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Abstract The results of an experimental investigation

of a sphere performing torsional oscillations in a Stokes

flow are presented. A novel experimental set up was

developed which enabled the motion of the sphere to

be remotely controlled through application of an os-

cillatory magnetic field. The response of the sphere to

the applied field was characterised in terms of the vis-

cous, magnetic and gravitational torques acting on the

sphere. A mathematical model of the system was de-

veloped and good agreement was found between exper-

imental, numerical and theoretical results. The flow re-

sulting from the motion of the sphere was measured

and the fluid velocity was found to have an inverse

square dependence on radial distance from the sphere.

The good agreement between measurements and the

analytical solutions for both fluid velocity and angular
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displacement of the sphere indicates that the flow may

be considered Stokesian, thus providing an excellent ba-

sis for experimental and theoretical characterisation of

hydrodynamic interactions between multiple oscillating

spheres at low Reynolds number.

Keywords torsional oscillations · sphere · Stokes

flow · magnetic actuation

1 Introduction

The torsional oscillations of a sphere in a viscous fluid

is a classical problem in fluid mechanics which has re-

ceived significant theoretical study but relatively few

experimental investigations since it was first considered

in 1860 [11]. Moreover, the experimental work under-

taken was performed on torsion pendulums - spheres

supported in the fluid by a mechanically driven rod or

torsion fibre - and did not consider the viscous effects

introduced by the mechanical support [12, 10, 9, 2].

The effects of an inelastic tether on the motion of

a particle in an oscillating flow have been shown, how-

ever, to be important at low frequencies of oscillation

[20], while significant effects on viscous drag caused

by fastening a string to a translating sphere have also

been reported [6]. Whilst developing a ‘spinning-ball

viscometer’ for measuring the rheological properties of

suspensions, Mondy et al. [23] used the assumption that

the total torque was a linear addition of the respective

torques acting on the ball and the supporting rod and

found comparable viscosities to independent measure-

ments of Newtonian solvents performed with a conven-

tional capillary viscometer?.

? Mondy et al. [23] measured the couple experienced by
a rotating ball immersed in a concentrated suspension of
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We have developed a remote control approach to in-

vestigating the textbook [17] problem of a torsionally

oscillating sphere, free of tethering, at low frequencies

of oscillation and low Reynolds number, such that the

Reynolds number based on the instantaneous fluid ve-

locity Re = avmax/ν � 1 (where a is the radius of the

sphere, vmax is the maximum magnitude of fluid veloc-

ity and ν is the kinematic viscosity of the fluid). The

frequency is parametrised by the Womersley parameter

α where α2 = a2ω/ν (where ω is the angular frequency

of the sphere) which is also much less than 1 here. For

this choice of parameters the fluid velocity varies only

slowly with time and can be regarded as steady at any

given instant, such that the steady Stokes equations of

fluid motion apply and the torque on the sphere can be

considered to be quasi-steady [17].

In the classic monograph Hydrodynamics, Lamb [16]

derived the analytic solution for a steadily rotating sphere,

at Re = 0, and for a sphere performing small-amplitude

torsional oscillations, at low but non-zero Re. In both

cases, the sphere was assumed to be free and either in

an infinite domain or rotating inside a larger concentric

sphere. The fluid was shown to move around the oscil-

lating sphere in concentric shells, centred on the axis

of rotation. Similarly, for small-amplitude oscillations

and negligible secondary fluid motion, the flow result-

ing from the decaying oscillations of a torsion pendulum

was determined to be circumferential in annuli around

the axis of rotation [4, 15].

Previous experimental investigations [10, 9, 2] have

mainly focused on the damping of a torsion pendulum,

and were performed for Re > 1. In the typical con-

figuration, a sphere was suspended in the viscous fluid

and deflected from the equilibrium position. A restoring

couple acts on the supporting fibre such that the sphere

approaches the equilibrium position through decaying

oscillations. Folse [10] measured the gradual damping

of a torsion pendulum and, in doing so, identified an

algebraic error in the original calculation [5] of the cor-

rection term to the torque which, for Re > 1, results

from the development of circulatory streaming motion

[7]. Hollerbach et al. [12], in contrast, used a sphere

supported from above and below by a mechanical rod

which oscillated with a fixed period to examine the ra-

dial jet which results from colliding circulatory flows.

Flow visualisation of the laminar to turbulent transi-

comparatively-sized, neutrally buoyant spheres and compared
it to the torque on a sphere spinning in a Newtonian fluid, un-
covering an apparent slip which reduced the measured torque
when the radius of the spinning ball becomes comparable with
that of the suspended spheres.

tion of the radial jet, that occurs for Re = O(200)†,

provided an explanation of the abrupt variation in the

damping rate of the torsion pendulum found by Benson

and Hollis Hallett [2] in experiments performed in liq-

uid helium. The effect of the motion of the supporting

fibre or rod present in both of these experimental inves-

tigations was not considered in the theoretical models

where a free sphere was assumed. The authors are not

aware of any experimental work conducted on a free

sphere performing torsional oscillations, a fact which

results from the inherent difficulty present in driving

the motion of a body without mechanical contact.

Here, we present an investigation of the fluid mo-

tion induced by spheres which were forced to oscil-

late without mechanical contact in a Stokes flow. Near

neutrally-buoyant spheres, with a magnetic dipole axis,

were submerged in a very viscous fluid. Application of

a steady magnetic field introduced a magnetic torque

which acted to align the magnetic dipole of the sphere

with the applied field causing the sphere to rotate. Through

application of an alternating magnetic field, the sphere

was made to perform torsional oscillations with an am-

plitude and a frequency determined by the magnitude

and frequency of the applied field. The use of a magnetic

field to control the translational motion of a sphere in a

viscous fluid has been employed previously [1], but not,

as far as the authors are aware, as a means of controlling

the rotational motion of a sphere.

The experimental set up, which enabled character-

isation of the response of a single sphere to magnetic

actuation, is detailed in §2. The mathematical model of

the sphere response to the applied field is described in

§3. A comparison of the experimental and theoretical

characterisation of the dynamic response of the sphere

to magnetic actuation and measurements of the flow

induced by the motion of the sphere are detailed in

§4. The opportunities presented by the developed ex-

perimental system to investigate other hydrodynamic

phenomena are discussed in §5

2 Experimental Set Up

A schematic diagram of the experimental set up used

to characterise the dynamic response of the sphere to

an applied magnetic field is shown in Figure 1a. Ex-

periments were conducted on a polypropylene sphere

of diameter 2a = 15.86 ± 0.01 mm (Dejay Distribu-

tion Ltd., UK). Two neodymium, permanent magnets

were inserted into machined holes in the sphere and

† Hollerbach et al. define Re = aωδ/ν, where the penetra-
tion depth of the boundary layer δ = (2ν/ω)1/2, and provide
an interesting discussion of the appropriate choice of Re [12].
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Fig. 1: (a) Schematic diagram of the experimental apparatus. Near neutrally-buoyant spheres in a viscous fluid

filled tank were imaged using an optical arrangement of mirrors (M1, M2 and M3) and a computer-controlled

camera. An unsteady magnetic field was applied using Helmholtz coils and measured by a Hall effect probe.

The experimental system was contained within a Mumetal canister to reduce the effects of extraneous magnetic

fields. (b) Schematic diagram of the coordinate system (NB : this definition θ is not common to all spherical polar

coordinate systems), and (c) a projection of the coordinate system onto the observed plane for which φ = 0. The

projection of the coordinate system also includes indications of the direction of the applied magnetic field, B and

the direction of gravity, g.

small amounts of glue were used to hold them in place.

The two magnets were carefully embedded in the sphere

such that they were flush with the surface and diamet-

rically opposite (±1◦) along an axis through the centre

of the sphere. The permanent magnets were cylindri-

cal, of length 3.00± 0.01 mm and diameter 2.48± 0.01

mm, occupying less than 2% of the sphere volume. The

opposite poles of the magnets were placed facing one

another such that the two magnets acted as a single

dipole, the length of which was equal to the sphere di-

ameter. The permanent magnets had a remanence of

1.19±0.05 T and a coercivity ≥ 868 kA m−1 [27]. These

values indicate that the strength of the magnets is large

for their size compared to standard ferromagnetic ma-

terials which typically have a coercivity < 100 kA m−1.

The magnetic dipole moment of an individual magnet,

m = 0.0140± 0.0006 A m2, was effectively independent

of the applied magnetic field for the range of values used

[13].

After the inclusion of the magnets, additional weights

were embedded in the sphere in order to obtain near

neutral buoyancy. The weights were austenitic stainless

steel and non-magnetic. The sphere thus had a non-

uniform mass distribution that introduced a gravita-

tional torque towards a preferred orientation in the ab-

sence of applied magnetic field. The zero-field orienta-

tion of the magnetic dipole of the sphere was controlled

by careful positioning of the embedded weights such

that the magnetic dipole axis of the sphere was ori-

entated approximately orthogonal to the applied field

direction. The resulting density of the sphere was ρs =

978.53± 3.8 kg m−3.

The centre of mass was not at the centre of the

sphere, but instead was displaced a small distance λa

from the centre, and as such the magnetic dipole axis of

the sphere resided at an angle θ0 even when subjected to

zero magnetic field. The calculation of λ (in the range 0

to 1) and θ0 would require a complete knowledge of the

density distribution within the sphere. Instead we use

an experimental calibration based on the rate at which

the sphere returns to θ = θ0 if displaced from equilib-

rium in the absence of applied magnetic field, where θ

is the angle between the magnetic dipole and the x-y

plane, shown in the schematic diagram in Figure 1b.

The time-scale associated with the gravitational torque

acting on the sphere was measured, using the method

outlined in §3.2, and found to be T0 = 4.67±0.03 s. This

calibration method is discussed further in §3.2, where



4 F. Box et al.

we conclude that θ0 = 3.22 ± 0.77◦ and λ = 0.015, so

that the centre of mass is displaced very slightly from

the centre of the sphere. However, the resulting gravi-

tational moment due to the offset centre of mass still

has a significant effect on the dynamics of the ball in

response to the imposed magnetic field.

The sphere was submerged in a viscous liquid in-

side a rectangular tank, made from 5 mm thick per-

spex sheets, with internal dimensions of width 125 mm,

length 115 mm and height 200 mm. The sphere was

carefully positioned at the centre of the tank such that

the distance from the centre of the sphere to the side

walls of the tank was approximately 8a, while the flow

field is predicted to decay with distance from the sphere

according to an inverse cubic law, and so we estimate

that the correction to the torque resulting from the

boundaries is at most 0.2%. Experiments were performed

in a temperature-controlled laboratory and the temper-

ature inside the system was measured to be 19.89±0.30
◦C. The working fluid was silicone oil (Basildon Chem-

ical Company Limited, UK) with a measured viscosity

of ν = 924.14 ± 5.29 mm2 s−1 and a measured density

of ρf = 975± 1 kg m−3. The fluid-filled tank was posi-

tioned on a platform of adjustable height in the centre

of Helmholtz coils of diameter 330 mm. The height and

thickness of each Helmholtz coil was 140 mm and 35

mm respectively, and the gap between the two coils

was 55 mm. The electromagnet inductance was 50 mH

with a DC resistance of 0.36± 0.04 Ω. A spatially uni-

form, alternating magnetic field, B = Bez sin(2πft),

where ez is the unit vector in the vertical direction, was

applied in order to study the angular response of the

sphere from the zero-field position. Hall effect probes

were used to measure the applied magnetic field, the

amplitude B and frequency f of which varied from 0 to

∼ 2.5 mT and from 0.01− 2 Hz, respectively.

Shielding from the Earth’s magnetic field was achieved

by placing the experimental system inside a Mumetal

canister. Mumetal is a nickel-iron alloy with a magnetic

permeability over 100 times greater than that of steel

and shields by providing a path of low reluctance, and

thus entraining magnetic flux. The Mumetal shield con-

sisted of a 1.60 ± 0.02 mm thick cylindrical container,

diameter and length of 510 mm and 520 mm respec-

tively, with a lid and a base plate. Both the lid and

base plate contained a centrally-located hole of 70 mm

diameter through which cables could be passed to con-

nect the experimental apparatus to control boxes and

a PC, and permit observations of the motion of the

spheres. The magnetic field inside the Mumetal shield

was consistently found to be less than 5 µT, more than

one order of magnitude smaller than the background

field in the laboratory and also the geomagnetic field,

which varies from 25 to 65 µT [24].

The sphere was illuminated using two 400 mm strips

of 36 Light Emitting Diodes (LEDs). The strips were

attached to the inside surfaces of the upper and lower

coils of the electromagnet to illuminate the region of in-

terest from above and below. This set-up produced uni-

form illumination across the observable surface of the

sphere. Prior to each experiment, the axis of rotation

of the sphere was carefully orientated orthogonal to the

observational plane (as shown in the schematic diagram

of the observed plane in Figure 1c) using a laser-sheet

as a guide, such that φ = 0 where φ is the angle between

the magnetic-dipole axis of the sphere and the line-of-

sight of the observer - the x-axis. The orientation of the

sphere with respect to φ does not alter the dynamics,

however, ensuring φ = 0 was important for visualisa-

tion. The motion of the sphere was recorded using a

Genie camera (HM-1400, Teledyne DALSA, Canada),

with a spatial resolution of 1400 × 1024 pixels, which

was positioned above the central hole of the lid of the

Mumetal canister, as shown in Figure 1a. The light

transmitted through the tank was directed to the cam-

era in a periscope-like manner via three mirrors (M1,

M2 and M3), of width 76 mm and height 102 mm, posi-

tioned in between the electromagnet and the Mumetal

canister. Images of the sphere motion were typically

acquired at a frame rate 100 times greater than the fre-

quency of the applied field, except for frequencies > 0.6

Hz for which the images were acquired at the maxi-

mum frame rate of 64 Hz. The image resolution was

0.02 mm/pixel and the maximum recorded drift veloc-

ity of the sphere was ≈ 0.1 mm/min.

A schematic diagram of the experimental appara-

tus used for flow visualization is shown in Figure 2a.

The velocity field was measured using Particle Image

Velocimetry (PIV). Neutrally-buoyant, spherical micro-

particles (Fluostar particles, EBM Corporation, Japan)

of 13.9 µm mean diameter were suspended in the vis-

cous fluid and had a Rhodamine B coating which flu-

oresced under green-light laser illumination of wave-

length 532 nm. A cross-section of the tank, correspond-

ing to the rotational plane of the driven sphere, was il-

luminated from above and below using two green-light

lasers and an arrangement of mirrors. A low-pass fil-

ter was positioned between the tank and the camera to

reduce background noise in the detected signal. A high-

speed camera (pco.1200 hs, PCO AG, Germany) with

a spatial resolution of 1280 × 1024 pixels was used to

image the region of interest. The camera was positioned

orthogonal to the illuminated plane, synchronised with

the Nd:YAG pulsed laser using a pulse generator (BNC

Model 500, Oxford Lasers Ltd., UK) and imaged at a
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Fig. 2: [Colour online] (a) Schematic diagram of the experimental apparatus used for flow visualisation. Illumination

of the rotational plane of the sphere was provided by lasers and an optical arrangements of mirrors (M1 and M2).

A high-speed camera was positioned orthogonal to the illuminated plane and a low-pass filter was positioned

between the tank and the camera to remove noise from the signal. (b) A typical velocity vector field depicting the

flow generated by a spherical particle rotating, in the clockwise direction, in a viscous fluid. The instantaneous

velocity field was measured using Particle Image Velocimetry at 3π/10 in the oscillation cycle. The green circle

in the centre of the image denotes the sphere. The vectors are represented by coloured arrows, the magnitude of

which ranges from 0 mm s−1 (dark blue) to 4 mm s−1 (dark red).

rate of 15 Hz, the maximum pulse-rate of the Nd:YAG

laser, with an exposure of between 10 and 20 ms. Pairs

of consecutive images were then subject to sub-pixel

PIV. A consequence of the maximum pulse rate of the

laser was that flow visualisation measurements were

conducted for a frequency of applied magnetic field of

0.15 Hz. For flow visualization, the Mumetal canister

was removed from the apparatus, this was found not to

have a significant effect on the response of the sphere

to applied forcing [3].

A typical, instantaneous velocity vector field, ob-

tained at 3π/10 in the oscillation cycle of the sphere,

is shown in Figure 2b. The sphere was rotating in the

clockwise direction which induced rotation of the sur-

rounding fluid in the same direction. The velocity vec-

tors are represented by arrows, the colour of which de-

notes the magnitude of the velocity which ranges from

0 mm s−1 to 4 mm s−1. The velocity vector field shows

that the velocity of the fluid is greatest close to the

surface of the sphere and decreases with radial distance

from the sphere surface.

3 Theory

3.1 Modelling the motion of the sphere

The dynamic response of a sphere, containing a mag-

netic dipole, to an applied magnetic field and subject

to hydrodynamic and gravitational forces is considered

theoretically in this section. A schematic of the coor-

dinate system used in the development of the model is

shown in Figure 1b. We define θ as the instantaneous

angle between the magnetic dipole orientation and the

horizontal x-y plane, and θ0 as the value of θ when

the sphere is at rest in the absence of applied magnetic

field. The distribution of weights inside in the sphere

was chosen to minimize θ0 such that the orientation

of the magnetic dipole of the sphere with zero applied

field was approximately horizontal in the eyes of the

observer.

Under the assumptions that Re = 0 and that the

sphere is rotating in unbounded fluid, the equation of

motion for the dynamic response of a sphere subject

to an applied magnetic field can be deduced from a
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combination of the viscous, gravitational and magnetic

torques acting about the centre of the sphere:

8πµa3
dθ

dt
= −ε sin(θ − θ0) +Bm sinωt cos θ, (1)

where µ is the dynamic viscosity of the fluid, a is the

radius of the sphere, ω is the angular frequency, ε is

the magnitude of the gravitational torque which acts

to return the sphere towards the zero applied field ori-

entation at θ = θ0, B is the magnetic field strength and

m is the magnetic moment of the magnetic-dipole of

the sphere. For a rigid distribution inside the sphere ε

is equal to Mgλa, where M = 4πa3ρs/3 and λa is the

distance that the centre of mass of the sphere is dis-

placed from the centre of the sphere. The viscous torque

arises due to hydrodynamic resistance to the motion of

the sphere. The gravitational torque arises from gravity

acting on the non-uniform mass distribution within the

sphere and acts to return the magnetic-dipole of the

sphere to the zero-field position. The magnetic torque

results from the interaction of the magnetic dipole of

the sphere and the applied field and acts to align the

magnetic-dipole of the sphere with the applied field. We

note that the ball is so close to spherical that the centre

of mass of the displaced fluid can be taken as the centre

of sphere, and so there is no buoyancy contribution to

the torque balance (1).

A non-dimensional time, based on the angular fre-

quency ω of the applied oscillatory field, can be defined

as t̂ = ωt. Equation 1 then becomes

dθ

dt̂
= − ε

8πµa3ω
sin(θ − θ0) +

Bm

8πµa3ω
sin t̂ cos θ. (2)

Dimensionless parameters which quantify the ratio of

the gravitational torque to the viscous torque, ε, and

the viscous torque to the magnetic torque, Ma, acting

on the sphere are thus defined by:

ε̂ =
1

ωT0
,

1

Ma
=

Bm

8πµa3ω
, (3)

respectively, where T0 = 8πµa3/ε is the gravitational

time-scale, discussed in further detail in §3.2, and Ma

is the Mason number [22]. This Ordinary Differential

Equation (ODE) for θ can thus be written as

dθ

dt̂
= −ε̂ sin(θ − θ0) +

1

Ma
sin t̂ cos θ. (4)

As the amplitude of oscillation, θ1, may be as large

as 90◦ degrees, we solve equation 4 numerically by di-

rect integration; this requires a single initial condition,

for example the value of θ when t̂ = 0. In the case ε̂ = 0

(where the sphere is perfectly balanced and so has no

preferred resting orientation), we can separate equation

4 and integrate to find θ(t̂) analytically. All solutions

for θ(t̂) are periodic with period 2π, and form a two

parameter family characterised by the mean value of θ,

denoted by θ̄, and the Mason number Ma. The solu-

tion for the equations with ε̂ = 0 and θ̄ = 0 satisfies

θmin = −θmax and

Ma−1 = ln(sec(∆θ/2) + tan(∆θ/2)), (5)

where ∆θ is the change in θ over a period of oscillation.

When ε̂ > 0, the solution θ(t̂) takes several cycles

to converge towards a periodic solution. We can deter-

mine the periodic limit cycles numerically by solving

a boundary value problem in Matlab (R2011a, Math-

works, USA) with periodic boundary conditions, using

the in-built function bvp5c. We find that the resulting

limit cycles have mean close to zero, but do not satisfy

generally equation 5. However, in the limit of very small

ε̂ we retain the condition that θ̄ = 0, and the amplitude

of the limit cycles satisfies (5).

3.2 Gravitational Time-scale

Individual spheres have unique, non-uniform mass dis-

tributions, an inevitable result of the embedding of mag-

nets and weights. This non-uniform mass distribution

supplies a net gravitational torque ε which acts to re-

turn the sphere towards a preferred orientation θ = θ0.

The embedded weights were positioned so that θ0 is

close to zero, and hence the magnetic dipole is close to

horizontal when zero magnetic field is applied.

In order to characterise the dynamic response of a

sphere to the applied field, a precise measure of the

gravitational torque was required. A simple test in-

volved measuring the rate at which the sphere returns

to the zero-field position when released from a non-zero

angle in the absence of magnetic forcing. With B = 0,

equation 1 becomes

dθ

dt
= − ε

8πµa3
sin(θ − θ0). (6)

For small displacements, sin(θ − θ0) ≈ θ − θ0, and so

θ − θ0 ∝ exp(−t/T0), with time constant

T0 =
8πµa3

ε
. (7)

Estimates of the time-scale associated with the grav-

itational torque were obtained by measuring the decay

of the angular position of a sphere from an offset posi-

tion towards the zero-field state upon sudden removal of

the applied magnetic field. A large (∼ 2.2 mT) steady
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magnetic field was applied initially in order to attain

alignment of the magnetic dipole with the applied field.

Sudden removal of the applied field led to the rotation

of the sphere back to the zero-field position under the

influence of gravity. A time-series of the angular posi-

tion of the sphere was obtained from an initial angle

of 30◦ to the zero-field orientation, as shown in Figure

3a. A least-squares fit of the form θ = a exp(−t/T ) + b

yielded a = 28.21◦, b = 3.22◦ and T = 4.67 s. The

initial angle of 30◦ is sufficiently small that numeri-

cal solutions of (6) are almost indistinguishable from

θ = a exp(−t/T ) + b, and so the small angle approxi-

mations used to derive exponential decay are valid.

The importance of the gravitational torque in our

model is expressed through the dimensionless parame-

ter ε̂ = 1/(ωT0). In our experiments, the frequency of

the magnetic field ranged from 0.01 to 2 Hz, yielding ε̂

in the range 0.017 to 3.5. Thus gravitational torque is

typically not negligible in our experiments.

This measurement of T0 not only allows us to calcu-

late ε̂ but also supplies information regarding the mass

distribution within the ball. We note that

ε =
8πµa3

T0
=

4πa4ρsgλ

3
(8)

where λa is the displacement of the centre of mass of the

sphere. With T0 = 4.67 s, we find that λ = 0.015, imply-

ing a slight offset of the centre of mass from the centre

of the sphere. Any non-sphericity of the ball could lead

to an offset of the centre of mass fluid displaced by the

ball from the centre of the ball, and thus lead to a small

buoyancy torque. This term would appear in the torque

balance in same form as the gravitational torque due to

the displacement of centre of mass of the weighted ball,

and so can be absorbed into T0 in our model.

4 Results

4.1 Magnetic actuation and response of the sphere

For small angular displacement, an approximate solu-

tion to equation 4 is given by θ = θ0 + θ1 sin(ωt +

ϕ), where θ1 is the amplitude of oscillation and ϕ =

− arctan(2πT0f) = arctan(ε̂) − π/2 is the phase dif-

ference between the applied magnetic field and the re-

sponse of the sphere. The phase difference, ϕ is neg-

ative as the oscillatory motion of the sphere lags the

applied magnetic field. Experimentally measured val-

ues of ϕ are shown as a function of frequency of ap-

plied field, f in Figure 3b for a magnetic field strength

of B = 1.654 ± 0.005 mT. The measured phase de-

lay increases from < π/10 at a frequency of 0.025 Hz

and saturates at ≈ π/2 for frequencies above 0.25 Hz.

Typically, measurement of the dynamic response of the

sphere to the applied field were obtained at a frequency

of 0.5 Hz for which the phase delay was ≈ π/2.

The analytic solution, ϕ = − arctan(2πT0f), for the

phase delay for small-amplitude oscillations and numer-

ical solutions for large-amplitude oscillations are also

included in Figure 3b. Both the small amplitude solu-

tion and the full numerical solution for the phase delay

show the same qualitative behaviour as the experimen-

tal results, with ϕ = 0 at very low frequencies, and ϕ

decreasing monotonically towards −π/2 as f increases.

However, the full numerical solutions are in much better

quantitative agreement with the experimental results.

The effect of the amplitude and frequency of the applied

field on the angular displacement of the sphere is dis-

cussed in greater detail later in this section, in terms of

Ma and ε̂, yet here we see the influence of the frequency

of applied field on the dynamic response of the sphere.

For constant B = 1.654 ± 0.005 mT, the amplitude of

oscillation (also included in Figure 3b) increased with

decreasing f such that for f = 1 Hz, θ1 ≈ 16◦, while

for f ≤ 0.1 Hz, θ1 ≈ 90◦. For this reason we find that

the numerical findings for large-amplitude oscillations

agree better with the experimental results than the an-

alytic solution at small f .

Experimental time-series of the angle of the sphere,

θ(t), are shown in Figure 3c, for ε̂ = 0.22 and Ma =

4.85, 2.43, 1.21, 0.48 and 0.20 (top-to-bottom), which

corresponds to applied magnetic fields of amplitude 0.112±
0.015, 0.224 ± 0.015, 0.448 ± 0.015, 1.122 ± 0.015 and

2.688 ± 0.015 mT, respectively. In each case, four pe-

riods of oscillation are shown and the series have been

shifted in time such that θ = 0 at t = 0.

4.2 Dependence of the sphere response on Ma

When Ma is large, Ma � 1, the induced magnetic

torque is small compared with the viscous resistance

to motion, and so the sphere performs small-amplitude

torsional oscillations about the zero-field orientation.

The oscillations are sinusoidal and match the waveform

of the applied field such that the response of the sphere

is proportional to the magnetic forcing. For decreasing

Ma, the amplitude of oscillation increases nonlinearly.

Furthermore, the response of the sphere deviates in-

creasingly from the sinusoidal form of the applied field

as alignment of the magnetic axis with the applied field

in both direction is approached. A sinusoidal function

was fitted to the experimental data using a least-squares

method and, for oscillations of amplitude less than 19◦,

the standard deviation between the fitted function and

the experimental data was less than 0.1%. Moreover, for

oscillations of amplitude less than 45◦, which resulted
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Fig. 3: [Colour online] (a) A time-series of the angular position of the magnetic-dipole axis of the sphere measured

as a function of time as the sphere rotates back to the zero-field orientation under the sole influence of gravity. A

least-squares fit of the data to θ = a exp(−t/T ) + b yielded a = 28.21◦, b = 3.22◦ and T0 = 4.67 s. (b) The phase

delay, ϕ, between the applied magnetic field and the resulting motion of the sphere given by ϕ = − arctan(2πT0f)

for small-amplitude oscillations (solid line), calculated numerically for large-amplitudes (dashed line) and measured

experimentally (#) as a function of the frequency of applied field, for B = 1.654 ± 0.005 mT. The experimental

amplitude of angular oscillation θ1 is also shown (�) as a function of frequency (with scale on the right-hand axis).

(c) Experimental (solid line) and numerical (dots) time-series of the angular displacement of the driven, magnetic

sphere over four periods of oscillation, for ε̂ = 0.22 and Ma = 4.85, 2.43, 1.21, 0.48 and 0.20 (top-to-bottom). The

response of the sphere deviates increasingly from the form of the sinusoidal drive with decreasing Ma.

for Ma ≈ 1.2, the standard deviation between the data

and the fitted sinusoidal function was less than 1%.

For small Mason number, Ma� 1, the ratio of the

magnetic torque to viscous torque acting on the sphere

is large, resulting in large-amplitude oscillations which

deviate significantly from the sinusoidal form of the ap-

plied field. The magnetic dipole quickly attains approx-

imate alignment with the applied field, saturating the

angular response at ±90◦, and remaining in that po-

sition until the field reverses direction. For the larger

values of Ma shown in Figure 3c, the form of the sphere

response is symmetric under time reversal. However, for
Ma = 0.20, the measured θ(t) is noticeably asymmetric

with respect to time. The origin of the asymmetry is

the gravitational torque, which always acts to return

the sphere towards θ = θ0, and can act with or against

the driving magnetic torque at different points in the

cycle. The dimensionless parameter ε̂ quantifies the size

of the gravitational torque relative to viscous torque,

and so we expect symmetric behaviour for ε̂ = 0 and

highly asymmetric behaviour at large ε̂.

4.3 Angular displacement of the sphere

The total angular displacement of the sphere through-

out the oscillation cycle is zero. The maximum angu-

lar displacement of the sphere ∆θ = 2θ1, equal to the

change in θ over a period of oscillation, was investigated

as a function of both the magnetic torque Ma, and the

gravitational torque ε̂, and is shown as a function of Ma

for various ε̂ in Figure 4a. The experimental data are

shown in Figure 4a alongside numerical results obtained

for parameters corresponding to the experiments. The

analytic solution to the governing equations of motion

obtained for ε̂ = 0 (see Equation 5) is also included on

the figure, as are further numerical results determined

as a function of Ma for ε̂ = 0.44, ε̂ = 0.67, ε̂ = 1.33

and ε̂ = 3.34. Good agreement is found between the ex-

perimental and numerical findings when using the same

values of Ma and ε̂. Furthermore, the experimental data

points with small values of ε̂ lie close to the analytical

prediction from equation 5, which is the analytical so-

lution in the limit ε̂ = 0.

When Ma is held constant, the maximum angular

displacement of the sphere, ∆θ, is significantly reduced

for ε̂ � 1 because the gravitational torque acts more

strongly to return the sphere to the zero-field position.

For Ma � 1, ∆θ typically is close to 180◦, and moves

closer to this maximum value when ε̂ is decreased. We

can calculate the characteristic value of ε̂ which pre-

vents the angular displacement reaching the maximum

value. We initially compute the required Ma which en-

sured ∆θ was within 1% of the maximum response of

180◦ when ε̂ = 0, this was found to be Ma = 0.21. We

consider the effect of ε̂ to be significant when it reduces

∆θ by 5%. For Ma = 0.21, this was found to occur at

ε̂ = 0.396 through numerical investigation. The maxi-

mum angular displacement of the sphere, ∆θ, measured

as a function of Ma for ε̂ < 0.396 is shown in figure

4b. The deviation of the angular displacement of the

sphere from that predicted by the analytical solution

is small and only apparent at angular displacements of
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Fig. 4: [Colour online] (a) The maximum angular displacement of the sphere, ∆θ, measured as a function of

the dimensionless parameter Ma for various ε̂. Experimental data (#) and numerical data (×) evaluated at the

corresponding parameters are connected by a vertical line. The colour scheme for data points is: ε̂ < 0.22 (black),

0.22 < ε̂ < 0.56 (magenta), 0.56 < ε̂ < 1 (blue), 1 < ε̂ < 2.34 (green), 2.34 < ε̂ (red). The error bars on

the experimental data points would be smaller than the data markers, and for clarity are not shown here. The

analytical solution for the case when the gravitational torque acting on the sphere is zero, ε̂ = 0, is represented by

the solid, black line. Numerical results determined as a function of Ma for ε̂ = 0.44, ε̂ = 0.67, ε̂ = 1.33 and ε̂ = 3.34

are depicted by connecting numerical data points, and are represented as indicated in the legend. (b) ∆θ measured

as a function of Ma for ε̂ < 0.396. Experimental data (#) and numerical data (×) evaluated at the corresponding

parameters are connected by a vertical, magenta line. The analytical solution for ε̂ = 0 is represented by the solid,

black line.

close to 180◦, for which gravitational torque prevents

the sphere from attaining alignment with the applied

field in both directions. For ε̂ > 0.396, however, the

maximum angular displacement which the sphere can

attain is significantly reduced compared to the ε̂ = 0

results. The experimental and numerical data obtained

for ε̂ > 0.396 shown in Figure 4a clearly differ from the

analytical solution for ε̂ = 0.

4.4 Flow Field

Quantitative measurements of the flow were obtained,

using the PIV technique outlined in §2, for a sphere

performing small-amplitude torsional oscillations of a

sinusoidal form as a result of an applied magnetic field

of 0.15 Hz. The penetration depth of the flow, δ ∼
( νω )1/2 = 31.3 mm, was large compared to the radius

of the sphere, δ � a, which implies that a2ω � ν.

Considering that α2 = a2ω/ν = 0.064 � 1 and that

Re = avmax/ν ≈ 0.03, we conclude that the motion of

the sphere occurred in the low-frequency, low-Re limit

[17].

In the case of low Re and low frequencies of oscil-

lation, the fluid velocity varies only slowly with time,

so that the flow can be regarded as steady at any given

instant, and the time-scale associated with the angu-
lar acceleration is significantly larger than the viscous

time-scale (a2/ν) such that the contribution of the ac-

celeration torque to the viscous torque is negligible com-

pared to that of the quasi-steady torque [8, 19]. The

fluid velocity resulting from the torsionally oscillating

sphere can therefore be reasonably compared with the

analytical solution of the fluid velocity generated in the

equatorial plane by the steady rotation of a sphere in

an unbounded, incompressible viscous fluid [14]:

v =
Ωa3

r2
(9)

where Ω is the angular velocity of the sphere, a is the

sphere radius, r is the radial distance from the centre

of the sphere.

The magnitude of the fluid velocity was calculated

from the experimental vector fields, a typical example

of which is shown in Figure 2b. The observed symme-

try of the flow about the axis of rotation of the sphere

enabled spatial averaging around 360◦ of the vector
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Fig. 5: The instantaneous fluid velocity measured as

a function of radial distance. The fluid velocity v has

been normalised by the surface velocity of the sphere

vS , and the radial distance r has been normalised by

the radius of the sphere a. The black curve is the an-

alytical solution for the fluid velocity resulting from a

sphere rotating with constant angular velocity in an in-

finite fluid [14]. The blue data points (#) represent the

experimental velocity, the standard deviation of which

is given by the error bars. Measurements were made

for Ma = 2.01 and ε̂ = 0.22 for which the sphere per-

formed torsional oscillations of amplitude θ = 28◦ that

approximated a sinusoidal function to within 1%.

field. The measured fluid velocity resulting from the

small-amplitude, low-frequency torsional oscillations of

a sphere and the fluid velocity calculated from the ana-

lytical solution for a sphere undergoing steady rotation,

given by equation 9, are both shown in Figure 5. The

experimental data points shown in Figure 5, obtained

at 3π/10 in the oscillation cycle, are typical of instan-

taneous measurements obtained throughout the period

of oscillation.

Good quantitative agreement is found between the

experimental and analytical fluid velocity as a function

of radial distance. This agreement validates the model

described in §3 which, in deriving the viscous torque

acting on the sphere, assumed that Re = 0 such that

the velocity field is given by equation 9. The significant

deviation of the experimental data from the analytic

solution close to the sphere results from specular re-

flections by the surface of the sphere which, prior to

diffusing, illuminate tracer particles that are not on the

equatorial plane. The marginal reduction in agreement

at a radial distance & 2 is attributed to the influence of

the boundaries of the tank containing the viscous fluid

which were u 8a from the centre of the sphere.

5 Concluding remarks

A near neutrally buoyant sphere with a magnetic-dipole

axis and a non-uniform mass distribution was submerged

in a viscous fluid and subjected to an periodically-oscillating

magnetic field. For low frequency oscillations (a2ω � ν)

of small amplitude at low-Reynolds number (vmaxa/ν �
1), such that the flow can be regarded as steady at any

given instant [17], good agreement was found between

experimental measurements of the fluid velocity around

the sphere and the analytical solution of the functional

dependence of the fluid velocity on radial distance from

a sphere performing steady rotational oscillations in an

infinite, viscous fluid. This confirms that the set up is

an experimental realisation of a Stokes flow in which

the oscillatory motion of particles can be actuated via

a non-contact method, removing from the flow field the

uncharacterised effects which are introduced by the mo-

tion of a supporting rod or torsion fibre. Having de-

veloped an experimental technique that enables the re-

mote control of the torsional oscillations of a free sphere

in a fluid at low-Re, it would be instructive to conduct

an investigation of the flow field for Re � 1 and com-

pare the results to the work of Hollerbach et al. [12] in

order to determine what effect the connecting rod has

on the development of the secondary circulatory flow.

The developed experimental apparatus provides a

controlled environment in which other low-Re phenom-

ena may be explored, such as the influence of nearby

boundaries on the motion of a torsionally oscillating

sphere and the hydrodynamic interaction between a

magnetically-controlled active sphere with a characterised

driving force and non-magnetic passive spheres. The in-

teraction between configurations of multiple active and

passive spheres could potentially be used to develop

magnetically-actuated mixing devices and micro-fluidic

pumps and is the subject of our current investigation.

The set up also permits examination of the effect of

tethers on the motion of oscillating spheres. It would

of interest to study the fluid-structure interaction of

an actuated sphere connected to an elastic tether, as a

simple low-Re swimmer may result. The torsional oscil-

lations of the swimmer body would actuate the elastic

tail, generating a bending wave that propagates along

the elastic filament and propels the sphere through the

fluid [18]. Previously, synthetic swimmers of a similar

design have developed by Wiggins et al. [25] and Yu et

al. [26], and numerical studies [21] showed that a mag-

netic dipole with a flexible tail behaves as a swimmer

when subject to AC magnetic fields.
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