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We present the results of an experimental and theoretical investigation into the
influence of proximate boundaries on the motion of an rotationally oscillating sphere
in a viscous fluid. The angular oscillations of the sphere are controlled using the
magnetic torque generated by a spatially uniform, oscillatory magnetic field which
interacts with a small magnet embedded within the sphere. We study the motion of
the sphere in the vicinity of stationary walls that are parallel and perpendicular to the
rotational axis of the sphere, and near a second passive sphere that is non-magnetic
and free to move. We find that rigid boundaries introduce viscous resistance to
motion that acts to suppress the oscillations of the driven sphere. The amount of
viscous resistance depends on the orientation of the wall with respect to the axis of
rotation of the oscillating sphere. A passive sphere also introduces viscous resistance
to motion, but for this case the rotational oscillations of the active sphere establish
a standing wave that imparts vorticity to the fluid and induces oscillations of the
passive sphere. The standing wave is analogous to the case of an oscillating plate in
a viscous fluid; the amplitude of the wave decays exponentially with radial distance
from the surface of the oscillating sphere. The standing wave introduces a phase lag
between the motion of the active sphere and the response of the passive sphere which
increases linearly with separation distance.

Key words: low-Reynolds-number flows

1. Introduction
The interactions between spherical particles moving in a viscous fluid and nearby

solid boundaries are key to understanding the physical processes associated with
particle suspensions in a fluid (Happel & Brenner 1983; Kim & Karrila 1991). Fluid
suspensions are confined by, and move along, rigid boundaries in a wide range of
industrial applications. Examples include the manufacturing of paints and polymer
suspensions, the measurement of rheological properties of colloidal suspensions
(Cichocki et al. 1994) and the development of rotating sphere viscometers (Besseris,

† Email address for correspondence: finn.box@maths.ox.ac.uk
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Oscillating spheres and solid boundaries in a Stokes flow 835

Miller & Yeates 1999). In nature, particle–boundary interactions are key to the
process of sedimentation induced by turbidity currents (Guazzelli & Hinch 2010). In
biological systems, fluid dynamic interactions are responsible for biofilms that are
formed by the agglomeration of microorganisms near rigid walls and at air–liquid
interfaces (Lauga & Powers 2009).

Studies on isolated, steady rotating spheres in a viscous fluid indicate that the
surrounding fluid moves in concentric shells around the sphere with a speed that
decays inversely with radial distance from the sphere centre (Buchanan 1891; Jeffery
1915; Lamb 1932; Kestin & Persen 1954). The presence of a nearby, stationary
boundary modifies this flow field and suppresses the rotational motion (Happel &
Brenner 1983). Moreover, the orientation of the axis of rotation of the sphere with
respect to the wall has a significant impact on the resulting flow field.

For a sphere rotating steadily about an axis perpendicular to a nearby wall a
resistive torque arises because of the no-slip condition at the wall and this in turn
exerts an additional force on the sphere by the fluid. This wall-induced correction to
the viscous torque increases as the sphere is brought closer to the wall (Jeffery 1915).
For a sphere that is sufficiently far from the wall, the torque scales as the cube of
the separation distance (Liu & Prosperetti 2010) whereas when the sphere is very
close to the wall lubrication effects become important and the torque scales as the
inverse logarithm of the separation distance (Cox & Brenner 1967; Kim & Karrila
1991) and becomes infinite in the limit where the sphere touches the wall.

For a steady rotating sphere with its axis of rotation parallel to the wall once
again a resistive torque is exerted on the sphere that increases as the separation
distance between the wall and sphere is reduced (Dean & O’Neill 1963; Goldman,
Cox & Brenner 1967). Far from the wall, the torque scales with the cube of
the inverse separation distance, whereas very near the wall the torque decreases
logarithmically with inverse separation distance. Viscous effects also result in a force
that has components parallel and perpendicular to the wall. The parallel component
originates from viscous shear and causes the sphere to translate in the direction
that an untethered sphere would roll along the wall (Liu & Prosperetti 2010). Note
that by the reciprocal theorem (Happel & Brenner 1983), a force generated by a
sphere rotating near a boundary is analogous to the torque experienced by a sphere
translating near a boundary (Faxén 1922; Ambari, Gauthier-Manuel & Guyon 1984).
The component perpendicular to the wall arises from the pressure generated by the
fluid layer squeezed between the sphere and the wall. This force is repulsive, forcing
the sphere away from the boundary, is greater at smaller separations and decreases
rapidly with increasing separation (Liu & Prosperetti 2010).

The linearity of the Stokes equations permits analytical treatment, in particular for
simplified boundary conditions. More generally, the symmetry of spheres has been
effectively exploited to develop a range of theoretical methods depending upon the
configuration. The interaction between two spheres moving with equal velocity in
a viscous fluid, along a line joining their centres, was first considered by Stimson
& Jeffrey (1926). More recently considerable theoretical work has been performed
on both the forward problem of linear and angular rate of change of momentum
balance for prescribed motion, as well as the inverse problem to solve the motion
at prescribed force and torque. These problems require a derivation of the resistance
and mobility functions respectively to define the corresponding equations (Jeffrey &
Onishi 1984a,b; Kim & Miffin 1985; Cichocki, Felderhof & Schmitz 1988; Jeffrey
1992). The method of reflections has been used to iteratively solve for interacting
spheres in a viscous fluid, and yields accurate solutions for a sufficiently small
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number of arbitrarily shaped particles as long as they are far apart. As these particles
approach each other the number of higher-order terms required to yield accurate
solutions becomes prohibitively large. Multipole expansion methods can be used
for solving for a finite number of closely spaced, interacting axisymmetric particles
(Jeffery 1915; Kim & Karrila 1991). However for problems that extend beyond
these finite realms, an effective and versatile numerical approach is possible with
boundary element methods that use singularity solutions to the Green’s function
for Stokes equations. Pertinent to the problem studied in this paper is the steady
rotating sphere that is represented by a spinning rotlet, and analytical solutions of
a sphere near a rigid boundary were determined using the method of images by
Blake & Chwang (1974). In the context of unsteady Stokes flows, Pozrikidis (1989)
used singularity methods to analyse oscillating spheres in a viscous fluid. For more
complex configurations, boundary element methods lend themselves well to numerical
treatment, where the complexity refers to particle shape as well as to the numbers
of interacting particles. Moreover they can be effectively combined with analytical
methods, such as the method of reflections (Kim & Russel 1985; Ardekani & Rangel
2006) or the application of lubrication theory, which permits estimation of the leading
contribution to the relative motion of a sphere near a boundary (Kim & Karrila 1991).
Such theoretical techniques have been validated in experimental studies of the steady
rotational motion of micron-sized colloidal particles controlled by optical tweezers
(Crocker 1997; Meiners & Quake 1999; Henderson, Mitchell & Bartlett 2001, 2002;
Trankle, Speidel & Rohrbach 2012), and therefore provide an accurate means of
modelling the behaviour of multi-body configurations of rotating spheres.

One of our long-term goals is to model systems that comprise chains of oscillating
spheres. Specifically it has been shown that arrays of rotationally oscillating spheres
connected together via flexible filaments deform in a non-reciprocal manner and
self-propel in a viscous fluid (Box et al. 2017). In this way they act as configurable
synthetic swimmers or micro-fluidic pumps. To this end, we develop an accurate, fast
and robust numerical model that provides a foundation for modelling such complex,
versatile motion in a viscous fluid.

Here, we progress the understanding of the fundamental fluid dynamics of
rotationally oscillating spheres in the presence of solid boundaries. In doing so, we use
the novel experimental technique of Box, Thompson & Mullin (2015) to magnetically
induce torsional oscillations in a sphere in a viscous fluid. The controlled oscillations
are operated at constant driving torque and we refer to the sphere which moves in
response to the magnetic field as ‘active’. We first consider active spheres near planar
walls to understand the role of stationary boundaries on the response of the sphere.
We then extend the approach to interactions between two untethered, moving spheres
of non-negligible radius, one of which is ‘active’ and the other is ‘passive’ since it
is non-magnetic and moves in response to changes in the flow field induced by the
driven sphere.

This manuscript is organised as follows: In § 2 we apply the model for a driven
sphere performing torsional oscillations in a viscous fluid near rigid boundaries, based
on which we extend the model to consider sphere-pair interactions. The experimental
set-up in which we control the motion of the sphere and measure the fluid and sphere
interactions is described in § 3. A comparison between the model and the experiments
is presented in § 4. Finally, the findings of this study are summarised and discussed
in § 5.
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Oscillating spheres and solid boundaries in a Stokes flow 837

2. A model of a driven sphere oscillating in a viscous fluid
A sphere oscillating in a fluid imparts its momentum to the surrounding fluid. We

focus on spheres performing angular oscillations near rigid and movable boundaries in
a viscous fluid. A few key assumptions are made here. Firstly, that the rate of change
of fluid motion compared to the diffusion of vorticity is small, such that analytical
progress may be made through linearisation of the Navier–Stokes equations. Secondly,
we assume that the oscillations are of sufficiently low frequency that the flow can
be treated as quasi-steady, such that the inertia of the fluid and a (neutrally buoyant)
sphere can be neglected.

In this section we present the theoretical model where the singularity solutions from
Blake & Chwang (1974) for steady spinning spheres near boundaries are applied to
the singularity method developed by Pozrikidis (1989) for oscillating spheres in a
Stokes flow. The approach has been to develop a simple, robust, fast and sufficiently
accurate method that models the dominant effects observed in the experiments. In § 2.1
we consider the theory for the flow field generated by a rotationally oscillating sphere.
In § 2.2 we model the rotating sphere near rigid walls, and in § 2.3 we extend the
model to predict the interaction between an oscillating active sphere and a second
passive sphere.

2.1. Oscillating sphere in a Stokes flow
We consider an isolated sphere, of radius a, with an embedded magnetic dipole pair,
driven to oscillate with frequency omega in a viscous fluid (dynamic viscosity µ)
by application of an external magnetic field. The sphere is neutrally buoyant so we
may neglect gravity and instead find that the contributions to the torque balance
come from the viscous torque, Tv = −8πµa3 (dθ/dt)ek (where ek is the sphere’s
oscillation axis) and magnetic torque, Tm=B(t)∧m. In an alternating magnetic field,
B = B0 exp(iωt)ei (acting along direction ei, i =

√
−1), the magnetic sphere dipole

moment m=m(sin θ̌ei, cos θ̌ej), where m is the magnetic dipole strength, θ̌ = θ̄ + θ(t),
θ(t) is the time-varying angular component about the mean dipole orientation axis,
θ̄ , depicted in figure 1(b). Furthermore [i, j, k] ∈ [1, 2, 3] refer to the coordinate axes,
the particular combination of which depends upon the rotation and wall orientation
axes and are specified for the cases considered later in this section (also see figure 1).
The torque balance equation reduces to:

dθ(t)
dt
=−

B0m
8πµa3

sin θ̌eiωt. (2.1)

The Mason number, Ma = B0m/(8πµa3ω) ≈ 8� 1 so we may assume small angle
oscillations (Box et al. 2015). This allows us to isolate magnetic forcing from the fluid
dynamics by assuming that the sphere undergoes angular oscillations of amplitude θ0,
so

θ(t)= θ0 exp(iωt). (2.2)

The viscous fluid surrounding the oscillating sphere can be modelled by the
unsteady Stokes equations:

∂U
∂T
=−

1
ρ
∇P+ ν∇2U, ∇ ·U= 0, (2.3a,b)

where U and P are respectively the fluid velocity and pressure generated by the flow
of fluid of density ρ, and viscosity ν. The characteristic length scale, a (the radius of
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Far field: rotlet-doublet Far field: stresslet

Rotlet

Image
system

Image
system

Stresslet Doublet

B B(a) (b)

(c) (d )

FIGURE 1. (a,b) Schematic diagrams of a sphere of radius a undergoing rotational
oscillations about axes (a) e3 (perpendicular to the wall) and (b) e1 (parallel to the wall),
respectively. The axis of rotation is indicated by the dotted, curved arrow. The applied
external magnetic field vector lies along ±e1 and ±e2 in (a) and (b) respectively, the
embedded magnets are depicted in grey, the dipole axis is the grey dashed line, the
baseline dipole angle is θ̄ and the angular oscillation contribution is θ(t). The spheres are
distance h from the wall, where the wall normal is along e3. (c,d) Schematic diagrams
illustrating the model for a rotating sphere, represented by a rotlet singularity, and the
corresponding image system for a wall where the axis of rotation of the sphere lies (c)
along e3, perpendicular to, and (d) e1, parallel to, the wall (Blake & Chwang 1974).

the driven sphere), and characteristic time scale, 1/ω, are used to non-dimensionalise
(2.3). Taking Fourier transforms of the momentum conservation equation gives

(∇2
+ iα)û=∇p̂, α =

ωa2

ν
, (2.4a,b)

where ˆ(.) corresponds to the dimensionless Fourier transformed variables, and the
Womersley number, α, is the frequency parameter. The linearisation assumption
used to derive the Stokes equations requires that α � Re, which for a rotationally
oscillating sphere given U ∼ θ0aω corresponds to a linear constraint on the angular
rotation amplitude, θ0 � 1 radian (≈57◦). The correct length scale is the arc length
traversed by a rotating sphere θ0a. However as θ0 varies with separation distance
from the boundary, we maintain θ0 as a variable, and retain the sphere radius as the
characteristic length scale.

We follow Pozrikidis (1989) who used Green’s functions to find singular distributions
to model the flow field near an oscillating sphere. For angular velocity ω̄eit

= θ0eite3
a flow field is generated, which can be expressed in terms of distance r from the
centre of the sphere:

u(r, t) = usuλeit (2.5)
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Oscillating spheres and solid boundaries in a Stokes flow 839

where us(r) =
ω̄ ∧ r

r3
= θ0

(
−r2e1 + r1e2

r3

)
, (2.6)

and uλ(r) =
1+ λr
1+ λ

exp(λ[1− r]). (2.7)

Note that us is the steady contribution resulting from a spinning rotlet of angular speed
ω̄, uλeit is the oscillatory contribution and

λ= (α/2)1/2 exp[−iπ/4]. (2.8)

Equation (2.5) corresponds to the well-known result that a sphere oscillating in an
unbounded fluid generates a standing wave in the radial direction with an amplitude
that decays exponentially with distance from the sphere. This is termed a shear wave
because the sphere imparts vorticity to the fluid; and the shearing fluid is propagated
radially outwards from the moving sphere (Stuart 1963).

2.2. Angular oscillations of a sphere near a wall
The flow field around the sphere is modified as the sphere is brought closer to a rigid
wall. We examine two cases, in § 2.2.1 and § 2.2.2, where the axis of rotation of the
sphere is parallel to and perpendicular to the wall normal respectively, as illustrated
in figures 1(a) and 1(b) respectively. For both cases the wall lies in the plane (e1, e2),
and the wall normal is aligned with e3. A schematic diagram of the system of rotlet
and image singularities that are required to represent the resulting flow fields (Blake
& Chwang 1974) are shown in figure 1(c,d).

2.2.1. Flow induced by a sphere oscillating about an axis of rotation perpendicular to
the wall

For this case the sphere positioned at ξ = (0, 0, h/a), is modelled as a rotlet
oscillating with its rotational axis perpendicular to the wall and of strength Ω =Ωe3
(as shown in figure 1c), where

Ω(r, t; h)= θ0(h)uλ(r)eit, (2.9)

and r, t are spatial and temporal coordinates respectively, and h is a controlled
parameter. The method of images is used at the boundary to satisfy the no-slip
condition and introduces a conjugate image rotlet positioned at ξ ∗ = (0, 0, −h/a)
rotating in the opposite sense with strength Ω∗ =Ω∗e3, where:

Ω∗(r, t; h)= θ0(h)
1+ λ∗r
1+ λ∗

exp[λ∗(1− r)]e−it, (2.10)

and λ∗ = (α/2)1/2 exp[iπ/4] is the complex conjugate of λ as defined in (2.8).
We define r and r∗, respectively as the position vectors of an arbitrary fluid particle

relative to the rotlet and its conjugate image rotlet, and ri = xi − ξi; i ∈ [1, 3], r = |r|
(and r∗i = xi − ξ

∗

i , r∗ = |r∗|).
Finally the velocity induced in the fluid by the combined rotlet-and-image system

defined in Cartesian space x= (x1, x2, x3) is given by,

u⊥(x, t; h)=
(
Ω(r, t; h)

r3(x− ξ(h))
−

Ω∗(r, t; h)
r∗3(x− ξ ∗(h))

)
(−r2e1 + r1e2). (2.11)

For simplicity we will henceforth drop the arguments for r, r∗; and the separation
distance h will be retained as a parameter.
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840 F. Box, K. Singh and T. Mullin

2.2.2. Flow induced by a sphere oscillating about an axis of rotation parallel to the
wall

For the case where the axis of rotation of the sphere is parallel to the wall normal,
we model a rotlet of strength, Ω = Ω(r, t; h)e1 (see figure 1d). The resulting fluid
velocity field is given by

u||(x, t; h)= (0, u2, u3), (2.12)

where

u2(x, t; h)=−
(

r3Ω

r3
−
Ω∗r∗3
r∗3

)
− 2hΩ∗

(
1

r∗3 −
3r∗2

2

r∗5

)
− 6Ω∗

r∗2
2r∗3

r∗5 , (2.13)

u3(x, t; h)=
(

r2Ω

r3
−
Ω∗r∗2
r∗3

)
+ 6hΩ∗

r∗2r∗3
r∗5 − 6Ω∗

r∗1r∗2r∗3
r∗5 . (2.14)

It may be noted that this configuration does not have a symmetric image system,
and at ξ ∗ = (0, 0, −h/a) the image system comprises the conjugate image rotlet, a
source doublet and a stresslet as given by Blake & Chwang (1974) for a similar
configuration in a steady Stokes flow, where Ω and Ω∗ correspond to the source
strength for an unsteady oscillating rotlet and its conjugate as given by (2.9), (2.10)
respectively. Therefore (2.13), (2.14) correspond to the flow field generated by an
unsteady oscillating sphere, following the linearity and quasi-steady flow assumptions
defined in the introduction of § 2.

2.2.3. Wall-induced suppression of rotation
In the model developed thus far the oscillations of the spheres are assumed to be

quasi-steady. This assumption is a key aspect required to describe the motion of the
pair of spheres, and is discussed in § 2.3. Conversely, for a sphere near a rigid wall,
after the initial transients have settled, the oscillations of the sphere may be treated as
essentially steady such that there is virtually no difference between the time-averaged
and instantaneous velocity of a fluid particle near the sphere. Hence for the rigid wall
case, with no loss of generality we may assume time independence in describing the
motion of the sphere and fluid response.

Indeed the rigid wall suppresses the amplitude of oscillations of the sphere as it
approaches the wall. Furthermore, as the separation distance reduces below a sphere
radius, lubrication effects manifest as an increased suppression in angular amplitude.
This is particularly evident for the parallel-wall case.

In order to estimate the impact of wall-induced suppression we first compute the
velocity on the surface of the rotating sphere, Vs. Since the oscillating rotlet has
no inherent length scale, we estimate the velocity on the surface of the sphere by
interrogating the flow field at a unit radial distance, a, from the rotlet centre and
calculate the equatorial angular-average value, given x = (0, sin ϑ, h/a + cos ϑ), ϑ
being the angle of a point on sphere surface in the equatorial plane. We denote θ∞
to be the amplitude of the angular motion of the sphere far from the wall. Then the
motion of a point on the sphere can be estimated by considering that the velocity
of the sphere is the sum of the velocity far from the wall, ωaθ∞, and the velocity
perturbation from the wall, u(ϑ; h) given by (2.11) and (2.12) for the perpendicular
and parallel wall cases respectively. The magnitude of the surface velocity may be
estimated as:

Ṽs(h) = ωaθ0(h)=ωa
(
θ∞ −

∫ 2π

0
|u(ϑ; h)| dϑ

)
(2.15)

= Vs −ωa〈u(h)〉, (2.16)
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where u = |u| is the magnitude of the velocity of the sphere, and 〈u〉 indicates
averaging in the equatorial plane. Finally, with the assumption of symmetry we
consider the fluid velocity in the equatorial plane of the sphere, and hence estimate
the amplitude of angular rotation as a function of wall separation distance, h, to be

Ṽs

aω
= θ0(h)= θ∞ − 〈u(h)〉. (2.17)

Thus θ0(h) is the amplitude of rotation of the sphere when it is a distance h from the
wall, and θ0/θ∞→ 1 as 〈u〉→ 0 or Ṽs→ aω.

As the gap between the wall and the sphere decreases, wall effects become
important and must be included to predict the response of the sphere. For the case
where the rotation axis is parallel to the wall, following Kim & Karrila (1991) we
model the effect of the lubrication layer (detailed in appendix A) and thus derive an
expression for the amplitude of sphere rotation,

θ0,L(h)= θ∞ exp
(
−

1
Ma

[
C0

1+L(h)
−C∞

])
, (2.18)

where L(h) is the lubrication contribution to the viscous torque, given by (A 3), Ma
is the Mason number and C0,C∞ are constants corresponding to the phase difference
between the sphere oscillation and the alternating magnetic field for the near field
and isolated sphere situation respectively, and are inferred from the experiments. For
the perpendicular-wall case we use the accurate multipole solution derived by Jeffery
(1915) to show the subtle contribution of the wall that is not accounted for by the
rotlet model, given by (2.11) (see appendix A).

2.3. A sphere performing angular oscillations in the vicinity of another sphere
In this section we develop a model of a passive sphere placed in the vicinity of
an actively oscillating sphere rotating about axis e1, orthogonal to a line joining the
centres of the spheres. The no-slip condition on the surface of the second sphere
influences the resulting flow field, and we adopt the method developed for spheres
oscillating about an axis of rotation parallel to nearby walls to model the motion of
the fluid near the active and passive spheres.

A schematic diagram of an active, oscillating sphere rotating near a passive sphere
is shown in figure 2. The positions of the active and passive spheres are given
by dimensionless coordinates (0, xp,2, xp,3) and (0, xa,2, xa,3) respectively, where
|xp,2| = Ap/aa, |xa,2| = Aa/aa, and Ap and Aa are the amplitudes of translational
oscillations along e2 for passive and active spheres respectively. Note that the positions
of the spheres are assumed to be confined to their equatorial plane, so with no loss
of generality xp,1 = xa,1 = 0.

Two key differences distinguish the passive–active spheres from the sphere–wall
case: firstly at an instant in time the passive sphere corresponds to a ‘curved wall’
with radius of curvature ap. Secondly the passive sphere moves in response to the flow
field generated by the active sphere. We have developed an iterative numerical model
to track the coupled motion of the sphere pair that accounts for these key aspects.

In the first step, the passive sphere is modelled as a curved moving boundary, where
the instantaneous distance from the active sphere centre to the wall is given by

h′(t; h)= h− ap cos γ (t; h), (2.19)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 Y

BP
 L

ib
ra

ry
 S

er
vi

ce
s,

 o
n 

04
 S

ep
 2

01
8 

at
 1

4:
31

:4
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
35

4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.354


842 F. Box, K. Singh and T. Mullin

Active sphere

Magnet

Passive sphere

B

(a) (b)

FIGURE 2. Schematic diagrams of the sphere pair, comprising an active sphere (radius aa,
centre at oa) and passive sphere (radius ap, centre at op) with the sphere centres oa, op
distance h apart. The diagrams show the (a) initial undisturbed state and (b) instantaneous
perturbed state when magnetically activated with active sphere centre to passive sphere
wall distance h′(t)= h− ap cos γ (t). The active sphere rotates through angle θa about axis
e3, perturbing the surrounding fluid. The configuration results in induced rotation θp about
e3 in the passive sphere, and translational motion Aa(t) and Ap(t) along e2 in the active
and passive spheres respectively. The embedded magnets in the active sphere are indicated
in the diagram and the dipole axis of the pair of magnets is depicted by the grey dashed
line. The alternating magnetic field, B, acts along ±e2.

where

γ (t; h)= tan−1

(
xp,2(t; h)− xa,2(t; h)

h/aa

)
(2.20)

is the angle between two sphere centres, as indicated in figure 2. Note that the
difference in distance between active and passive sphere walls, ap(1 − cos γ ), arises
from the relative motion between translating spheres (of finite wall curvature). With
no loss of generality γ (0; h) = 0, corresponds to the initial condition where the
centres of the spheres are aligned, as depicted in figure 2(a).

In the next step, we update the position of the active sphere, by calculating the
velocity of the surface of the sphere. As the spheres are neutrally buoyant, we assume
that the spheres move in response to the perturbed flow field, and hence the points on
the sphere surface may be treated as a tracer particle in the fluid. The flow velocity
for this configuration is given by (2.12). As in the previous section we can define the
points on the sphere surface in polar coordinates, x= (0, sinϑ,h′(t)/aa+ cosϑ), where
ϑ , is the equatorial angle of a point on the surface of the sphere. Next we integrate
the equatorially averaged velocity 〈u||〉 in time and compute the instantaneous position
of the active sphere,

xa(t; h) =
∫ t

0

∫ 2π

0
u||(ϑ, t′; h) dϑ dt′

=

∫ t

0
〈u||(t′; h)〉 dt′, (2.21)

where u||(x, t)= (0, u2, u3) is given by (2.12)–(2.14).
In the final step we update the position of the passive sphere, by treating it as a

tracer particle moving in the flow field induced by the rotlet, where the velocity at
the centre of the passive sphere,

up(t; h)=
uλeit

r3
p

rp(t; h), (2.22)
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and rp(t;h)= (0, rp,2, rp,3), rp,i(t;h)= xp,i(t;h)− xa,i(t;h), i∈[1,3], is the vector distance
between passive and active sphere centres and uλ is given by (2.7). Finally we update
the position of the passive sphere by integrating (2.22) in time, as for the active sphere
in (2.21). For a given separation distance, h, we solve for the passive and active sphere
positions, until we achieve iterative convergence (the convergence criterion is set at
10−6 on the relative iteration error in sphere position). The main advantage of this
approach is that it is a simple, fast and scalable method and yet is sufficiently accurate
to capture the fundamental response of interacting spheres.

3. Experimental set-up

We actively controlled the rotational oscillations of a sphere in a viscous fluid using
the application of external magnetic fields (Box et al. 2015). Driving the sphere in this
way is a practical method which allows precise, non-contact control of the motion of
the sphere and does not affect the local environment, so is suitable for miniaturisation
and could be used in in vivo biomedical settings (Parkin et al. 2007). The technique
has been used to control the motion of micron-sized, dipolar colloids known as Janus
spheres (Steinbach, Gemmin & Erbe 2016) and enables insights into the fluid response
and the feedback effects of the fluid on the motion of the sphere. Here, we performed
the experiments at the macro-scale as it enabled quantitative measurement of the flow
field which can be directly compared with the results from our theoretical model.

Cylindrical, neodymium magnets, of length 3.00 ± 0.01 mm and diameter 2.48 ±
0.01 mm, were carefully embedded into high-precision polypropylene spheres (Dejay
Distribution Ltd., UK). Application of an external magnetic field exerted a torque on
the embedded magnet causing the sphere to rotate. The number of embedded magnets
depended on the size of the spheres; two were positioned diametrically opposite and
flush with the surface in spheres of diameter 2a = 15.86 ± 0.01 mm, whereas one
was positioned in the centre of spheres of 2a= 12.70± 0.01 mm. In both cases, the
magnets occupied less than 2 % of the volume of the sphere. In the case of the larger
sphere, the adjacent poles of the two magnets were placed opposite one another such
that the two magnets acted as a single dipole.

The polypropylene spheres were less dense than the fluid and therefore, after the
inclusion of magnets, additional non-magnetic weights were embedded in the spheres
in order to attain a close approximation to neutral buoyancy in the fluid. The resulting
average density of the spheres was 979.97 ± 5.64 kg m−3 (with respect to the fluid
density the density of the spheres was 1.004 and, as such, buoyancy effects were
negligible). The orientation of the magnetic dipole of the sphere was controlled, in
the absence of an applied field, by careful positioning of the embedded weights such
that the magnetic dipole axis of the sphere was orientated orthogonal to the applied
field direction. The embedding of magnets and weights in the spheres resulted in a
non-uniform mass distribution that introduced a net gravitational torque which acted
to return the sphere towards this orientation. The effect of this gravitational torque on
the motion of a magnetically forced sphere in a viscous fluid was studied in detail by
Box et al. (2015). In the experiments reported here, the influence of the gravitational
torque relative to the viscous torques acting on the sphere was small, and as such the
effects of the non-uniform mass distribution on the forced rotation of the sphere were
negligible.

Experiments were conducted in an air-conditioned laboratory, the temperature of
which was maintained at 20 ± 1 ◦C. The fluid was silicone oil (Basildon Chemical
Company Limited, UK), and for the measured temperature, T = 19.89 ± 0.30 ◦C,
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the viscosity and the density of the fluid were ν = 924.14 ± 5.29 mm2 s−1

and ρf = 975 ± 1 kg m−3, respectively. The experiments were performed in a
fluid-filled, Perspex tank that was positioned in the centre of a pair of Helmholtz
coils. Application of a spatially uniform (to within 1%), alternating magnetic field,
B= Be2 sin(ωt) resulted in the torsional oscillations of the sphere. The experimental
set-up was placed inside a Mumetal container which shielded the apparatus from
background magnetic fields and the magnetic field strength within the tank was
measured using Hall effect probes.

The motion of the spheres was determined by tracking markings drawn on
the sphere in consecutive images using a Genie camera (HM-1400, Teledyne,
DALSA, Canada) with a spatial resolution of 0.12 mm pixel−1. Measurements of
the motion of the spheres were performed for an applied magnetic field of frequency
ω = 0.5 Hz and imaged at 50 frames per second using 640 × 640 pixels. The
flow field generated by the motion of the spheres was measured in the equatorial
plane using planar particle image velocimetry (PIV). Neutrally buoyant, spherical
microparticles (Fluostar particles, EBM Corporation, Tokyo, Japan) of 13.9 µm
mean diameter were suspended in the fluid. The tracer particles had a Rhodamine
B coating and a cross-section of the tank, corresponding to the rotational plane of
the driven sphere, was illuminated using two green-light lasers. A continuous 50 mW
laser sheet illuminated the cross-section from above, whilst a Nd:YAG pulsed laser
illuminated the cross-section from below. A high-speed camera (pco.1200 hs, PCO
AG, Kelheim, Germany) with a spatial resolution of 0.05 mm pixel−1 was used to
image the tracer particles. The camera was positioned orthogonal to the illuminated
plane and a low-pass filter was positioned between the tank and the camera to reduce
background noise in the detected signal. The camera was synchronised with the
Nd:YAG laser using a pulse generator (BNC Model 500, Oxford Lasers Ltd., Oxon,
UK) and imaged at a rate of 15 Hz, the maximum pulse rate of the Nd:YAG laser,
using 1280 × 1024 pixels and with an exposure of between 10 and 20 ms. Flow
visualisation experiments were conducted for ω= 0.15 Hz.

Experimental details specific for the interaction of a torsionally oscillating sphere
with a nearby boundary and for the interaction of sphere–sphere pairs are outlined in
§ 3.1 and § 3.2 respectively.

3.1. Experimental details for the study of sphere–wall interactions
In the investigation of sphere–wall interactions, a Perspex plate of width 109 ±
0.2 mm, height 253 ± 0.2 mm and thickness 11 ± 0.2 mm was placed in the
tank containing the silicone oil and held rigidly in place. The transparent edges
of the plate were blackened to ease detection in the images. A sphere of diameter
2a = 15.86 ± 0.01 mm was positioned at various separation distances from the
wall and actuated such that it performed small-amplitude torsional oscillations.
Measurements of the instantaneous fluid velocity were also performed using the
PIV technique at various sphere–wall separation distances.

The separation between the sphere and the wall, h, was measured from the centre of
the sphere to the boundary, along a line normal to the boundary. When the rotational
axis of the sphere was perpendicular to the wall, the separation distance was imaged
from above using a Nikon D300 camera with a spatial resolution of 0.06 mm pixel−1.
When the rotational axis of the sphere was parallel to the wall, the wall was evident in
the illuminated plane and the separation distance was measured from images captured
by either the Genie camera used for observation or the high-speed PCO camera used
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aa (mm) ap (mm) Bm (×10−6 Nm) θa (degrees) Marker

7.93 7.93 4.21 ∼ 6 · (red)
7.93 4.77 4.40 ∼ 6 · (blue)
7.93 3.17 4.09 ∼ 6 · (green)
6.35 6.35 2.31 ∼ 5 · (light blue)
7.93 4.77 21.0 ∼ 30 E (blue)
7.93 7.93 43.2 ∼ 54 @ (red)
6.35 7.93 3.03 ∼ 6 ·

TABLE 1. Details of the combinations of sphere–sphere pairs studied in § 4.2. The table
includes the following information: the radii of the active spheres aa, the radii of the
passive spheres ap, the magnetic torque acting on the active sphere Bm, the approximate
amplitude of rotational oscillations of the active sphere θa when solitary in the fluid and
subject to the applied field, and the corresponding data markers used in figures 7(a,b),
8, and 9(a).

for flow visualisation. The applied magnetic torque, Bm, acting on the sphere was
measured in each experiment and found to be (4.28± 0.01)× 10−6 Nm and (4.34±
0.01)× 10−6 Nm in the perpendicular-wall and parallel-wall experiments, respectively.

3.2. Experimental details for the study of sphere–sphere interactions
In the study of sphere–sphere interactions, one sphere was active and the other
passive. The active sphere was essentially a neutrally buoyant sphere with a magnetic
dipole axis, that performed torsional oscillations about its centre when subjected to an
alternating magnetic field. The passive sphere, by contrast, had no embedded magnets,
and was therefore unresponsive to the magnetic field but did have embedded weights
which ensured neutral buoyancy. The passive sphere would thus remain stationary
in the undisturbed viscous fluid; any motion of the passive sphere resulted from the
flow field generated by the motion of the active sphere.

The passive sphere was positioned in the equatorial plane of the active sphere and
the centres of the spheres were aligned using a laser sheet. The separation h between
the spheres was measured from the centre of the active sphere to the centre of the
passive sphere such that the minimum separation distance hmin = aa + ap, where aa

and ap denote the radii of the active and passive spheres, respectively. Observations
were made along a line parallel to the rotational axis of the active sphere as sketched
in figure 2; the sketch also indicates the observed modes of rotational and translational
oscillations.

The interaction was investigated for various combinations of radii of the active
and passive sphere pairs, and for active spheres driven to perform small- and
large-amplitude rotary oscillations. A list of the size combinations, the applied
magnetic torque and amplitudes of angular oscillation of the active sphere (in the
absence of any nearby boundary) is given in table 1.

4. Results

A comparison of the experimental and numerical findings on the interaction between
a rotationally oscillating active sphere near a wall, and an active–passive sphere pair
are presented in § 4.1 and § 4.2, respectively.
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FIGURE 3. (Colour online) Contour maps of the instantaneous velocity field in the
equatorial plane of a rotlet rotating (a) about an axis, e3, that is perpendicular to a wall
(i.e. the wall lies parallel to the plane of the page). In (b) the rotlet spins about axis
e1, and the wall is perpendicular to the axis of rotation (i.e. the wall is perpendicular to
the page intersecting at the abscissa). For both cases, the rotlet is a distance h/a= 1.36
from the wall, and for the oscillatory rotlet ω= 0.15 Hz. (c) The instantaneous flow field,
in the equatorial plane, generated by a sphere rotating clockwise, at 3π/10 radians in the
angular oscillation cycle, about an axis that is parallel to the wall and at a vertical distance
h/a= 1.36 from the planar wall (which is represented by the thick horizontal line at the
bottom of the figure). The arrowed lines represent instantaneous particle paths and the
colour contours represent the magnitude of the fluid velocity which ranges from 0 (dark
blue) to 3.25 mm s−1 (dark red). Note that figure 3(c) is the experimental counterpart of
figure 3(b).

4.1. Angular oscillations of a sphere near a wall
The flow field generated by an oscillating sphere is modified by the presence of a
nearby wall. The orientation of the wall relative to the axis of rotation of the sphere
has a significant effect on the resulting flow field. Observations show that proximity
to the wall results in suppression of the oscillation, at constant magnetic power. These
effects are examined for a sphere with an axis of rotation perpendicular and parallel
to the wall in § 4.1.1 and § 4.1.2, respectively.

4.1.1. Sphere oscillations about an axis perpendicular to the wall
The contour plot of the instantaneous velocity field, shown in figure 3(a), details the

characteristic flow around a sphere oscillating about an axis that is perpendicular to a
nearby wall at a distance h/a=1.36 from the wall (along the e3 direction, see caption).
In the case of a perpendicular boundary, the flow field in the equatorial plane of the
sphere is similar to the unbounded case: the fluid moves in phase with the rotating
sphere, with decreasing speed as distance from the boundary of the sphere increases.

The suppression of the rotation of the sphere by the wall increases as the distance
between the sphere and the wall decreases. In figure 4(a) we compare the amplitude of
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FIGURE 4. (Colour online) For a sphere oscillating about an axis perpendicular to a
wall, the (a) variation of scaled fluid velocity, u⊥, with radial distance from the sphere
centre (indicated here by the distance along the e2 direction) is plotted for a range of
separation distances from the wall, h. Symbols indicate the experimental data (see legend),
solid curves of corresponding colour indicate predicted values from (4.1). In (b) the
scaled rotational oscillation amplitude, θ0(h)/θ∞, is plotted as a function of separation
distance, h/a. The symbols correspond to experimental data (obtained for ω = 0.5 Hz)
and the dotted curve indicates the predicted value from (2.17) for perpendicular walls,
and the solid curves correspond to the multipole method from (A 8). The dashed vertical
line denotes the thickness of the Stokes boundary layer from the centre of the sphere,
1 + δ/a = 4.05 where δ = [ν/(πω)]1/2. (Recall that h/a = 1 corresponds to a sphere
touching the wall.)

the predicted and experimental flow velocities over a range of sphere–wall separation
distances, h/a. The velocity profile was measured outwards along an axis orthogonal
to the axis of rotation from the surface of the sphere and at an angular rotation of
3π/10 radians in the oscillation cycle. The symmetry of the flow permitted averaging
the velocity profile over the equatorial angle of 2π, and the averaged profile was
found to be consistent to within 1 % throughout the oscillation cycle. In the model we
interrogate the flow velocity at a point in the fluid measured in the equatorial plane
of the sphere, x= (0, x2, h/a) where x2 ∈ (1,∞), and estimate the amplitude of the
scaled flow velocity:

u⊥(x; h)=
|ū⊥(x; h)|
θ0(h)

, (4.1)

where u⊥ and θ0(h) are defined in (2.11) and (2.17) respectively, and ū corresponds
to the oscillation cycle-averaged velocity, which is equivalently given by the steady
rotlet value (as discussed in § 2.2.3).

The fluid velocity decreases with distance from the wall (figure 4a), and from (2.11),
we see that the dipolar r−2 decay characteristics prevail at large separation distances
from the wall. As the sphere is brought closer to the wall, the small reduction in
flow velocity can be explained with the help of the model as being on account of
the increased relevance of the counter rotating image rotlet on the sphere. Similarly
we see a suppression of the rotational amplitude of the sphere as it approaches the
wall, measured as a function of separation distance in figure 4(b). Here the effect of
the wall was investigated by measuring the amplitude of rotational oscillations, θ0(h)
at constant magnetic power and varying values of h. We compare the rotlet model
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prediction with the numerical solution from the multipole method derived by Jeffery
(1915), and detailed in appendix A, to show the relatively subtle effect of the wall
not captured by the simpler rotlet model.

The reduction in the effective amplitude of rotation of the active sphere θ0(h) is
observed for h/a < 1 + δ/a ≈ 4, where the thickness of the Stokes boundary layer,
δ= [ν/(πω)]1/2, gives an estimate of the penetration depth over which the amplitude
of fluid motion decays exponentially to 1/e of the initial value. In this context we
note that Lauga & Powers (2009) observed that microorganisms swimming at constant
power display characteristics of suppressed swimming speeds near walls, resulting in
reduced propulsive efficiency.

4.1.2. Sphere oscillations about an axis parallel to the wall
When the rotational axis of the sphere was set parallel to the nearby wall the flow

field was not axisymmetric. We show a contour map of the instantaneous velocity field
in the equatorial plane of a rotlet rotating about an axis parallel to the wall, at distance
h/a = 1.36 from the wall, in figure 3(b). This can be compared directly with an
example of the instantaneous flow field produced by a sphere and measured using PIV,
shown in figure 3(c). Good agreement is found between the predicted velocity field
and the experimental particle paths. The findings are also consistent with numerical
calculations of stream surfaces generated by a sphere undergoing steady rotation in
the proximity of a planar, perpendicular boundary (cf. figure 11a of Liu & Prosperetti
(2010)).

The flow trajectories indicate that in addition to shear exerted by the rotating sphere
on the fluid, the fluid is also squeezed into the gap between the sphere and the wall.
This leads to stagnation points which form in the gap between the sphere and the wall
on either side of the axis of rotation, as can be seen in figure 3(b). The stagnation
points are more difficult to discern in the experimental data; the instantaneous nature
of the experimental measurements means the near-surface flow measurements are
accompanied by small amounts of noise.

The velocity profile in the gap between the sphere surface and the wall was
measured. In figure 5(a), we show the amplitude of the experimental flow velocities,
scaled by the speed of rotation of the sphere, at various close-range separation
distances, h/a, and compare them with the effective large separation case where the
container walls are h/a∼ 8 from the centre of the sphere. Also shown in figure 5(a)
are the theoretical predictions for the scaled velocity amplitude, given by:

u||(x; h)=
|ū||(x; h)|
θ0(h)

, (4.2)

where u|| is given by (2.12), θ0 is defined in (2.17), the operator (.̄) is as defined
for (4.1) and θ0,L(h) results from the effects of lubrication and is given by (2.18).
The theoretical predictions were derived by measuring the flow velocity at a point
x= (0, 0, x3) in the fluid, where x3 ∈ (h/a− 1, 1) corresponds to a path from sphere
boundary to the wall.

The velocity decays with distance from the sphere, however in marked contrast to
the case of a perpendicular wall the flow velocity decays significantly as the proximity
between the sphere and the wall decreases. Estimation of the near-wall characteristics
shows a decay that varies as the cube of the distance from the sphere. Furthermore, as
the centre of the sphere was moved closer to the wall, the flow velocity characteristics
change from dipolar to quadrupolar.
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FIGURE 5. (Colour online) For a sphere oscillating about an axis parallel to a wall, the (a)
variation of scaled fluid velocity, u||, is measured in the gap between sphere and wall and
for a range of separation distances from the wall, h. Symbols indicate the experimental
data (see legend), dotted curves of corresponding colours indicate predicted values from
(4.2) and the dash-dotted curves correspond to the case incorporating the rotational angle
from the lubrication model. In (b) the scaled amplitude of torsional oscillation, θ0(h)/θ∞,
is plotted as a function of separation distance, h/a. The symbols correspond to collated
experimental data (obtained for ω= 0.5 Hz), the dotted curve indicates the predicted value
from (2.17) for parallel walls and the dash-dotted curves are the prediction from the
lubrication model in (2.18). The dashed vertical line denotes the thickness of the Stokes
boundary layer from the centre of the sphere, 1 + δ/a = 4.07. In the inset figure we
plot the scaled translational amplitude of the centre of mass of the sphere, A2/aθ∞, with
separation distance. (Recall that h/a= 1 corresponds to a sphere touching the wall.)

In figure 5(b) we show the amplitude of the torsional oscillation of the sphere, θ0,
measured as a function of separation distance, h, between the sphere and the wall.
Akin to the perpendicular wall case, within the Stokes layer for which h/a < 1 +
δ/a≈ 4, we find that θ0(h) reduces as the sphere–wall gap is reduced (or as h/a→ 1).
Although for the parallel-wall case, the amplitude suppression is markedly greater.
Lubrication effects dominate very close to the wall and outside this region (for
h/a > 1) the rotlet model predicts the fluid velocity more accurately. In the far
field both models approach the isolated sphere prediction. In general we see good
agreement between the experimental measurements and the model, indicating that the
linearised flow assumption is valid almost everywhere except very close to the wall
where lubrication effects must be considered.

For h/a . 1.5 viscous shear induced by the parallel wall produces a force which
results in secondary translational motion of the sphere along the e2 direction. This is
consistent with the numerical results of Liu & Prosperetti (2010), who investigate a
sphere undergoing steady rotation in a viscous fluid. Here, the induced translational
oscillation of the sphere is sinusoidal in form and in phase with the torsional
oscillations of the sphere. The amplitude of translational oscillation of the sphere,
A2(h), moving along e2 is shown in the inset to figure 5(b). The amplitude, A2,
increases as the sphere approaches the boundary suggesting that the force parallel
to the wall increases with viscous shear. As h/a→ 1, the amplitude of translational
oscillation was approximately 40 µm, which corresponds to half the arc length
subtended by the sphere in one rotary oscillation cycle. However for h/a ≈ 1, the
amplitude of oscillation reduced to 25 µm because of extra frictional effects from
roughness.
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FIGURE 6. (Colour online) The instantaneous flow field resulting from the interaction
between an active sphere (on the right-hand side) and a passive sphere, that is free to
move, of equal radius (2a = 15.86 mm) at ∼10π/6 in the torsional oscillation cycle,
measured in the equatorial plane using the PIV technique. The separation distance, h,
between the centres of the two spheres is 2.25a. The particle paths are depicted by the
black, arrowed lines and the magnitude of the fluid velocity by the colour contours (where
blue = 0 mm s−1 and red = 9.98 mm s−1).

Finally, we note that these contrasting responses for spheres rotating near
perpendicular and parallel boundaries have analogies in translational motion, as
observed from studies of micro-organisms swimming near solid walls. The flow field
follows dipolar characteristics in the far field, and has a quadrupolar character near a
parallel wall (Lauga & Powers 2009).

4.2. Interaction of sphere–sphere pairs
Here we consider the viscous interaction between a rotationally oscillating sphere
and a second sphere that is free to move and in the near vicinity. The presence
of a second sphere modifies the generated flow field from that of a single rotating
sphere, as shown in figure 6. The oscillatory motion of the active sphere induces
translational and rotational oscillations in the nearby passive sphere. The motion of
the passive sphere further perturbs the flow around the pair, which feeds back to
induce translational motion in the active sphere. This induced motion in the active
sphere is the principal distinguishing feature with the rigid wall case discussed in
§ 4.1.2. The schematic diagram in figure 2, illustrates the pair of spheres, and the
coupled translational oscillations in the (e2− e3) plane, where the active sphere rotates
about e1.

Results are presented for the interactions of spheres of varying radii, and for driven
spheres performing small- and large-amplitude angular oscillations (as indicated in
table 1). Observations are qualitatively similar for all of the investigated combinations
of particle pairs regardless of the radii of active and passive spheres, and whether
the active sphere was driven to perform oscillations of small (θa ∼ 6◦) or large (θa ∼

50◦) amplitude. The typical behaviour observed for all separation distances between
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FIGURE 7. (Colour online) (a) Translational motion of the passive sphere as a function
of separation distance, scaled by the characteristic amplitude of the rotational oscillation
of the active sphere aaθa. The symbols indicate experiments (see table 1), the solid curve
indicates predictions from the quasi-steady model and the dashed curve corresponds to
the steady solution. The large- and small-amplitude cases may be distinguished from the
unscaled data in the inset figure (the data denoted byE (blue) and@ (red) correspond to
oscillations of amplitude ∼30◦ and ∼54◦ respectively). (b) The amplitude of the rotational
oscillation of the passive sphere measured as a function of separation distance from an
active sphere of equal radius, aa = ap, performing small-amplitude torsional oscillations,
θa ∼ 6◦, and (inset) large-amplitude torsional oscillations, θa ∼ 54◦.

spheres is discussed in § 4.2.1, whereas the behaviour characteristic to small separation
distances is described in § 4.2.2.

4.2.1. Primary effects
The rotary motion of an active sphere in a viscous fluid perturbs the flow field

sufficiently to induce the passive sphere to undergo translational oscillations along e2.
The reduction in amplitude of translational motion of the passive sphere, Ap, with
increasing distance between spheres, h is shown in figure 7(a). When the amplitude of
oscillation, Ap, is scaled by the arc length subtended by the oscillating active sphere,
aaθa, the data collapse onto a single curve. Since this result applies for a combination
of sphere radii and amplitudes of oscillation, the resulting flow field is similar for a
range of pairwise interactions. This scaling also accounts for the suppression of θa

observed at small separation distances, and is examined further in § 4.2.2.
Comparisons between the steady and the quasi-steady oscillating rotlet models, show

that for small separation distances (< 2aa), the interaction is effectively modelled by
a steady spinning rotlet. However as separation distance between spheres increases
the time-varying contribution become increasingly relevant, and the quasi-steady
model predicts the measured response well. Note that the lubrication model has been
incorporated for sphere pairs, but when compared with the quasi-steady rotlet model
the contribution from lubrication to the amplitude of the response of the passive
sphere is weak for the case of sphere pairs (for a comparison see figure 11).

A key feature of the flow is the phase lag between the oscillation cycle in the two
spheres. From (2.5) we see that the flow field surrounding the oscillating rotlet decays
exponentially with radial distance from the sphere because of viscous diffusion (Stuart
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FIGURE 8. (Colour online) The phase difference between the rotational oscillations of the
active sphere and the resulting oscillatory motion induced in the passive sphere, φ, scaled
by δ/aa, is plotted as a function of separation distance. The experimentally measured
phase difference (see symbols in table 1 for parameter combinations) collapses onto the
curve predicted by the model (solid black line) derived in (4.3).

1963). The imaginary term in (2.7) gives the phase difference (scaled by (2π)1/2),

φ =
[2πα]1/2r

2
=

aar
[2ν/(πω)]1/2

, (4.3)

between fluid particles distance r from the sphere. The phase difference arises from
vorticity that is generated by a standing wave in the fluid by the oscillating sphere
and propagates within the Stokes layer. The standing wave is established by the
rotary oscillations of the active sphere in a manner analogous to the classic case of
an oscillating plate in a viscous fluid. The resultant phase difference scales linearly
with distance from the sphere, aar and inversely with the Stokes layer thickness,
δ = [ν/(πω)]1/2.

In figure 8, we plot the scaled phase difference between the rotary oscillations of the
active sphere and the translational oscillation of the passive sphere,

√
2ν/(πω)φ/aa,

measured as a function of the inter-sphere wall distance, (h/aa − ap/aa − 1). For
the various combinations of sphere pairs listed in table 1, the data collapse onto
the theoretical curve, indicating excellent agreement between experiments and the
linear model. The experiments were conducted in the range 0.01 . Re . 0.1, hence
the contribution of any inertial effects is small. Thus the assumption of quasi-steady
Stokes flow is valid, suggesting that the main mechanism of energy transfer from the
active sphere to the surrounding fluid is through vorticity.

The vorticity imparted to the surrounding fluid by the standing wave also induces
small-amplitude angular oscillations in the passive sphere in the direction opposite to
the motion of the active sphere. The amplitude of rotation of the passive sphere, θp

is found to decrease with inter-sphere separation distance h, as shown in figure 7(b)
for aa = ap and θa ∼ 6◦ and, in the inset to figure 7(b), for θa ∼ 54◦.
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FIGURE 9. (Colour online) (a) Suppression of rotational oscillations of the active sphere
given by θa/θ∞ for varying h and the various combination of parameters as indicated in
table 1 are compared with the theoretical model which includes the lubrication model
(solid curves). The dash-dotted curves correspond to the cases with large-amplitude
oscillations (see table 1). (b) The amplitude of translation oscillation of a passive sphere
(@) and an active sphere (E) of equal radii, measured as a function of separation distance
for θa ∼ 6. (Recall that h/aa = 2 corresponds to two equal-sized spheres touching.)

4.2.2. Effects which occur at small separations
For h/aa > 1 + δ/aa ≈ 4, the presence of the passive sphere does not affect the

response of the active sphere to the applied field. However, for h/aa < 4, viscous
effects reduce the oscillation amplitude of the active sphere. The amplitude of
rotational oscillation of the active sphere, θa, measured as a function of separation
distance, h, is shown in figure 9(a) for various combinations of pairs of spheres.
The effect of the passive sphere is to reduce the oscillation amplitude of the active
sphere, and this effect becomes stronger as the spheres are brought closer together.
The phenomenon is similar to an active sphere oscillating close to a parallel wall,
although for sphere pairs the experimental data suggest the amplitude suppression is
mitigated, an observation which is attributed to the wall curvature and the resultant
motion of the passive sphere itself. Here, as in the case of a parallel wall, we include
the effect of lubrication on the angular amplitude response (see (A 6)), based on the
expression derived in (A 1).

For very small separation distances, translational oscillations of the passive sphere
perturb the flow field sufficiently to induce secondary translational motion in the
active sphere, with the oscillations approximately out of phase with each other. In
figure 9(b) we compare the primary passive and secondary active sphere amplitudes
of translational oscillation, Aa and Ap respectively. The amplitude decreases with
increasing separation distance, h. The secondary oscillations in the active sphere are
perceptible for h/aa < 3 and are a consequence of the generated wall-parallel force.
This is akin to the translational displacement of an active sphere observed for small
separation distances from a parallel wall examined in § 4.1.2 and figure 5(b). The
displacement of the active sphere arises from the fluidic interactions between the
pair of mobile spheres. Note that the induced motion in the active sphere has not
been modelled in (2.21) and is likely to account for the small differences between
experimental results and the model predictions at very small separation.
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5. Conclusions
The fluid dynamics of oscillating spheres near boundaries has been studied. A novel

experimental approach used magnetic interactions to control the rotational oscillations
of a sphere in a viscous fluid without affecting the local fluid environment. This
enabled quantitative measurement of the flow field in unprecedented detail. The
experimental results have been compared with those from a theoretical model based
on singularity methods where it was assumed the motion was quasi-steady Stokes
flow near boundaries. Excellent agreement has been found between experimental and
theoretical results.

We found that the presence of a nearby rigid boundary introduces a resistive
torque that opposes the motion of the driven sphere and the surrounding fluid if
the gap between the sphere and the wall is less than the thickness of the Stokes
boundary layer. This suppression of rotational motion depends on the orientation of
the boundary with respect to the rotation of the sphere; in particular, it is stronger
for the case where the wall is aligned parallel to the axis of rotation, as compared to
a perpendicular alignment. Our results suggest that, for small-amplitude oscillations
near a rigid boundary, there is virtually no difference between the time-averaged
or instantaneous velocity of a fluid particle near the sphere such that the sphere
motion and fluid response can be considered to be time independent with no loss of
generality.

We also found that fluid dynamic interactions can cause a nearby, non-magnetic,
passive sphere to move in response to a driven sphere such that it acts like a moving
curved wall, oscillating with a phase lag that scales linearly with separation distance
between the spheres. The phase lag is a consequence of the oscillatory motion of
the driven sphere which establishes a standing wave that imparts vorticity to the
surrounding fluid. For small separation distances, h< 2aa, the response of the passive
sphere to the driven sphere is modelled by considering a steady spinning rotlet. As the
inter-sphere distance increases the time-varying contribution to the flow becomes more
important, however, and the interaction is better predicted using a quasi-steady model,
which highlights the important distinction between interacting sphere pairs with the
solitary sphere near a stationary wall. As the gap reduces below one sphere radius,
lubrication effects become increasingly important (although weaker than in the case
of a stationary, parallel wall) and the motion of the passive sphere induces secondary
translation of the driven sphere. These small-amplitude translational oscillations of
the active sphere are periodic, reflecting the symmetry and reversibility of the flow,
and decay rapidly with increasing separation, consistent with the higher-order effects
observed between pairs of swimming cells (Lauga & Powers 2009).

The findings provide the basis for the development of a magnetically actuated,
rotational sphere viscometer for use in medical, biological and micro-fluidic
applications. Such a device would be able to measure the rheological properties
of fluids (Besseris et al. 1999) in micro-fluidic devices or in between biological
tissue. Experiments performed within cells and with vitreous fluid have already
demonstrated the suitability of rotating sphere viscometers for non-invasive, in vivo
testing (Parkin et al. 2007).

Another avenue of research currently being pursued is an investigation into the
resulting flow that arises when active and passive spheres are connected together
by deformable tethers (Box et al. 2017). Arrays of magnetically actuated spheres
have been shown to overcome time reciprocity and self-propel at low Re. These
systems could therefore be used as micro-fluidic pumping systems, or as configurable
micro-fluidic channels for the transportation of micron-scale objects (Ye, Diller &
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Sitti 2012). The numerical scheme presented here provides an efficient means of
modelling complex configurations of active and passive spheres accurately.
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Appendix A
A.1. Rotationally oscillating spheres in near contact with parallel boundaries

In this section we focus on the specific case of oscillating spheres in very close
proximity to rigid boundaries that are orientated parallel to the sphere’s axis of
rotation. For rigid surfaces where there is relative motion, the flow of fluid in the
gap between the surfaces starts to dominate, and lubrication theory can be used to
approximately estimate the contribution of this region (Kim & Karrila 1991).

The main motivation to model the lubrication regime was the strong suppression in
rotation and the marked reduction in flow velocity that were observed experimentally
as the sphere approaches the boundary. We now consider the viscous contribution to
the torque balance equation (2.1) carefully. Following the analysis of Kim & Karrila
(1991), we see that a sphere performing rotational oscillations with angular velocity
ω and in close proximity to another sphere, generates a contribution to the viscous
torque in the gap between the spheres that, to leading order, is given by:

Ls

8πµa3
aωa
=

2β
5(1+ β)

ln
(

h0

aa

)
+

2(8+ 6β + 33β2)

125(1+ β)2

(
h0

aa

)
ln
(

h0

aa

)
+C(β), (A 1)

where β = ap/aa and h0 = h− aa(1+ 1/β) (parameters h, a, aa, ap, ω are as defined
in §§ 2.1, 2.3). Note the special case of equal-sized spheres (β = 1) where (A 1)
simplifies to give,

Ls,eq

8πµa3
aω
=

1
5

ln
(

h0

aa

)
+

57
250

(
h0

aa

)
ln
(

h0

aa

)
+C. (A 2)

We next use (A 1) and extend it to consider a sphere oscillating about an axis
parallel to a rigid wall (setting 1/β→ 0):

Lw

8πµa3ω
=

2
5

ln
(

h0

a

)
+

66
125

(
h0

a

)
ln
(

h0

a

)
+C, (A 3)

and here h0 = h− a. Comparing (A 2) and (A 3) it is easy to see that the dampening
effect of a rigid wall is almost twice as strong as for a pair of spheres of equal radius.
This observation may be visualised in figure 10 where we plot the contribution of
the lubrication layer to the viscous torque for representative cases examined in the
experiments (cf. table 1).

We next account for the contribution of the lubrication layer in suppressing
the sphere response to an external magnetic torque. Including the contribution of
lubrication, the net viscous torque can be expressed as

Tv = 8πµa3ω(1+L(h)), (A 4)

where L(h) is given by (A 1) and (A 3) respectively, depending upon whether the
boundary is a sphere or parallel wall.
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Rigid parallel wall
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FIGURE 10. (Colour online) The contribution to the viscous torque by the lubrication
layer in the gap between actively rotating sphere and corresponding boundary is indicated
here as the lubrication torque L(h), as given by (A 1), (A 3). The rigid wall case is
compared with pairs of spheres of differing radii, where β = ap/aa (C= 0 here).

0.90

0.95

1.00

0.75

0.80

0.85

2 3 4 5 6

(a) (b) 100
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FIGURE 11. (Colour online) (a) Amplitude of rotary oscillation of the active sphere
scaled by the amplitude of oscillation in the absence of a nearby boundary and measured
as a function of separation distance for the case of an equal radius passive–active pair
(ap = aa = 7.83 mm); comparing the unsteady rotlet model with (solid curves) and
without (dotted curves) lubrication effects. The experimental data shown (· (red) symbols)
correspond to the small-amplitude case (∼6◦). (b) Amplitude of translational motion of
the passive sphere, scaled by the arc length subtended by the active sphere and measured
as a function of separation distance for the same case as in (a) (also same symbols and
curves). Here we also plot the steady spinning rotlet model (dashed curve).

The magnetic torque is unchanged so Tm = B0m sin θ̌eiωt, and the torque balance
equation becomes:

dθ
dt
=−

B0m
8πµa3(1+L(h))

sin(θ̌(t))eiωt. (A 5)

However, in the lubrication layer the assumption that θ(t) � θ̄ is no longer valid,
although the pronounced reduction in amplitude requires that θ̌ � 1. Therefore we
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can now assume sin θ̌ ≈ θ̄ + θ(t), and by integrating over an oscillation cycle the
expression for the amplitude of oscillation is given as:

θ0,L(h)=C1 exp
(
−

C0

Ma(1+L(h))

)
, (A 6)

where Ma is the Mason number defined in § 2.1 and C0 includes the phase difference
between the alternating field and the sphere’s response, C1 is a constant; both C1 and
C2 depend on the initial configuration and are estimated empirically. Note that in the
limiting case of an isolated sphere where L= 0, θ∞ = C exp(−C∞/Ma), and we can
express θ0,L(h)= θ∞ exp(−(1/Ma)[C0/(1+L(h))−C∞]).

In figure 11(a) we compare predictions for a pair of equally sized spheres (β = 1)
using the unsteady model developed in § 2.3 and the correction to the angular
amplitude due to lubrication effects as given by (A 6). Our observation that the
impact of the lubrication layer on the suppression of motion of the active sphere
is much lower in the case of a sphere pair than for the rigid wall is borne out in
these results (also see the rigid wall predictions in figure 5). Similarly the response
of passive sphere has been compared in figure 11(b). Interestingly, we find that
small discrepancies between model predictions and experiments that occur very near
the wall (see figure 11b) are not a consequence of lubrication effects. We instead
believe that these discrepancies are either an artefact of the secondary translational
oscillations of the active sphere that are induced by the motion of the passive sphere,
and are not currently included in the model, or are a consequence of intermittent
contact between the spheres.

Finally, it is worth noting that the unsteady rotlet model retrieves the experimental
response with a high degree of accuracy, and including lubrication effects is to
improves the accord with experiments.

A.2. Rotationally oscillating spheres in near contact with perpendicular boundaries
The case of a spinning sphere about an axis perpendicular to a wall has been
examined by Jeffery (1915). Multipole methods were used to obtain solutions to the
mobility and resistance problems. We use this method to evaluate the error in the
simpler, more approximate rotlet model developed in § 2.2.1. Following Jeffery (1915),
we show that the torque acting on a sphere spinning about an axis perpendicular to
a rigid wall is given as

Tv
⊥

T∞
=

1−

∞∑
m=0

cosech3
[2(m+ 1)ζ ]

∞∑
m=0

cosech3
[(2m+ 1)ζ ]


−1

, (A 7)

where T∞ is the far-field torque. Also ζ = sech−1(1/h), h is the separation distance
of the sphere centre from the wall scaled by sphere radius a (and as defined in § 2).
We plot this curve in figure 12.

Using Tv
⊥
=8πµa3ω1, ω1=dθ/dt, θ(h; t)= θ0(h) exp(iωt). Since θ� θ̄ the amplitude

of angular oscillation, for the case of a perpendicular-wall case relative to the far-field
angular amplitude is

θ0(h)
θ∞
=

T∞
Tv⊥
. (A 8)
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Multipole solution eqn (6.7)
From Jeffery (1915)

Separation distance (h)

FIGURE 12. (Colour online) The increase in viscous torque due to the near-wall relative
to the far-field response for a perpendicular wall.
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