find

H0(ξ ∗
0 ) = −1 + (ξ ∗

0 )2

2α
,

dH0

dξ

∣∣∣∣
ξ∗

0

= ξ ∗
0

α
. (59)

The new similarity problem was again solved numerically using second-order finite differences
for different values of the dimensionless sphere radius, α = Rs/�∗, Eq. (55), which is the only
remaining parameter in this leading-order problem. Our numerical solution uses a nonuniform grid
spacing to provide fine resolution near the impactor, with a coarser resolution used in the far field.
An initial guess was provided for the contact point ξ ∗

0 , which is not known a priori and must be
determined as part of the solution. A nonlinear solver (fsolve in Matlab) was used to determine
the value of ξ ∗

0 for which the slope of the surface satisfied the smoothness condition Eq. (59). The
free surface is illustrated in Fig. 4 for different values of α.

Our numerical results show that the position of the contact point in similarity variables, ξ ∗
0 ,

increases as the dimensionless radius α increases (see inset of Fig. 4). The limit α → ∞ corresponds
to zero interfacial tension (and We → ∞) and so should be expected to reduce to the classic impact
problem in the absence of interfacial tension [1,2,34,40]; in particular, recasting results from the
classic Wagner problem in our notation we expect that ξ ∗

0 ∼ √
3α as α → ∞. This is consistent

with our numerical results. Conversely, in the limit α → 0 we recover the point indenter case
outlined in Sec. IV. The size of the contact region can be approximated for α � 1 by matching the
predicted slope of the free surface at ξ = 0 with an inner region ξ , ζ = O(α) in the neighbourhood
of the impact point (where surface tension dominates the interfacial stress balance Eq. (44) and the
interface deflection is linear). This rescaling shows that ξ ∗

0 /α ≈ 0.86 for α � 1, again consistent
with our numerics.

B. Comparison with experiments

We now compare the predictions of our model with data from an experimental study (described in
Ref. [25]) in which a sphere impacts a floating elastic sheet. In Fig. 5(a) we show a spatiotemporal
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FIG. 5. Comparison between theoretical predictions and experimental observations of the propagation of
the transverse wave formed when a floating elastic sheet is impacted by a solid sphere: (a) spatiotemporal
diagram from an experiment with Rf = 17.35 mm, h = 350 nm, Rs = 1.25 mm, and V = 1.57 ms−1, described
in Ref. [25]. A radial slice is imaged over a 2 ms time interval (at 39,024 frames per second), resulting
in a spatiotemporal plot. The first minimum rm in the propagating transverse wave can be seen as a
dark curve, the leading-order early-time prediction from the numerical solution of the similarity problem
Eqs. (42)–(46) is shown by the solid green curve and the two-term solution is shown by the red dashed curve.
(b) The experimentally measured prefactor in the wavefront propagation rm ∼ t1/2 is plotted as a function of
dimensionless sphere radius α. The solid red curve shows the prediction from the similarity solution described
in Sec. IV B, while the data points are extracted from the data in Fig. 3(a) of Ref. [25]. (Colors and symbols
are chosen to match those used in Ref. [25].) The black dashed line shows the point impactor prediction
rm/t1/2 ≈ 2.8. (c) The prefactor in the edge retraction −ur ∼ t3/2 as a function of dimensionless sphere radius
α. The similarity solution computed from Eq. (60) is shown by the solid red curve, and the prediction for
ur (ξ ∗) = 0 is shown by the violet dash-dotted curve. The point impactor prediction ur ≈ −0.41t3/2 is shown
by the black dashed line. The data points are extracted from edge retraction measurements in Ref. [25] [see
Fig. 3(b) of that paper], and the colors here are chosen to match those used there (indicating the value of α). In
both (b) and (c) the error bars represent a 95% confidence interval on the fit to data.

plot of the transverse wave compiled during impact: Consecutive images from a particular radial
line in the sheet are printed side by side, to give time increasing from left to right. Experimentally,
the most easily identifiable feature in the transverse wave is a dark region corresponding to the first
minimum of the interface profile beyond the contact region. The wavefront location predicted by the
similarity solution outlined above is overlaid on this spatiotemporal plot, and gives a good account
of the experimentally-observed position of the front, even beyond early times.

A more detailed comparison between the predicted wavefront position and the experimental
measurements of Ref. [25] is performed by fitting experimental data to a curve rm ∼ t1/2 and
extracting the prefactor for different experimental parameters (and hence different dimensionless
sphere radii α). The results of this procedure are shown in Fig. 5(b) and show that the trend
predicted by the model agrees well with the experiments. Although α = O(1) in the experiments
of Ref. [25], we note that the point impactor analysis α → 0 (discussed above) suggests that the
predicted position of the wavefront in similarity variables tends to a fixed position ξ = 2.8 as
α → 0; moreover, this is a good approximation for α < 1.
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In both of the comparisons presented in Figs. 5(a) and 5(b) we observe that the model slightly
underpredicts the speed of the propagating wave for t < 1. One possible source of error is the
increasing importance of the nonlinear terms in Eqs. (34) and (37) as time increases. This motivates
determining the higher-order corrections to the similarity solution, i.e., the terms H1(ξ ), etc., in
Eq. (40). We give details of this calculation in Appendix A: ultimately, a correction to the location
of the wavefront may be determined for each value of the dimensionless parameter α. A two-term
prediction for the location of the first minimum (i.e. the wavefront) is shown in Fig. 5(a). This
correction to the leading-order similarity solution suggests that the nonlinear terms that become
nonnegligible at later times cause the wave to spread out slightly more rapidly.

We can calculate the edge retraction using the integral

ū(0)
r =

[
−

(
(ξ ∗)3

6α2

)
− 1

2

∫ ξ

ξ∗

(
dH0

dξ ′

)2

dξ ′
]

t3/2, (60)

for the perfect wrapping case, with the additive factor (−ξ ∗3/6α2) replaced by zero for the
alternative, perfect no-slip model presented in Sec. V A. We observe that the prefactor in the t3/2

power law depends on the dimensionless sphere radius α, as illustrated in Fig. 5(c). We observe
that in both models the prefactor increases with increasing α > 1, and, as should be expected,
in the α → 0 limit recovers point-impactor behavior. The predicted edge retraction is compared
to the experimental measurements of Ref. [25] by fitting experimental data for t < (α/ξ ∗)2 to a
curve ur ∼ −t3/2 and extracting the prefactor for different experimental parameters [see Fig. 5(c)].
Although the order-of-magnitude predictions for the prefactor are reasonable, the experimental
measurement of the retraction of the edge is difficult, and the level of accuracy offered by these
experiments does not allow us to distinguish the two contact models (perfect wrapping or perfect
no-slip).

C. Validity of similarity solution

Finally, we check when the similarity solution is valid. As noted above, we have assumed
that t � 1 in the above analysis, allowing some terms to be neglected. Further, our parabolic
approximation of the impactor requires that rc � Rs, which in dimensionless terms becomes
t � (α/ξ ∗

0 )2. The determined similarity solution is valid when both conditions are satisfied. For
the experiments reported in Ref. [25], 0.65 � (α/ξ ∗

0 )2 � 1.5.
We also note that experimentally the velocity of the impactor is not controlled throughout, but

rather a sphere impacts the sheet at a known speed and may subsequently decelerate due to resisting
forces of the sheet and water. We account for these effects in Appendix B and find that they do not
affect the leading-order result for t � 1, nor do they affect the first correction mentioned above.
Nonetheless, deceleration may become significant at later times for small spheres with less inertia;
Eq. (B4) provides an upper bound on the times at which our constant-velocity approximation is
valid.

VI. WRINKLES

We now turn our attention to the formation and evolution of wrinkles in the floating elastic sheet
during impact.

A. t = O(1) timescale

We begin our study of wrinkle formation by proceeding to next order in the governing Eqs. (21)–
(28). In particular, evaluating the oscillatory component of the vertical force balance Eq. (23) at
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O(δ), we find that

1

r4

∂4ŵ(1)

∂θ̃4
− 1

r

∂ŵ(1)

∂r2
+

(
Eh

σ ∗
rr

)(
∂2w̄(0)

∂r2

)2

ŵ(1) − σ
(2)
θθ

1

r2

∂2ŵ(1)

∂θ̃2
= 0, (61)

where we have used

σ̂ (1)
rr = −

(
Eh

σ rr∗

)
∂2w̄(0)

∂r2
ŵ(1), (62)

which is calculated using the stress–strain Eqs. (26a) and (26c). The unknown hoop stress is given
by ensuring the wrinkles satisfy the length constraint[

1

2

(
1

r

∂ŵ(1)

∂θ̃

)2
]

= − ū(0)
r

r
, (63)

which has been derived from Eq. (26b), and the leading-order radial retraction ū(0)
r is given by

Eq. (47).
Equations (61) and (63) simply describe the quasistatic wrinkle profile of a thin sheet under

an applied radial retraction—see, e.g., Ref. [18]. We recognize the first term in Eq. (61) as a
bending term, which opposes the formation of very fine-scale wrinkles, and the second two terms
as corresponding to tension- and curvature-induced stiffnesses, respectively, which oppose large
vertical deformations and hence balance the bending term. In the last term, the residual hoop stress
σ

(2)
θθ simply acts as a Lagrange multiplier for the length constraint Eq. (63). We conclude that, on

this timescale, we observe wrinkles that evolve as the stiffnesses and excess length evolve, but are
in quasistatic equilibrium and unaffected by the inertia of the underlying fluid. To take account of
the effect of fluid inertia, we must consider the behavior on a shorter timescale.

B. Modeling inertia-modulated wrinkling

Based on the dominant balance argument presented in Sec. III C, we study wrinkle formation on
the timescale t = δ1/2t̃ � 1, with t̃ = O(1). Based on our analysis at t = O(1), we anticipate that
the leading-order axisymmetric variables will evolve in a self-similar power-law fashion, motivating
a rescaling in δ. We focus our attention on the portion of the sheet where the hoop stress σθθ < 0,
and the sheet wrinkles. An in-depth analysis (see Appendix C) shows that the compressive hoop
stress is O(δ3/2) near the impact point, and hence larger than the σθθ = O(δ2) behavior observed
in static wrinkling problems [21,38]. However, in the flat portion of the sheet far from the impact
point, σθθ = O(δ2), as is more usual in wrinkling problems. We focus on this flat region to allow us
to determine a simple system of equations governing these variables in the high-bendability limit
δ → 0; here we justify these equations intuitively, while a more formal derivation may be found in
Appendix C.

We derive approximate governing equations for the evolution of the wrinkle profile (and the
associated velocity potential) by considering a material circle in the sheet far from the point
of impact, so that the sheet is approximately flat, and undergoes a radial retraction ur (t ) given
by Eq. (47). We confine our attention to radii sufficiently large that the length of the materical
circle 2πr � δ�∗, which is the characteristic wrinkle wavelength scale; we can then “unwrap” this
material circle, treating it as a one-dimensional sheet; see Fig. 6.

We denote the wrinkle amplitude by W and the associated velocity potential by �, and complete
our unwrapping of a material circle by introducing a new variable x = rθ̃ . For a two-dimensional
fluid domain below a one-dimensional sheet, the Laplace Eq. (21) simplifies to

∂2�

∂x2
+ ∂2�

∂ z̃2
= 0, (64)

014003-20



IMPACT ON FLOATING THIN ELASTIC SHEETS: …

FIG. 6. Schematic of wrinkling in a one-dimensional sheet under confinement.

with far-field condition

� → 0 as z̃ → −∞. (65)

At early times, we linearize the free surface onto the horizontal plane z̃ = 0 and simplify convective
derivatives to partial derivatives. The kinematic condition at the free surface is then

∂�

∂ z̃
= ∂W

∂ t̃
. (66)

The dynamic condition must take into account (i) the inertia of the underlying fluid, (ii) the bending
stiffness of the sheet, and (iii) the compressive force. The one-dimensional version of the vertical
force balance Eq. (23) is then

∂�

∂ t̃
+ ∂4W

∂x4
− P

∂2W

∂x2
= 0, (67)

where P = σ
(2)
θθ < 0 is the stress along the material circle. We reiterate that, near the center of the

sheet, our analysis suggests that the hoop stress σθθ is larger than the O(δ2) result usually obtained
for static indentation [21,38]; however, far from the point of impact we may neglect axisymmetric
motion, so σθθ ≈ δ2σ̄

(2)
θθ (see Appendix C).

The size of the compressive stress P depends on the confinement imposed, and is determined
by coupling the excess length absorbed by the wrinkles to the radial retraction Eq. (47) via the
geometric constraint

1

2

∫ πr

−πr

(
∂W

∂x

)2

dx = −2πu(0)
r /δ3/4 ∼ t̃3/2. (68)

We note that r � 1, and the unwrapped material circle is very long compared to the wrinkle
wavelength. We could alternatively write the system Eqs. (64)–(68) in terms of a coordinate
θ̃ ∈ [−π, π ], which would suggest that W ∼ √

r to ensure that the integral in Eq. (68) is O(1).
In fact, we shall scale out all radial dependence in the solution below.

Since the Eqs. (64)–(67) are linear, it is natural to Fourier Transform in x = rθ̃ so that the solution
may be written

�(x, z̃, t̃ ) =
∫ ∞

−∞

1

|k|
dak

dt̃
eikxe|k|z̃ dk, (69a)

W (x, t̃ ) =
∫ ∞

−∞
akeikx dk. (69b)

with � → 0 as z̃ → −∞ as required, and the coefficients ak (t̃ ; r) to be determined. The vertical
force balance then reduces to

d2ak

dt̃2
= −|k|(k4 + Pk2) ak . (70)
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The governing Eq. (70) must be solved with the unknown variable P(t̃ ) determined to ensure
that the (transformed) compression constraint Eq. (68) is satisfied. We note first, however, that the
linearity of Eq. (70) means that ak can be scaled to absorb any prefactor in the geometric constraint
Eq. (68) without affecting the relative sizes of the coefficients ak . In particular, features such as the
dominant wave number k∗(t ), defined as the value of k at which ak is maximized, should only be
affected by the form of the power law; it is therefore sufficient to solve Eq. (70) subject to∫ ∞

−∞
k2|ak|2 dk = t̃ 3/2, (71)

and with appropriate initial conditions (an example is given in Sec. VI C below). A naive balance of
terms in Eq. (70) suggests seeking a similarity solution with dominant wave number k∗(t ) ∼ t̃−2/5

and P ∼ t̃−4/5, but we shall see in Sec. VI D that this is not correct. First, though, we validate our
model by comparing numerical solutions of Eqs. (70) and (71) with experimental observations.

C. Comparison with experiments

The experimental study of impact on a floating elastic sheet presented in Ref. [25] shows radial
wrinkles whose wavelength evolves in time. An extract from these experiments is shown in Fig. 7(a),
in the form of a spatiotemporal plot in which light and dark regions show the peaks and troughs of
the wrinkles, respectively. At early times, many fine wrinkles are visible, which subsequently merge,
so that the wavelength increases (and the number of wrinkles decreases) as time progresses. This
image is taken in the flat part of the sheet, where the static wavelength predicted by Ref. [18] would
be governed by a balance between bending stiffness and hydrostatic pressure in the liquid and is
given by λ ≈ 1.5 mm (see Fig. 4(c) of Ref. [18]). By constrast, the wavelengths shown in Fig. 7(a)
increase from ≈0.3 mm to ≈0.6 mm. The important difference, as seen in the vertical force balance
Eq. (67), is that here the primary restoring force is the inertia of the underlying fluid, as opposed to
hydrostatic pressure.
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FIG. 7. (a) Spatiotemporal diagram of wrinkles in a floating elastic sheet impacted by a solid sphere. An arc
of a material circle (initially at r = 0.8Rf ) is imaged over a 2.5 ms interval at 39 024 frames per second: at early
times many fine wrinkles are visible (left), but coarsen as time evolves (to the right). These data were obtained
for Rf = 13.30 mm, h = 450 nm, Rs = 1.25 mm, and V = 1.11 ms−1. (b) Dominant wavelength λ̃ = 2π/k∗ of
the wrinkle pattern in the flat portion of an impacted sheet, as a function of time. The data points are a rescaled
version of those presented in Fig. 4(b) of Ref. [25], and the colors here are chosen to match. The solid curve
is the numerical solution to Eqs. (69)–(71) with no fitting parameter, while the triangle illustrates the simple
scaling λ̃ ∼ t̃2/5.
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In Fig. 7(b) we replot experimental data from Fig. 4(b) of Ref. [25], showing the dominant
wave number k∗(t̃ ). We solve our reduced model Eqs. (70) and (71) numerically by truncating and
discretizing k to form a matrix system of the form My′ = f (y). The mass matrix M is singular
because of the inclusion of the integral constraint Eq. (71), which becomes an algebraic constraint
upon discretization. The resulting matrix system can then be integrated using ode23t in MATLAB,
using as initial conditions a uniform initial amplitude and velocity across k. We then determine
k∗(t̃ ) by identifying the value of k for which |ak| is maximized at each t̃ . Our numerical solution
gives reasonable agreement with the experimental measurement, with no fitting parameters [see
Fig. 7(b)]. Finally, we note that, since the radial retraction far from the origin is approximately
uniform in space, our model predicts that the value of k∗(t ) should also be independent of radial
position, so the typical number of wrinkles in the pattern, m = rk∗(t )/δ should increase with radius.
This feature is also in reasonable agreement with experimental observations (see Fig. 4(a) of [25]).

D. Wrinkle evolution

In Sec. VI C we validated our model by solving the governing Eqs. (70) and (71) numerically
and comparing with experimental observations. Examining our model in more detail allows us to
go beyond the remit of those experiments: we can investigate the distribution of wavelengths in the
spectrum Eq. (69), as well as calculate the residual hoop stress σ

(2)
θθ .

First we address the question of whether the Eqs. (70) and (71) admit a similarity solution. For a
general retraction power-law [i.e., ∼t̃ n on the right-hand side of Eq. (71)] one might naturally seek
a solution of the form

ak = t̃3/5+n/2 f (κ ), k = t̃−2/5κ, P = t̃−4/5S. (72)

We note that the k ∼ t̃−2/5 power law is also found in the interaction between water waves and
flexible ice sheets in the ocean, see for example [41]. However, substituting this ansatz into the
evolution Eq. (70), we find that f ∼ κ−3/2−5n/4 as κ → 0; in this case, the integral Eq. (71) does not
converge and the geometric constraint cannot be satisfied. The failure of such a similarity solution
is similar to that in the coarsening of wrinkles in a thin sheet on a viscous lubricating film [36].

We proceed to find a numerical solution of the differential-algebraic system Eqs. (70) and (71). To
focus purely on inertia-driven wrinkle coarsening, we neglect the complication of a time-dependent
end-shortening by considering the simplest case n = 0, so that the right-hand side of Eq. (71) is 1.
For numerical solution over a large range in t̃ , we must adapt the procedure outlined in Sec. VI C,
because the range of k for which ak is nonnegligible evolves with time: at early times the dominant
wave numbers are relatively large, and a correspondingly large range of k must be considered. At
later times, the dominant wave number k∗ decreases dramatically, necessitating a smaller mesh size
to resolve the behavior at smaller k properly. The domain size is decreased correspondingly due to
memory contraints—for example, for t̃ < 1 the domain is truncated at k = 15 with mesh size 1/400
while for 103 < t̃ � 104 the domain is truncated at k = 2 with mesh size 1/4000.

Snapshots of the amplitude ak of the mode associated with the scaled wave number k are shown
in Fig. 8(a): we observe that the amplitude varies smoothly with k, is oscillatory, with a global
maximum at some critical k = k∗, and decays as both k → 0 (for infinitely long wavelengths) and
k → ∞ (for infinitesimally short wavelengths); here we plot up to k/k∗ = 3 only to clearly illustrate
the behavior for k/k∗ < 3.

As expected from the earlier discussion, our numerics show that the behavior is not self-similar:
there is a consistent drift in the distribution ak (t̃ ) as t̃ evolves. Furthermore, while the stress P =
σ

(2)
θθ < 0 is negative, and initially has a large magnitude that decays towards 0 as the sheet wrinkles

[see Fig. 8(b)], we note that the decay in P does not coincide with the t̃−4/5 power law that would
be expected of a similarity solution.

The dominant wave number decreases with time, as shown in Fig. 8(c); alternatively, the typical
wavelength increases with time, in agreement with the experimentally-observed coarsening of
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FIG. 8. Numerical solution of the wave number evolution problem Eqs. (70) and (71), with stationary and
uniform (in k-space) initial conditions. (a) Mode amplitude ak at time t̃ = 102 (orange), 104 (red), 106 (purple),
108 (blue), and 1010 (green) rescaled by the maximum value of ak , ak∗, which is attained at k = k∗. (b) The hoop
stress P = σ

(2)
θθ decays in time (blue points) but not quite in the way expected for a similarity solution, P ∼ t̃−4/5

(black dashed line). (Note that the noise in the hoop stress prediction is an artefact of the numerics—this results
from changing the domain length to resolve the typical wave number at different times.) (c) The evolution of
the dominant wave number k∗, defined as the value of k at which the amplitude ak is maximized (blue), together
with a (black dashed) line showing the “expected” similarity behavior k∗ ∼ t̃−2/5. Inset: Plotting the rescaled
dominant wave number, k∗t2/5, on doubly logarithmic axes shows that the observed behavior is not self-similar.

wrinkles [25]. A dashed line corresponding to k∗ ∝ t̃−2/5 (on logarithmic scales) is also shown in
Fig. 8(c) for comparison. This demonstrates that the behavior observed numerically is close to the
power law t̃−2/5 that would be expected from the proposed similarity solution Eq. (72). However,
given that the behavior of the compressive stress P shows a systematic long-term drift from the
expected power law, we present in the inset of Fig. 8(c) a “compensated” plot. This compensated plot
shows a small but systematic drift from the scaling k∗ ∼ t̃−2/5 over the time interval t̃ ∈ [1, 1010]. In
the related problem of viscosity-dominated wrinkle coarsening, an analogous deviation from power
law behavior is observed which is logarithmic and can be quantified [36]. The analysis carried out
there cannot be adapted directly to this problem because of the second derivative in time arising from
inertia in Eq. (70) as opposed to the first derivative that appears in the viscous case. As a result, we
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are unable to go beyond numerical observations and speculation. In that spirit we merely note that,
for example the inset of Fig. 8(c) shows that k∗t̃2/5 is approximately linear in log10[log10 (t̃ )] at very
late times.

VII. COMPARISON BETWEEN STATIC AND DYNAMIC WRINKLING

In this section we provide a brief discussion of the mechanisms underlying wrinkle coarsening,
and compare the problem studied in this paper with static indentation. In static situations, the
system selects the wavelength that minimizes the energy: the bending stiffness drives the system
towards a large-amplitude (long wavelength) pattern, while substrate stiffness drives the system to
adopt a small amplitude (short wavelength) pattern. The balance between these two effects yields
the intermediate wavelength λ ∼ (B/K )1/4 given in Eq. (3), which for quasistatically indented
floating sheets explains the wavelength observed in the flat portions of the sheet, far from the
indenter [18]. In contrast, for the impact-induced wrinkling studied here, we have understood the
evolving wrinkle formation not via energetic arguments but via pressure and force balances: the
resistance to large-amplitude deformation comes at early times not from the hydrostatic pressure
but rather the hydrodynamic pressure p ∼ ρ(∂w/∂t )2, and this restoring effect of fluid inertia can
be reinterpreted as a dynamic substrate stiffness Kdyn ∼ ρ × λ/t2 [25]. Physically, the excess length
imposed by radial displacement is absorbed by short-wavelength, small-amplitude wrinkles, since
these minimize the amount of fluid that needs to be accelerated. The wrinkles then coarsen as more
fluid is accelerated.

The energetic approach usually adopted in static problems and the force balance approach
adopted in this dynamic situation can be reconciled using Hamilton’s principle of stationary action
[42]. To confirm that the wrinkled solution considered in this paper is a “better” solution than
the unwrinkled alternative, we consider the relevant energies in both the wrinkled and unwrinkled
dynamic scenarios. Considering first the action of the wrinkled response, the kinetic energy of the
fluid dominates both the strain and bending energies provided the dimensionless time t � tedge,
with tedge the time at which wrinkles reach the sheet edge defined in Eq. (51), and t � δ5(R f /�∗)5/2.
The second condition simply states that our model breaks down at sufficiently early times that the
bending energy associated with the predicted wavelength becomes insurmountable. (We also note
that the hoop stress does not affect the elastic energy of the wrinkled response provided σθθ � σrr ,
so this argument is not affected by a distinction between σθθ ∼ δ2 and σθθ ∼ δ3/2.) Comparing the
magnitude of the action in the wrinkled case with that of the unwrinkled response (in which kinetic
and stretching energies balance), we find that wrinkling is favorable provided that t � tedge, entirely
consistent with our assumption of a fully wrinkled sheet made earlier.

Another difference between static and dynamic wrinkle formation is the prediction that σθθ ∼
δ3/2 in some dynamic situations, as opposed to the σθθ ∼ δ2 scaling typical of fully-developed
static wrinkles. In particular, while we showed that the hoop stress in the wrinkled sheet is O(δ2)
everywhere on the t = O(1) timescale over which the global deformation grows, and is O(δ2) in
the flat portion of the sheet even on the wrinkling timescale t = O(δ1/2), our model predicts that
σθθ ∼ δ3/2 in the curved portion of the sheet on the wrinkling timescale. In terms of the predictions
made in this paper and their comparison with experiments, we have predicted (i) the propagation of
the axisymmetric wave on the t = O(1) timescale where σθθ ∼ δ2 and (ii) the evolution of wrinkles
in the flat portion of the sheet. The t = O(1) global deflection, prediction (i), is not affected by the
possibility that σθθ = O(δ3/2), since our results rely only on σrr � σθθ . Our prediction for (ii), the
wrinkles in the flat portion of the sheet, comes from a vertical force balance Eq. (70) and length
constraint Eq. (71). We note that the excess length that drives wrinkling, see Eq. (71), is generated
by radial retraction of the sheet, which is driven by the vertical displacement of the inner portion of
the sheet. This could, in principle, by affected by changes in the vertical deflection of the sheet in
r = O(1) modifying the right-hand side of Eq. (71).

To check the accuracy of the excess length on the right-hand side of Eq. (71), we must therefore
ask whether our prediction of the axisymmetric shape in the curved portion of the sheet, on the

014003-25



O’KIELY, BOX, KODIO, WHITELEY, AND VELLA

t = O(δ1/2) wrinkling timescale, is correct. This axisymmetric behavior is dependent only on the
relaxation of the hoop stress, σθθ in comparison to the radial stress, σrr ; the question we need to
ask therefore is whether the hoop stress has collapsed to a sufficient extent to allow the radial
stress σrr = 1/r. It is clear that a hoop stress σθθ ∼ δ3/2 is certainly small enough that the hoop
stress may be considered to be relaxed in the way required for the emergence of the ∼t1/2 wave
propagation observed experimentally [25]. This adds further credence to our claim that the vertical
displacement we predict for r = O(1), t = O(δ1/2), and hence the right-hand side of Eq. (71), are
correct. Nonetheless, examining the curved portion of the sheet in the images in Fig. 1 suggests
that the wrinkle pattern in the curved portion of the sheet is different from that in the flat. While
the behavior of any wrinkles in this highly curved region is difficult to image experimentally, any
differences in behavior compared to that in the flat region might be explained by the emergence of
different physical effects (see Appendix C) there.

VIII. CONCLUSIONS

In this paper, we have developed a mathematical model to describe impact onto a thin elastic
sheet floating on a liquid bath. In particular, we have focused on the early-time behavior of the
system, when the sheet is only moderately deformed and the impactor moves at constant speed.
We first addressed the simplest case, a point impactor, and then generalized our model to account
for finite-radius spherical impactors. Our analysis exploited the fact that the sheets of interest have
very small bending stiffness, allowing us to focus on the “high-bendability” limit in which the
resistance to bending is small compared to applied stresses [the limit δ � 1 with δ defined in
Eq. (19)]. Through an asymptotic analysis of the high-bendability limit, we were able to derive, from
a single unified model, simplified models to describe (i) the transverse wave that propagates radially
outward from the point of impact and (ii) the wrinkles that form as a result of the compressive
azimuthal stress induced by impact. In deriving this model, we found that these two phenomena
occur on two different timescales: in the limit of high bendability, the wrinkles evolve on a timescale
faster than the timescale associated with the transverse wave by a factor δ−1/2 � 1. This suggests
that, in principle, the wrinkles should evolve quasistatically as impact progresses. However, in the
experiments performed to date, δ1/2 ≈ 0.3 = O(1), so that, in reality, wrinkles coarsen in tandem
with the propagation of the transverse wave, as is observed experimentally [25].

Our results explain some of the key differences between impact on a floating elastic sheet
and previous results for either impact on water or (quasistatic) indentation of floating sheets.
For the propagating transverse wave, we found a similarity solution in which the distance of
propagation scales with t1/2, rather than the t2/3 behavior typical of capillary-driven flows [30,32].
This difference arises from the spatially varying tension within the sheet, which is, in turn, a
consequence of wrinkling [17,21]. Moreover, this t1/2 behavior is also different from the results
of classic Wagner impact theory [2,34,40] since (i) the tension of the interface is accounted for and
(ii) the radius of the impactor cannot be scaled out of the problem, but rather remains as a single
dimensionless parameter that affects the prefactor in the t1/2 scaling. We also saw that a higher-order
correction to our early-time similarity solution suggests that the wave spreads out more rapidly at
later times as nonlinear effects come into play; this is in qualitative agreement with experimental
observations [25].

The second focus of this paper has been on the early-time evolution of the wrinkle wavelength
during impact: while quasistatic indentation experiments have shown that the number of wrinkles in-
creases (wavelength decreases) with increasing indentation, here fluid inertia opposes the formation
of large wavelength wrinkles, and so the sheet at first forms many fine wrinkles that subsequently
coarsen. The observed wrinkle wavelength is therefore truly dynamic, and not simply quasistatically
evolving with impact depth. A simple scaling analysis suggests that the typical wave number of the
wrinkle pattern k∗ ∼ t−2/5. However, numerical solution of the governing equations suggests that
this coarsening is slowed slightly by the geometric constraint that the compression arising from the
radial displacement of the sheet must be exactly accommodated by the arc-length along wrinkles.
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We are not able to explain this deviation from power law behavior quantitatively, but note that this
problem offers an inertial analog of the constraint-limited coarsening of viscously-damped wrinkles
[36], for which a logarithmic correction to power-law coarsening was derived analytically.

There are some limitations on the validity of our modeling approach at early times. First, the
model presented in this paper breaks down at sufficiently early times (<0.1 ms, see the first panel of
Fig. 1) that the wrinkles do not yet cover the entire sheet, and the wrinkle length is still evolving. As
a result, it is not appropriate to compare our work to the observations of Ref. [20] on the concurrent
evolution of wrinkle length and number in geometries where wrinkles form in an annulus. A second
limitation is that the hoop stress, which diverges ∼δ2t̃−4/5 at early times, must have undergone sig-
nificant collapse before our model is valid. Finally, we note that mathematical modeling of the very
early-time dynamics of the wrinkling sheet considered in this study are complicated by the inertia of
the underlying liquid, and the associated separation of timescales. An alternative study of a dynamic
wrinkling configuration without an underlying fluid may allow for further theoretical progress.

We did not address some of the features of this system that become apparent at later times.
For example, further investigation is required to determine how the system transitions from the
balance between bending stiffness and hydrodynamics that is important early on to the static balance
between bending, surface tension and hydrostatic pressure within the liquid that governs the later
behavior [18] if the sphere is ultimately halted by the sheet. Indeed, the transition between the
trapping of the sphere at the interface and impact causing the sheet to be dragged under water has
not been explored, since we have assumed throughout that the sphere moves at a constant downward
velocity. This floating/sinking transition may be important not only in the suppression of splashing
[10], but also as an alternative route for the controlled encapsulation of droplets within an elastic
sheet [43].
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APPENDIX A: CORRECTION TO AXISYMMETRIC SIMILARITY SOLUTION

In this Appendix we give further information on the leading-order axisymmetric surface profile
calculated in Sec. IV. There, we considered an early-time limit, neglecting nonlinear terms in the
boundary conditions Eqs. (34) and (37), and thus calculated a self-similar interface shape of the
corresponding wave that propagates radially outward. This leading-order behavior gives a good
account of experimental observations, but slightly under-predicts the speed of the propagating wave.
We now assess the increasing importance of the nonlinear terms in Eqs. (34) and (37) as time
increases. In Sec. IV B we wrote an early-time self-similar ansatz Eq. (40). Strictly speaking we
should write an asymptotic expansion of the form

w(0)(r, t ) = tH0(ξ ) + t3/2H1(ξ ) + · · · , (A1a)

ϕ(0)(r, z, t ) = t1/2 f0(ξ, ζ ) + t f1(ξ, ζ ) + · · · , (A1b)

r (0)
c = t1/2ξ ∗

0 + tξ ∗
1 + · · · , (A1c)

in powers of the small parameter t � 1. The leading-order variables f0, H0 are then calculated in the
main text, and we now determine the terms H1(ξ ), etc., and investigate whether they might account
for the observed discrepancies between our predictions and experiments.

The correction to the velocity potential satisfies

1

ξ

∂

∂ξ

(
ξ
∂ f1

∂ξ

)
+ ∂2 f1

∂ζ 2
= 0, (A2)
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with kinematic boundary condition

∂ f1

∂ζ
=

{
−H0

∂2 f0

∂ζ 2 + ξ

α

∂ f0

∂ξ
, ξ � ξ ∗

0(
3
2 H1 − 1

2ξ dH1
dξ

) − H0
∂2 f0

∂ζ 2 + dH0
dξ

∂ f0

∂ξ
, ξ > ξ ∗

0

, (A3)

and dynamic boundary condition(
f1 − 1

2
ξ
∂ f1

∂ξ

)
− 1

ξ

d2H1

dξ 2
= 1

2
ξH0

∂2 f0

∂ζ∂ξ
− 1

2

[(
∂ f0

∂ξ

)2

+
(

∂ f0

∂ζ

)2
]
, ξ > ξ ∗

0 , (A4)

on ζ = 0. There is no correction to the surface height inside the contact region, so H1 = 0 for
ξ � ξ ∗

0 . The conditions at ξ = 0 and in the far field are simply

∂ f1

∂ξ
= 0, ξ = 0, (A5)

and

H1 → 0 as ξ → ∞, (A6a)

f1 → 0 as ζ 2 + ξ 2 → ∞. (A6b)

These equations may be solved numerically using second-order finite differences, as described in
Sec. IV B for the leading-order problem. The correction to the location of the contact line may
then be inferred from the condition of smoothness of the interface at the contact point, which is
transformed to

ξ ∗
1 =

dH1
dξ

(ξ ∗
0 )

1
α

− d2H0
dξ 2 (ξ ∗

0 )
. (A7)

Similarly, a correction to the location of the minimum may be determined via Taylor expansion, to
give an expression equivalent to Eq. (A7), without the 1/α since the slope is zero at the minimum.
A two-term prediction for the location of the first minimum is shown in Fig. 5(a). This correction to
the leading-order similarity solution suggests that the nonlinear terms cause the wave to spread out
slightly more rapidly than the leading-order linear system suggests, in qualitative agreement with
observations.

APPENDIX B: IMPACTOR DECELERATION

Throughout this paper we have assumed that the speed of the impactor is constant, i.e., that
impact does not slow the impactor down significantly during the time interval of interest. To assess
the validity of this assumption, and hence of our early-time similarity solution, we now estimate the
deceleration of the sphere during the early stages of impact.

During impact, the impactor experiences an upward force as a result of the tension in the stretched
sheet and hydrodynamic pressure in the underlying fluid, as illustrated in Fig. 9, as well as the
downward pull of gravity. In dimensionless variables, Newton’s second law applied to the sphere
gives in dimensionless variables(

4π

3
R3

s ρs

)
V 2

�∗

d2z

dt2
=

∫ 2π

0

∫ rc (t )

0

(
γ R f

�2∗

1

r

∂2w

∂r2
− ρV 2 ∂ϕ

∂t

)
�2

∗ r dr dθ − 4π

3
R3

s ρsg, (B1)

where ρs is the density of the spherical impactor, z is the (dimensionless) height of its center of
mass and the right-hand side consists of the vertical force from the tension within the sheet and
hydrodynamic pressure (both of which only act on the sphere within the contact region), together
with the impactor’s weight (g being the acceleration due to gravity). Applying the early-time
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FIG. 9. The net force acting on the impacting sphere arises from gravity, tension in the deformed elastic
sheet, and hydrodynamic pressure in the underlying liquid.

similarity solution described in Sec. IV B, this can be rewritten as

d2z

dt2
= 1

α3

ρ

ρs

[
ξ ∗

0

α
− 1

2

∫ ξ∗
0

0

(
f0 − ξ

∂ f0

∂ξ

)
ξ dξ

]
3

2
t1/2 − g�∗

V 2
. (B2)

Evaluating the similarity solution, we find that the integral quantifying hydrodynamic pressure is
negative, so the term in square brackets is O(1) and positive. Integrating, we find

z = α − t + 2

5

1

α3

ρ

ρs

[
ξ ∗

0

α
− 1

2

∫ ξ∗
0

0

(
f0 − ξ

∂ f0

∂ξ

)
ξ dξ

]
t5/2 − g�∗

2V 2
t2. (B3)

For the experiments reported in Ref. [25], the prefactor of the −t5/2 (impact-induced deceleration)
term is O(10−1) and the prefactor of the t2 (gravitational acceleration) term is O(10−3)–O(10−2).
As a result, the impact speed is indeed approximately constant for t < 1, This suggests that the
most important restriction on the validity of the model presented in this paper is the requirement
that the contact region be small in comparison to the sphere’s radius (allowing us to approximate
the contacting portion of the sheet by a parabloid, as discussed in Sec. IV B).

We note that for smaller values of α (i.e., smaller or slower spheres, or larger sheet radii),
the prefactor of t5/2 would be larger in magnitude, and deceleration would be significant. In this
scenario, the similarity solution Eqs. (42)–(46) will break down once

t ∼ α2

{
2

5

ρ

ρs

[
ξ ∗

0

α
− 1

2

∫ ξ∗
0

0

(
f0 − ξ

∂ f0

∂ξ

)
ξ dξ

]}−2/3

, (B4)

beyond which the model must be modified to account for the fact that the impact depth does not
increase linearly with time, but rather is determined by a coupled force balance of the form of
Eq. (B1). Furthermore, in such cases, the upward force on the sphere may be sufficient for it (and
the sheet) to rebound, or the sheet maybe become submerged below the interface.

APPENDIX C: WRINKLES

1. Rescalings

The dominant balance argument presented in Sec. III C suggests that the natural timescale on
which to study wrinkle formation is t̃ = δ−1/2t = O(1). In this Appendix, we study the governing
Eqs. (21)–(28) on this shorter timescale, and we derive a simplified model for the inertia-modulated
evolution of wrinkles in the floating elastic sheet. Our analysis on the t = O(1) timescale suggests
that the disturbance induced by the impact will grow in time, and so is small when t = δ1/2t̃ � 1.
Motivated by this observation, we rescale the axisymmetric variables according to

w̄(r, t ) = δ1/2t̃H (ξ, t ), ϕ̄(r, z, t ) = δ1/4t̃1/2 f (ξ, ζ , t̃ ),

where ξ = r

δ1/4t̃1/2
, ζ = z

δ1/4t̃1/2
. (C1a)
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Similarly, the balance of terms in the length constraint Eq. (63) and boundary conditions Eqs. (22)
and (23) motivates rescaling the oscillatory components according to

ŵ(r, t ) = δ11/8W (r, θ̃ , t̃ ), ϕ̂ = δ15/8�(r, θ̃ , z, z̃, t̃ ). (C1b)

On this short timescale, where the axisymmetric and oscillatory components of variables scale
differently, we shall see that it is easiest to consider the axisymmetric and oscillatory components of
each equation separately from the outset. When studying the axisymmetric components, anticipating
self-similar behavior, we write

σ̄rr = δ−1/4t̃−1/2Srr . (C2)

For the oscillatory components of the stress tensor, examining the horizontal force balance Eq. (24)
and stress–strain relationships Eq. (26) suggests that

σ̂rr ∼ δ13/8, σ̂rθ ∼ δ21/8, σ̂θθ ∼ δ29/8, (C3)

while we anticipate that the in-plane displacement components

ūr ∼ δ3/4, ûr ∼ δ13/8, ūθ ≡ 0, ûθ ∼ δ14/8. (C4)

We now examine the vertical force balance Eq. (23) in detail. Starting with the nonaxisymmetric
component, we observe that the term associated with hoop stress appears first, and so the hoop stress
is, at most, σθθ ∼ δ3/2. We can then solve the axisymmetric horizontal force balance to find

σ̄rr = 1

r
+ O(δ3/2), Srr = 1

η
+ h.o.t., σ̄rθ ≡ 0. (C5)

2. Axisymmetric behavior

Rescaling the axisymmetric components of the governing Eqs. (21)–(28) for t = δ1/2t̃ and
evaluating at leading order, we find that

1

ξ

∂

∂ξ

(
ξ
∂ f0

∂ξ

)
+ ∂2 f0

∂ξ
= 0, (C6)

with boundary conditions

1

2
[t f0,t + f0 − ξ f0,ξ ] = 1

ξ
H0,ξξ , (C7a)

f0,ζ = tH0,t + H0 − 1

2
ξH0,ξ , (C7b)

on ζ = 0, and

H0 = −1, f0,ξ = 0 at ξ = 0, (C7c)

f0 → 0, as ξ 2 + ζ 2 → ∞, (C7d)

H0 → 0, as ξ → ∞. (C7e)

This is satisfied by the same solution H0(ξ ), f0(ξ, ζ ) as the linearized problem outlined in Sec. IV,
as expected. The corresponding axisymmetric in-plane displacements are

ūr ≈ −1

2
δ3/4t̃3/2

∫ ∞

0

(
dH0

dξ

)2

dξ, ūθ ≡ 0. (C8)
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3. Wrinkling behavior

We now turn our attention back to the oscillatory component of the vertical force balance
Eq. (23). Rescaling as outlined in Eq. (C1) and evaluating at leading order, we find

∂ f0

∂ζ

∂�0

∂ z̃
= σ̄

(3/2)
θθ

1

r2

∂2W0

∂θ̃2
. (C9)

This suggests that if the leading-order axisymmetric and oscillatory velocity potential components
are both nonzero, then there is a nonzero hoop stress at O(δ3/2), which is larger than the O(δ2)
residual hoop stress normally observed in static, high-bendability wrinkling problems [21]. We
focus our attention on the region r � 1 where the sheet is flat, so that ∂ f0/∂ζ = 0, and hence
σ

(3/2)
θθ = 0. We can then write down a complete problem for the leading-order oscillatory velocity

potential and displacement, namely, the velocity potential is governed by a Laplace Eq. (21),

1

r2

∂2�0

∂θ̃2
+ ∂2�0

∂ z̃2
= 0. (C10)

The boundary conditions at the free surface Eqs. (22) and (23) are transformed to

∂�0

∂ z̃
= ∂W0

∂ t̃
,

∂�0

∂ t̃
+ 1

r4

∂4W0

∂θ̃4
= σ

(2)
θθ

1

r2

∂W0

∂θ̃2
(C11)

on z̃ = 0, where the terms associated with tension- and curvature-induced stiffness seen in the
quasistatic problem Eq. (61) are neglected in the limit r � 1. The velocity potential �0 must decay
in the far field z̃ → −∞, and the entire system must be periodic in θ̃ . Finally, the unknown hoop
stress σ̄

(2)
θθ is determined by the length constraint

[(
1

r

∂W0

∂θ̃

)2
]

= 1

r
t̃3/2

∫ ∞

0

(
dH0

dξ

)2

dξ, (C12)

for a point indenter, or the finite-indenter equivalent Eq. (60). The forces governing the dynamic
wrinkling of the sheet are therefore the compressive azimuthal force [the term on the right-hand
side of Eq. (C11)] and two different terms that resist this compression (from left to right on the
left-hand side: the inertia of the underlying fluid and the bending stiffness of the elastic sheet).

4. Fourier transform

The reduced system of Eqs. (C10)–(C12) governing the leading-order oscillatory behavior are
satisfied by solutions of the form

�0(rθ̃ , z̃, t̃ ) =
∫ ∞

−∞

1

|k|
dak

dt̃
eikθ̃re|k|z̃ dk, (C13a)

W0(rθ̃ , t̃ ) =
∫ ∞

−∞
akeikθ̃r dk, (C13b)

with �0 → 0 as z̃ → −∞ as required, and the coefficients ak (r, t̃ ) to be determined. The vertical
force balance Eq. (C11) is transformed to

d2ak

dt̃2
= −|k|[k4 − σ

(2)
θθ (t )k2

]
ak . (C14)

The length constraint Eq. (C12) must also be rewritten: We note that ak can be scaled to absorb any
prefactor in the edge retraction, so that the dominant wave number k∗(t ) at which ak is maximized
is only affected by the form of the power law. It is therefore sufficient to solve Eq. (C14) subject to
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the constraint ∫ ∞

−∞
k2|ak|2 dk = t̃ 3/2, (C15)

and appropriate initial conditions, for example, supplying the amplitude of ak and ∂ak/∂ t̃ at
t̃ = 0. This is the approach adopted for comparison with experimental measurements in Sec. VI C.
However, in Sec. VI D of this paper our priority is to determine whether an evolving wrinkle profile
should be self-similar, and how it might deviate from power-law behavior, so we focus on the
simpler case of constant radial retraction and set the right-hand side of Eq. (C15) to 1.
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