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Cloaking by coating: how effectively does a thin,
stiff coating hide a soft substrate?

Finn Box,a Cyprien Jacquemot,a Mokhtar Adda-Bediab and Dominic Vella *a

From human tissue to fruits, many soft materials are coated by a thin layer of a stiffer material. While the

primary role of such a coating is often to protect the softer material, the thin, stiff coating also has an

important effect on the mechanical behaviour of the composite material, making it appear significantly

stiffer than the underlying material. We study this cloaking effect of a coating for the particular case of

indentation tests, which measure the ‘firmness’ of the composite solid: we use a combination of theory

and experiment to characterize the firmness quantitatively. We find that the indenter size plays a key role

in determining the effectiveness of cloaking: small indenters feel a mixture of the material properties of

the coating and of the substrate, while large indenters sense largely the unadulterated substrate.

1 Introduction

How does one tell when a piece of fruit is ripe? While for fruits such
as tomatoes and bananas colour alone is a reliable indicator of
ripeness,1,2 everyday experience suggests that for fruits including
plums3 and mangoes,2,4 one must instead ‘poke’ the fruit: if the
fruit is soft then it is ripe, while if relatively stiff the flesh is not yet
ripe. Of course, how soft is soft enough depends on the type of fruit
and is knowledge gained by experience. As well as being of
importance to consumers assessing the ripeness of fruit in shops
and at home, measurements of fruit ripeness is also important to
producers.5 A common strategy producers use for measurements of
ripeness is a mechanized version of the poking test used by
consumers: the force required to impose a given indentation depth
via a cylindrical punch is measured and the resulting stiffness is
then correlated to the ripeness. Particular protocols have been
proposed for fruits including apples,6,7 plums,3 pumpkins,8

mangoes,2,4 oranges and tomatoes.1

A feature common to both industrial and domestic tests of fruit
ripeness is that fruits are usually protected by a thin, but stiff, skin
protecting the softer flesh.9 The industrial literature generally
recommends peeling fruit first to avoid anomalously large stiffness
measurements7,8 – thereby sacrificing one fruit as a representative of
a large batch. While this sacrifice may work in an industrial setting,
it is not practical for the consumer who needs a non-destructive test.
The question then is: how is the measured stiffness affected by the
large stiffness of the thin skin? To what extent is the stiffness of the
flesh (the quantity of interest) cloaked by the stiffness of the skin?

Similar scenarios arise in many problems in soft matter:
stiff, thin layers (including graphene) are adhered to thicker soft
substrates in applications including membrane separation,10

photovoltaics11 and flexible electronics.12 In such applications, as
in the case of many fruits, the Young’s modulus of the coating, Ef,
is significantly larger than that of the substrate, Es, i.e. Ef/Es c 1,
but the ratio of their thicknesses tf/ts { 1 – how does the
composite material behave? In this paper, we seek to understand
how these composite materials respond to indentation, focussing
on understanding the composite stiffness that is familiar from the
preceding discussion of poking fruit.

The deformation of an uncoated elastic half-space caused by
a normal pressure distribution in some region, but otherwise
unloaded, is an old problem in mechanics. This problem was
first considered by Boussinesq13 and two variants of it are now
referred to as the ‘Boussinesq problem’:14 in the first variant, a
known pressure distribution is applied over a small region and the
induced vertical deformation calculated. In the second variant, a
known normal displacement is imposed in some region but the
normal pressure distribution within that region must be deter-
mined. This second variant of Boussinesq’s problem results in
mixed boundary value problems,15 which are, in general, difficult
to solve analytically and show features, such as stress singularities
at the edge of the contact region,16,17 that are not present in the
first variant of Boussinesq’s problem. Nevertheless, Harding and
Sneddon16 provided solutions for the indentation of an uncoated
substrate by indenters of particular shape profiles; these were
subsequently generalized to arbitrary axisymmetric indenter
shapes by Sneddon.18 For a cylindrical indenter of radius rind,
these results suggest that the ratio of applied load and deflection
is constant, corresponding to an indentation stiffness k B Esrind –
this result will become a useful benchmark in this study, and is
referred to as Hertz contact.19
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The methods of Harding and Sneddon16 and Sneddon18

cannot, however, be generalized to the coated substrate problem
of interest here. An alternative approach has therefore been to
return to the first variant of Boussinesq’s problem (assume a
known spatial pressure distribution is applied and calculate the
resulting deformation).20,21 The results of such calculations may be
analytical (or require significantly simpler numerical calculations)
but they come with the caveat that they do not truly represent the
effect of a rigid indenter applied to the composite material.

Some analytical progress for the coated problem has been
made by considering particular asymptotic limits. For example,
Yu et al.22 were motivated by indentation tests of thin films of
ceramic–metal composites deposited on hard surfaces; their focus
was therefore on understanding how the substrate properties
should be controlled to ensure that they do not unduly affect
measurement of the thin film’s properties by indentation. In such
scenarios, the ratio of the moduli of the two layers is close to unity
and so Gao et al.23 developed asymptotic results for the effective
modulus of the composite exploiting the closeness in the ratio of
the layers’ moduli. These analytical results were then shown to be
in good agreement with the numerical solutions provided that the
shear moduli were within a factor of two of each other.

While the analytical approach of Gao et al.23 is useful when the
materials are similar in elastic modulus, many recent applications
have significantly larger stiffness ratios. For example, a glassy
layer might typically have Ef = O(1 GPa), while a soft polydi-
methylsiloxane (PDMS) substrate has24 Es = O(1 MPa) (or even

Es = O(10 kPa)). In this case, Ef/Es \ 103 and so analytical
approaches such as those of Gao et al.23 are no longer appro-
priate. More recent work has therefore focussed on providing
numerical results for the effective modulus of the combined
system with larger elastic mismatches Ef/Es a O(1). For exam-
ple Perriot and Barthel25 provided numerical results for 10�2 r
Ef/Es r 102.

In this paper, we present a model of the indentation of a coated
soft substrate in which the effect of the coating is modelled as
an elastic plate26 of bending stiffness B ¼ E�f tf

3
�
12, with

E�f ¼ Ef

�
1� nf2
� �

and nf the coating’s Poisson ratio. This
approximation allows for some analytical progress to be made,
as well as for some simplification of the problem to be solved
numerically in situations where analytical progress is not possible.
Moreover, this approximation is expected to be valid provided that
the lateral length scale over which the coating is deformed, which
we denote c� as in Fig. 1, is very large compared to the thickness
i.e. c�c tf. However, the length scale c� is not known a priori and
must be determined as part of the solution of the problem. We
therefore turn to first understand the length scale c� via a scaling
analysis in Section 2, before presenting experimental (Section 3)
and model (Section 4) results. We shall also compare our results
with those of previous works (summarized in Table 1) in Section 5
before discussing the relevance of our results for the indentation
of, among other things, fruits in Section 6.

2 Scaling analysis

We begin by noting that when subjected to a localized vertical
displacement of size d, the coating would like the substrate to
be deformed over a horizontal distance, c�, that is as large as
possible, since this will minimize its curvature Bd/c�

2 (and hence

its bending energy UB � B
Ð
d=‘�2
� �2

dA � Bðd=‘�Þ2). However, the
elastic substrate opposes large c�: the typical strain e B d/c� is
distributed over a volume V B c�

3 and so the substrate’s elastic
energy Us � Es

Ð
e2dV � Esd2‘� increases with c�. Minimizing the

total elastic energy Uelast = UB + Us by varying c�, we find that the
optimal horizontal length scale is c� B (B/Es)

1/3. In the more
detailed modelling that follows (see Section 4) it will be convenient
to use the modified modulus E�s ¼ Es

�
1� ns2
� �

and to intro-
duce an additional factor 2 into our definition of c�;
we therefore make the formal definition

‘� ¼
2B

E�s

� �1=3

: (1)

Fig. 1 A thin, stiff coating of a soft substrate is deformed by the application of a
cylindrical indenter of radius rind. The effect of the indentation is felt within the
substrate through the imposed strain e B d/c�, which penetrates a typical
distance c� throughout the substrate. In this paper we seek to determine the
relationship between the applied indentation force, F, and the indentation depth
d. This involves determining the characteristic lateral length scale c� over which
the substrate and coating are deformed by indentation.

Table 1 A summary of previous work on the problem of the localized normal loading of an elastic half-space that is coated by a thin layer (i.e. ts/tf -N).
The type of approach used in each reference is indicated by N (Numerics), E (Experiments) and/or A (Analysis)

Reference Modulus ratio Load size Load type Coating Approach

Yu et al.22 Ef/Es r 10 rind/tf Z 0.04 Rigid indenter, various shapes 3D solid N
Gao et al.23 1/2 r Ef/Es r 2 1/7 r rind/tf r 2 Rigid cylinder 3D solid N & A
Perriot and Barthel25 10�2 r Ef/Es r 102 10�3 r rind/tf r 102 Rigid indenter, various shapes 3D solid N
Li and Chou20 10�1 r Ef/Es r 10 10�1 r rind/tf r 10 Parabolic pressure 3D solid N
Liu et al.21 Ef/Es c 1 20 r rind/tf r 103 Constant pressure Beam N & E
Current work Ef/Es c 1 rind/tf c (Es/Ef)

2/3 Rigid cylinder Beam A, E & N
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Note that the plate model for the coating is only valid when
c� c tf, which we can see from (1) requires

Ef/Es c 1. (2)

The analysis presented in this paper is therefore only valid for
stiff coatings on soft substrates, as already anticipated in the
introduction.

With the proviso that we are considering extremely large
coating : substrate stiffness ratios, and assuming that the lateral
deformation occurs over the energetically-optimal horizontal
scale c� given in (1), the total elastic energy of the system
Uelast B Es

2/3B1/3d2. This energy must be provided to the system
by the work of the indentation force F, which in scaling terms
can be written Uind B Fd. Hence, at a scaling level we expect that

F B Es
2/3B1/3d. (3)

Note that the bending of the coating leads to a constant indentation
stiffness, k = F/dB Es

2/3B1/3. The existence of a constant indentation
stiffness is qualitatively similar to the Hertz contact result discussed
in the introduction in which the coating alone is indented and, as
such, would suggest a stiffness k B Efrind. Since we now have two
estimates of the stiffness, the question then naturally arises of
which of these best describes the stiffness that would be observed
experimentally? The answer to this question depends on whether
the coating deforms locally, as in Hertz contact, or rather bends, as
in the argument that led to (3) – the softer of these two choices will
be energetically favourable, and hence the expected mode of
deformation. We therefore expect to observe the bending response
(3) when Es

2/3B1/3 { Efrind, or rind c Es
2/3B1/3/Ef B tf(Es/Ef)

2/3: for
sufficiently large indenters the coating will bend, deforming the
substrate, rather than compress locally.

While the scaling law of (3) is a useful first result, it relies on
energy scalings that assumed a localized indenter. We shall see
in Section 5.2 that the assumption of a localized indenter is not
necessarily at odds with the above calculation that bending
deformation occurs only for rind c tf(Es/Ef)

2/3 because
Es/Ef { 1. Nevertheless, the characteristic size of the indenter,
rind, does play a key role in determining the indentation
stiffness, k = F/d. To see why this should be the case, note that
when rind c c� (a large indenter), the volume of the substrate
that is strained by indentation is rind

3 (rather than c�
3) and the

elastic energy of indentation Us B Esd
2rind. This suggests that

in this limit F B Esrindd – the constant Boussinesq indentation
stiffness for a cylindrical punch18 with the substrate (rather
than coating) stiffness. We therefore generalize (3) to include a
dependence on the dimensionless indenter size

rind ¼
rind

‘�
¼ rind

E�s
2B

� �1=3

(4)

by writing

F

d
¼ k ¼ E�2=3s B1=3k̂ðrindÞ: (5)

This paper is concerned primarily with the determination of
the dimensionless stiffness k̂(rind); we begin with an experi-
mental determination of this function, presented in Section 3,

before moving on to a theoretical calculation of k̂(rind) in
Section 4 and comparing this to results obtained in related
scenarios previously in Section 5.

3 Model experiments

Soft substrates with a thin, stiff coating were fabricated in the
laboratory. The substrates were made from polyvinylsiloxane
(PVS) elastomer (Elite Double 8, 22 and 32, Zhermack, Italy) by
mixing a base polymer with a catalyst. The mixture was first
degassed in a vacuum chamber and then cured within a
cylindrical mould (with radius in the range 20 mm r Rs r
55 mm and substrate depth 15 mm r ts r 33 mm). The
percentage of base polymer to catalyst in the elastomer mixture
was varied to achieve Young’s moduli in the range 30 kPa r
Es r 720 kPa (see Appendix A); the stiffness of uncoated
substrates was measured by flat-punch indentation tests. The
soft substrates were then coated with thin plastic films (RS Pro
Shim Kit, RS Components Ltd, UK and Mylar, DuPont Teijin
Films, US), of Young’s Modulus 3.5 GPa r Ef r 5.7 GPa, and
Poisson’s ratio nf = 0.4. The thickness of the films 50 mm r tf r
128 mm, was measured optically using a microscope (Leica,
DMIL, Leitz Wetzlar, Germany). The films adhered to the soft
substrate by contact alone; no additional adhesives were intro-
duced into the system.

To measure the apparent stiffness of the resulting coated
substrates, indentation tests were performed with flat-tipped,
cylindrical indenters of different radius. We therefore take the
characteristic size of the indenters to be the cylinder radius,
rind, which was varied in the range 0.15 mm r rind r 17.6 mm.
(These cylinders were stainless steel; for the narrowest cylinders,
radii rind o 1 mm, syringe tips were used with the central hole
filled with superglue to ensure contact throughout the tip
region.) Typically, samples were positioned upon a microbalance
(Pioneer, PA64C Analytic Balance, Ohaus, Switzerland), which
measures forces accurate to within 0.1 mg, although larger
samples were positioned upon a precision balance (PCB, 6000-
0, Kern GmbH, Germany) with higher weighing capacity but
lower precision (accurate to 1 g). The centre of the sample was
indented at 100 mm s�1 using a linear actuator (M228, Physik
Instrumente, Germany) controlled by a computer-controlled
stepper motor (Mercury Step C663, Physik Instrumente) with
typical unidirectional repeatability of 2 mm. The samples were
subject to indentation depths dr 30 mm o tf, with the inequality
d t tf ensuring that the effect of any stretching of the coating is
smaller than that caused by bending of the coating.27 The applied
force, F(d), was measured by recording the mass reported by the
mass balance at 100 Hz. The reported indentation stiffness,
k = F/d, was acquired from the gradient of the measured linear
response of force–displacement curves. A minimum of nine tests
were performed on each sample; the reported stiffness is the
mean value with error bars representing the standard deviation
of the measurements. For these shallow indentations, the dimen-
sions of the coated substrate were found to have no measurable
influence on the measured stiffness, since Rs and ts were both
large in comparison to c�.
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The results of our experiments are presented in Fig. 2. Raw
measurements of the indentation stiffness as a function of the
indenter radius are shown in the inset of Fig. 2 and show that a
variation of more than an order of magnitude in the measured
stiffness may be obtained simply by varying the indenter radius
or substrate stiffness. The main portion of Fig. 2 shows that
these raw data are well collapsed by plotting the dimensionless

indentation stiffness, k̂ ¼ k
�

B1=3E�s
2=3

� �
, as a function of the

dimensionless indenter radius rind = rind/c�, defined in (4). To
understand the behaviour of the dimensionless stiffness as a
function of indenter size, i.e. the curve k̂(rind) shown in Fig. 2,
we now present a mathematical model of indentation.

4 Mathematical model
4.1 Theoretical formulation

We develop a mathematical model for the axisymmetric deflection,
z(r), of the coating on top of the substrate in response to
a cylindrical indenter of radius rind imposing a vertical dis-
placement d. We shall model the coating as an elastic plate of
bending stiffness B ¼ E�f tf

3
�
12 that is subject to a vertical

loading, p(r;d) from the indenter as well as a deflection-
induced response from the substrate, Q(r;d). Using a flat
cylindrical punch allows for the vertical loading from the
indenter to always act only in r o rind; the constant, known
value of rind simplifies the problem somewhat compared to
other shapes of indenter. Nevertheless, both p(r;d) and Q(r;d)
are a priori unknown, so that they must be determined as part
of the solution.

Neglecting any tension within the coating, the plate equation26

for the vertical deflection of the coating with a specified
indentation depth d reads

Br4z = p(r;d) + Q(r;d). (6)

This is to be solved with the conditions

z(r) = �d, r o rind (7)

as well as far-field conditions z, dz/dr - 0 as r - N.
To make analytical progress in determining the response of

the elastic substrate, Q(r;d), to a vertical deflection z(r;d), we
make use of Hankel transforms – the Hankel transform of a

function f (r) is ~f ðkÞ ¼
Ð1
0 rf ðrÞJ0ðkrÞdr where J0(x) is the zeroth-

order Bessel function28 and k is the scaling factor, analogous to
wave number or frequency in a Fourier transform. A classic
result of Sneddon17 is that, for a substrate of infinite depth, and
neglecting any shear stress on the top surface of the substrate
(i.e. neglecting the effect of a tension within the elastic sheet on
the substrate) the Hankel transform of the normal load on the
sheet from the substrate, Q̃(k), is proportional to the Hankel

transform of the interfacial deflection, ~z(k). In particular, Sneddon17

showed that

~QðkÞ ¼ �1
2
E�s k

~zðkÞ: (8)

(Note that for an incompressible substrate, ns = 1/2, the solution
leading to (8) has both zero shear stress at the surface of the soft
substrate and zero horizontal displacement.17)

4.2 Solution of the problem

Substituting the expression from (8) into the Hankel transform
of (6) we find that

k Bk3 þ 1

2
E�s

� �
~zðkÞ ¼ ~pðkÞ: (9)

we therefore have an explicit expression for the Hankel trans-
form of the pressure applied by the indenter in terms of the
Hankel transform of the vertical displacement of the coating
everywhere. To proceed further we make use of the facts that: (i)
p(r) vanishes for r 4 rind (since this is beyond the indenter) and
(ii) z(r) = �d for r o rind (since this is within the region
displaced by the cylindrical indenter). These conditions may
be written in terms of the inverse Hankel transforms of p̃(k) and
~z(k) as:

pðrÞ ¼
ð1
0

k~pðkÞJ0ðkrÞdk ¼ 0; r4 rind (10)

and

zðrÞ ¼
ð1
0

k~zðkÞJ0ðkrÞdk ¼ �d; ro rind; (11)

respectively.

Fig. 2 The results of model experiments. Inset: Raw measured values of
k = F/d for different combinations of sheet and substrate as well as
indenter radius, rind. Main figure: rescaled values of the experimentally
measured stiffness k̂ (points) as a function of dimensionless indenter radius
rind = rind/c�. The theoretical prediction obtained from the numerical
solution of the model developed here, described in Section 4, is shown
by the solid curve, together with the asymptotic results for rind { 1 (dash-
dotted line) and rind c 1 (dashed line), both reported in (26). The elastic
mismatch Ef/Es is encoded by colour as indicated in the colour bar to the
right, while the shape of the points shows the sheet thickness, as shown in
the legend.
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Using (9), ~z(k) may be eliminated from (11) in favour of p̃(k),
which leads toð1

0

~pðkÞ
Bk3 þ E�s =2

J0ðkrÞdk ¼ �d; ro rind: (12)

Eqn (10) and (12) are a pair of integral equations, which can,
in principle, be solved to determine the Hankel transform of
the indenter pressure, p̃(k). We shall, in general, have to perform this
inversion numerically. However, before analysing these equations
further, we first consider the behaviour in two asymptotic limits that
can be solved analytically.

4.2.1 A point indenter rind - 0. For a point indenter, the
indentation pressure

pðrÞ ¼ F

2p
dðrÞ
r
; (13)

which is obtained as the limit of an indentation force F uniformly
distributed over a small circle in the limit of vanishing circle
radius.26,29 We therefore have p̃(k) = F/(2p) so that, using (12),
we find

�d ¼ zð0Þ ¼ F

2p

ð1
0

Bk3 þ 1

2
E�s

� ��1
dk: (14)

After computation of the integral
Ð1
0 ðX3 þ 1Þ�1dX ¼ 2p=33=2,

we then have that F = �k0d where the indentation stiffness of a
point-like indenter is

k0 ¼
33=2

22=3
B1=3E�2=3s : (15)

Note that in the limit of a point indenter, therefore, the apparent
stiffness of the combined material mixes the substrate stiffness
E�s with the bending stiffness of the coating B in the manner
expected from the scaling analysis of Section 2. However, we have
now also been able to determine the appropriate pre-factor.

Knowledge of the Hankel transform of the pressure in this
limit allows us to use (11) to show that

zðrÞ ¼ F

2p

ð1
0

J0ðkrÞ

Bk3 þ 1

2
E�s

dk: (16)

Changing variable to K = kr, we find that for r c c�

zðrÞ � F

pE�s r
: (17)

This far-field behaviour exhibits algebraic decay, z(r) B r�1 as
r - N, explaining the need for relatively large substrates in
experiments. Moreover, we expect similar results to hold far
from other sized indenters since the substrate feels only the
total applied force, F, far from the indenter. To understand the
coating deflection in the vicinity of the indenter’s edge, it may
be possible to follow a boundary layer analysis of the type
presented for a similar problem with surface tension;30 we do
not investigate this possibility here since our focus lies in the
force–displacement relationship.

4.2.2 No coating: B - 0. In the limit B - 0, we expect to
recover the classic result for an uncoated substrate due to

Sneddon18 amongst others. In particular, letting B = 0 in the
integral eqn (10) and (12), we find a system that is solved
precisely by Sneddon’s solution,18 i.e.

~pðkÞ ¼ �dE
�
s

p
sin�1ðkrindÞ

k
; (18)

which corresponds to

pðr; dÞ ¼ �dE
�
s

p
rind

2 � r2
� ��1=2

; ro rind: (19)

The indentation force can then be calculated as

F ¼ 2p
ðrind
0

rpðr; dÞdr ¼ �2E�s rindd (20)

so that the quantity of most interest to us here, the indentation
stiffness in the uncoated limit, is simply

k1 ¼
�F
d

				
B¼0
¼ 2E�s rind: (21)

(This is precisely the solution of the Boussinesq problem
discussed in the Introduction.)

We shall see that the limit B = 0 is equivalent to that of a
sufficiently large indenter, rind/c� c 1 and, further, that this
limit is well-defined (and non-singular). To see this, we now
discuss the non-dimensionalization of the problem.

4.2.3 Non-dimensionalization. There are two natural length
scales in the problem: the indenter size rind and the coating–

substrate length scale ‘� ¼ 2B
�
E�s

� �1=3. We shall use the indenter
radius rind as the natural length scale, introducing the dimension-
less parameter rind given in (4). It is also clear from the linearity of
(10) and (12) that the applied pressure is linear in the indentation
depth d. We therefore non-dimensionalize the problem by letting

R = r/rind, K = krind, P = p/(Bd/rind
4). (22)

The integral eqn (10) and (12) then becomeð1
0

K ~PðKÞJ0ðKRÞdK ¼ 0; R4 1 (23)

and
ð1
0

~PðKÞ
K3 þ rind3

J0ðKRÞdK ¼ �1; Ro 1 (24)

respectively. (Note that the factor of 21/3 in the earlier choice of c�
was included to simplify the denominator in the integrand of (24).)

The dimensionless indentation stiffness can then be deter-
mined from the force condition (20) to be

k̂ ¼ k

B1=3E
�2=3
s

¼ 2prind
�2
ð1
0

RPðRÞdR: (25)

Having non-dimensionalized the problem, we now see that
the earlier analytical results may be written in dimensionless
form as

k̂ ¼ k

B1=3E
�2=3
s

�
33=2

22=3
; rind � 1

24=3rind; rind � 1:

8><
>: (26)
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However, we would like to have results for a wider range of
values of rind. This requires a numerical solution of the integral
eqn (23) and (24), and so we turn to discuss this problem next.

4.3 Numerical results

We solve the integral eqn (23) and (24) numerically, as detailed
in Appendix B. Our results allow the stiffness k to be determined
for various values of the dimensionless indenter size rind. The

behaviour of the dimensionless stiffness k̂ ¼ k
�

B1=3E�s
2=3

� �
as

the dimensionless indenter size rind = rind/c� varies is plotted
with the experimental data in Fig. 2 and shows good agreement
between the two. These numerical results are also plotted in
Fig. 3, and illustrate that the asymptotic results of (26) are well
reproduced by the numerical solution of our model in the
appropriate limits. However, we also note that the approximate
expression

k̂ðrindÞ �
33=2

22=3
þ 24=3rind; (27)

determined by adding the two asymptotic expressions, agrees
with the numerical solution of our model to within 6.3% across
all values of rind (see inset of Fig. 3a).

While the agreement between the numerical solution of the
model presented here and the various asymptotic results pre-
sented in Fig. 3 is very good, these results depend on a series of
modelling assumptions, most notably that the thin coating may be
modelled as an elastic plate. The good agreement with the experi-
ments presented in Fig. 2 suggests that this approximation is
appropriate in this case. However, to offer a more stringent test of
this modelling assumption, we also consider how the results we have
presented here compare with previous results on related problems.

5 Comparison with previous results
5.1 Theoretical results

Liu et al.21 followed a theoretical approach very similar to that
adopted here. However, rather than solving the pair of integral
eqn (23) and (24), they assume that the pressure distribution is
uniform in the contact region (vanishing beyond this region), i.e.
p(r) = F/(prind

2) in r o rind. This uniform pressure distribution has
Hankel transform p̃(k) = FJ1(krind)/(pkrind); this does identically
satisfy the first eqn (23) (by assumption) but is inconsistent with
a constant vertical displacement within the contact region,
r o rind. Nevertheless, an estimate of the indentation stiffness
may be determined by evaluating (12) at r = 0. In our notation,
this approximation reads:

k̂ðrindÞ �
p

22=3
rind

ð1
0

J1ðKrindÞ
KðK3 þ 1ÞdK

� ��1
; (28)

which is easily computed numerically (or indeed analytically,
albeit in terms of the Meijer G-function31). Moreover, for rind { 1
the expression (28) reproduces the appropriate asymptotic result
from (26) – for small indenters, the deviation from uniform
vertical displacement beneath the indenter is only small. How-
ever, for rind c 1 we find that k̂ B prind/22/3, which yields a

systematic, and constant, error of more than 20% compared to
the large indenter limit of (26), k̂B 24/3rind. The comparison of
this result with the numerical solution of our model shown
in Fig. 3a demonstrates that the values at intermediate rind

are also very different: (28) consistently underestimates the stiffness
determined from our model calculation. This discrepancy reflects
the fact that the pressure is far from uniform for non-small
indenters (for example, Sneddon18 showed that the pressure actually
diverges at the edge of a cylindrical indenter, as shown in (19)).

5.2 Detailed numerical results

The results we have presented rely on modelling the deforma-
tion of the thin coating as an elastic plate. To test the validity of

Fig. 3 The dimensionless indentation stiffness k̂ ¼ k
�

B1=3E�s
2=3

� �
as a

function of the dimensionless indenter radius rind = rind/c�, determined
from the numerical solution of our model. (a) Main figure: numerical
results for k̂(rind) (thick solid curve) compared with a variety of approximate
expressions: the approximation (27) is shown by the thin solid blue curve
while the approximate result of Liu et al.,21 (28), is shown as the dotted
curve. Asymptotic results from (26) are shown for rind { 1 (dash-dotted
line) and rind c 1 (dashed line). Inset: The error introduced by using the
approximate formula (27) rather than the numerical solution of the system
of eqn (23) and (24). (b) Comparison between previous numerical results of
the indentation of a coated substrate by a cylindrical punch (points) and
the numerical solution of our reduced model (solid curve). The numerical
results for the coated problem are reproduced from a digitization of

Fig. 2 of Perriot and Barthel25 with stiffness ratios E�f
�
E
�
s
¼ 10 (circles)

and E�f
�
E
�
s
¼ 100 (triangles). Dotted vertical lines show where rind =

10 E�s
�
E
�
f

for each value of E�f
�
E
�
s
; we expect our model of the coating

as an elastic plate to be valid only for rind � E�s
�
E
�
f
, as in (31). Dashed

curves show the approximate relationship (32) with the appropriate value

of E�s
�
E
�
f
; this combines the Hertzian behaviour of the coating with the

plate bending response of the coated substrate.
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this simplifying approximation, we compare our results with
numerical results reported by Perriot and Barthel25 that lift this
restriction. In particular, numerical results from Fig. 2 of ref. 25
were captured digitally and are plotted in Fig. 3b (after translating
to the non-dimensionalization of the present paper). When
plotted in the way suggested by our theory, these results collapse
with the collapse being particularly good at large values of the
indenter radius, rind \ 1. However, at smaller indenter radius,
both the collapse and the agreement with the results of our
model, specifically the point indenter limit (15), break down.

To understand the discrepancy between the numerical
results presented by Perriot and Barthel25 and the results of
the model presented here, we revisit our assumption that when
the indenter contacts the substrate’s coating, the whole coating
bends beneath it. An alternative mode of deformation is that
the coating itself compresses, which is frequently referred to as
Hertz contact.19 This mode of deformation has typical indentation

stiffness kfilmHertz � E�f rind. For sufficiently small indenters, this defor-
mation mode may be ‘softer’ than the bending deformation we have

considered, which had stiffness kfilmbend � B
1=3
f E

�2=3
s � tfE

�1=3
f E

�2=3
s .

We may consider these different modes of deformation to be linear
springs acting in series, and so expect the measured stiffness to be
dominated by whichever is the softer; in particular, we expect to
observe the bending response studied in this paper provided it is
‘softer’ than the Hertz-like response of the coating, i.e.

1� kfilmbend
kfilmHertz

� tfE
�1=3
f E

�2=3
s

E�f rind
� tf

rind

E�s
E�f

� �2=3

(29)

which in turn requires that

rind

tf
� E�s

E�f

� �2=3

; (30)

or

rind ¼
rind

‘�
� E�s

E�f
: (31)

Vertical lines corresponding to rind ¼ 10E�s
�
E�f are shown in

Fig. 3b, and approximately coincide with the values of rind at which
the disagreement between the numerical solutions of Perriot and
Barthel25 and the numerical solution of our own theoretical model
is noticeable.

To be more quantitative, we take the analogy of springs in
series further: a given imposed force F will induce a displacement
caused by the bending of the coating and a displacement caused by
the localized (Hertzian) compression of the coating itself. Adding
these two displacements gives the total displacement caused by the

force F, dind � F 2E�f rind
� ��1þ B1=3E

�2=3
s k̂ rindð Þ

h i�1
 �
. If we

approximate k̂(rind) using (27), we readily find a combined stiffness

kcomb ¼ B1=3E
�2=3
s k̂comb with

k̂comb �
32=3

22=3
þ 24=3rind

� �
1þ E�s

E�f
1þ 33=2

4rind

� �� ��1
: (32)

The comparison between the numerical results of Perriot and

Barthel25 and (32) is shown in Fig. 3b; for E�f
�
E
�
s
¼ 10 and

E�f
�
E
�
s
¼ 100, the maximum relative error of (32) across all

indenter sizes is 13.9% and 9.6%, respectively.
We note that the condition (31) holds for the experiments we

presented in Section 3, since for our experiments E�s
�
E�f t10�3

while the dimensionless indenter radius rind \ 10�1. Finally,
we note that the requirement of (31) may be compatible with
the point indenter limit, rind = rind/c� { 1, provided that
E�s
�
E�f � 1. In particular, for the point indenter limit of our

model to be valid, we require rind { 1 whilst simultaneously
satisfying (31), i.e.

E�s
�
E�f � rind � 1: (33)

Alternatively, one may write the condition for a point indenta-
tion of a bending plate, (33), in terms of the ratio of the radius
to the film thickness, which reads

E�s
E�f

� �2=3

� rind

tf
� E�f

E�s

� �1=3

: (34)

6 Discussion
6.1 Summary of results

We have considered in detail the problem of small indentations
of a soft substrate that is coated by a thin stiff layer. We developed
a model that combined plate theory (to describe the deflection of
the coating) with classic results for the deformation of a substrate
due to an applied pressure distribution. By comparison with
previous numerical results, we showed that the plate model of
the coating is valid provided that the substrate stiffness is
significantly lower than that of the film; in particular from (30)

we require indenter to thickness ratios rind=tf � E�s
�
E�f

� �2=3.
Under this condition, and provided that the indentation depth
remains small enough to neglect stretching within the coating
(d t tf), we find that the indentation ‘stiffness’ depends on the
indenter size, rind. In particular, for sufficiently small indenters,
the indentation stiffness mixes the bending stiffness of the
coating with the stiffness of the underlying substrate, while
for sufficiently large indenters it is the substrate stiffness alone
that determines the indentation stiffness.

Detailed asymptotic results are summarized in dimension-
less terms in (26), but may be rewritten in dimensional terms as:

k ¼ F

d
�

33=2

22=3
B1=3E

�2=3
s ; rind � ‘�

2E�s rind; rind � ‘�:

8><
>: (35)

Note, in particular, that for small indenters the indentation
stiffness measured relative to that of the uncoated substrate
k= 2E�s rind
� �

/ ‘�=rind � 1: for small indenters, the coating
greatly stiffens the substrate, effectively cloaking its true mod-
ulus (see Fig. 4).

We have used the numerical solution of our model equations
to determine the stiffness k for intermediate indenter radii,
rind = O(c�). These results showed that a simple approximation
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valid throughout the range of indenter sizes may be obtained by
adding the asymptotic limits – the dimensionless expression in
(27) is always within 6.3% of the value determined from the
numerical solution of our model. As a result, we suggest the
dimensional version of (27), namely

k � 33=2

22=3
B1=3E�2=3s þ 2E�s rind; (36)

may be used to predict the stiffness that would be measured with a
particular indenter radius and known material properties.

Typically, however, one uses indentation to determine the
unknown properties of a system, with little or no knowledge of
the underlying material properties. Our results suggest that to
determine both the bending stiffness of the coating and the
Young’s modulus of the substrate requires a suite of experiments
with different indenter radii and repeated measurements of k. By
comparing a linear fit of k(rind) with (36) we see that the substrate
Young’s modulus should be half the linear slope while the
bending stiffness of the coating can be inferred from the inter-
cept as rind - 0. However, once such a fit has been performed,
one must also check that the indenters used were sufficiently
large that our use of plate theory is satisfied, i.e. that (30) is
satisfied with the obtained parameter values (which requires, in
addition, knowledge of the coating thickness).

6.2 Relevance to previous experiments on fruit

We motivated our study of the indentation of soft substrates coated
by a thin, stiff layer with the question of how one determines
whether a piece of fruit is ripe (or not) without damaging it. We now
turn again to this question to consider the insights that the analysis
presented in the main body of this paper, and the results discussed
in Section 6.1, in particular, might bring.

The first question is whether the various assumptions made
in our analysis hold? In particular, is our use of plate theory to
model the coating appropriate in this scenario? Apples seem to

be the fruit with the most comprehensive set of published
experimental data for comparison. Previous work by Grotte
et al.7 gives a typical modulus for the flesh of Es E 500 kPa
while Wang et al.9 reported the skin to have typical modulus
Ef E 20 MPa and thickness tf E 215 mm. These values give an
estimate of c� E 400 mm. As a result, we expect that our plate
model of the skin should be valid provided that

rind � tf
E�s
E�f

� �2=3

� 20 mm: (37)

Fig. 2 of Grotte et al.7 presents indentation tests of an apple
with and without the skin using a cylindrical indenter with
diameter 2rind = 4 mm; such an indenter easily satisfies the
condition (37) under which we expect the plate theory approxi-
mation used here to be valid. The experimental results pre-
sented by Grotte et al.7 show that with the skin intact, the
measured ‘firmness’ (our indentation stiffness) is increased by
a factor of around 3 compared to situations in which the skin is
first removed. This is significantly larger than the size of effect
expected based on the theory presented here, which would
predict that the skin should lead to an increase of around 25%
(see the circular point in Fig. 4). We discuss possible reasons
for this discrepancy in the conclusion, but note also that a
larger indenter (such as a finger) would yield a firmness within
10% of that of the substrate itself (see star in Fig. 4).

7 Conclusion

We have presented a theoretical model for the increase in firmness
that is provided by a stiff, thin coating of a soft substrate. This
model, and its numerical solution, demonstrated the critical role of
the indenter size in determining whether the coating significantly
stiffens the substrate or not: loosely speaking, small indenters ‘feel’
the effect of the coating, while large indenters feel the underlying
substrate.

The predictions of our theoretical model are in good agreement
with model experiments on soft substrates coated by significantly
stiffer thin films, and previously published detailed numerical
simulations. However, our predictions seem to significantly under-
estimate the effect of the skin-induced stiffening of fruit. We
believe that this is likely due to the effect of a pre-existing tension
within the skin, which resists indentation more effectively than the
bending stiffness accounted for here. (The likely presence of such
a pre-tension could be shown by introducing an incision in the
skin and observing that the relaxation of the pre-tension leads to
the spontaneous opening of the incision.) Another effect that
might also be included in the modelling of this indentation
process is the natural curvature of most fruit (though we do not
expect this to be a significant effect for the apples presented in
Section 6.2 since the radius of an apple is significantly larger than
the typical length scale c� E 400 mm).
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Fig. 4 The effectiveness of ‘cloaking by coating’: the indentation stiffness
of a coated substrate measured relative to the indentation stiffness of the
uncoated substrate. Here, the solid curve shows the prediction based on
the numerical solution of our model, while the dashed line shows the pure
uncoated stiffness. The extent of cloaking by coating expected for an
apple are shown by points: for the indenters typically used in industrial
measures7 of apple ripeness, rind = 2 mm (indicated by the circular point),
the presence of a stiffer skin means that the apparent stiffness is around
25% larger than that of the underlying flesh; larger indenters, such as a
finger (indicated by the star), give an indentation stiffness less than 10%
above that of the underlying flesh.
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Appendix A: obtaining different
substrate Young’s moduli

Polyvinylsiloxane (PVS) is an elastomer that is fabricated by mixing
a base polymer with a curing agent (i.e. a crosslinker). Ordinarily,
the two parts are mixed in equal measures and the mixture allowed
to set. However, it is well known that the mechanical properties of
other elastomers, including Polydimethylsiloxane (PDMS), can be
tuned by varying the degree of crosslinking in the polymer
network.32 In the experiments presented here, the stiffness of
the PVS substrates was varied by using mixtures with different
amounts of crosslinker to each part of the polymer base (reported
as a ratio o1 in Fig. 5 since all mixtures were at least 50% base,
with the softest corresponding to 90% base). These different
mixtures were fabricated for each of three different grades of
PVS (Elite Double 8, 22 and 32), supplied by Zhermack (Italy).
The mixtures were thoroughly mixed, degassed in a vacuum
chamber and left to cure in a cylindrical mould for one hour
before the mechanical properties were tested. The elastic moduli
of the resulting uncoated substrates was measured by flat-punch
indentation tests with a cylindrical indenter of diameter 2rind =
1.25 mm, and are plotted in Fig. 5 as a function of the fraction of
crosslinker used for each part of base.

Appendix B: details of the solution
technique
Theoretical background

To solve the pair of integral eqn (23) and (24), we follow Sneddon18

in setting

K ~PðKÞ ¼ rind
2K

ð1
0

jðtÞ cosKtdt; (38)

to ensure that (23) is automatically satisfied. (The additional factor
of rind

2 is introduced for later convenience.) Once the function j(t)
has been computed, the pressure P(r) is immediately given by

rind
�2PðrÞ ¼ 1

r

d

dr

ð1
r

tjðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2
p dt

� �
r � 1: (39)

This writing allows us to compute directly the dimensionless
indentation force as

�F ¼ �2prind�2
ð1
0

rPðrÞdr ¼ 2p
ð1
0

jðtÞdt: (40)

The role of the extra factor rind
2 in eqn (38) is then to simplify the

scaling difference between F and j.
Substituting (38) into (24) we have that

rind
2

ð1
0

XðR; tÞjðtÞdt ¼ 1; Ro 1; (41)

where the kernel

XðR; tÞ ¼
ð1
0

cosKt

K3 þ rind3
J0ðKRÞdK: (42)

The analytical resolution of eqn (41) is not possible because the
kernel X(R,t) in (42) is not analytically integrable. However,
having written the problem in this way facilitates the numerical
solution of (41), as we now demonstrate.

Numerical implementation

To obtain a numerical solution it is better to transform the
integral eqn (41) to acquire numerical stability. Eqn (41) can be
rewritten as

rind
2 d

ds

ðs
0

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 �R2
p

ð1
0

XðR; tÞjðtÞdt
� �

dR


 �
¼ d

ds

ðs
0

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 �R2
p dR


 �

Performing the integrals over R, one can rewrite this equation as
ð1
0

I ½rindðsþ tÞ	 þ I ½rindjs� tj	f gjðtÞdt ¼ 1 s � 1 (43)

where

IðxÞ ¼ 1

2

ð1
0

cosKx

K3 þ 1
dK (44)

The function I(x) can be written in terms of the Meijer G
function and can be evaluated numerically; this shows that its
behaviour is regular for any value of x. Therefore the integral
eqn (43) with I(x) given by eqn (44) may be solved numerically
without problems. We discretize the interval 0 r t r 1 to
determine a linear system for j at various grid points; this linear
system is readily solved.
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