Edge effects in elastic bulging

Félix Benoist, Finn Box, Alain Goriely *

Mathematical Institute, University of Oxford, United Kingdom

A B S T R A C T

Elasto bulging occurs when an elastic material deforms through a small opening in a rigid boundary. This problem is complementary to the indentation problem where displacement is applied to a small part of an elastic material. Understanding bulging is crucial in a number of applications related to swelling such as the deformation of the brain following a decompressive craniectomy. In particular, it is known that large stresses develop close to the opening leading to potential material damage. To alleviate this problem, it is conceivable to modify the shape of the edge to reduce stress increases. Here, we study edge effects during planar deformation of the brain following a decompressive craniectomy. In particular, it is known that large stresses develop close to the opening leading to potential material damage near the skull opening [8,9].

1. Introduction

After a traumatic brain injury, intracranial pressure may increase [1] and create long lasting brain damage unless it is quickly reduced. If the intracranial pressure remains too large for an extended period of time, a and create long lasting brain damage unless it is quickly reduced. If the intracranial pressure remains too large for an extended period of time, a

1.1. Preliminaries

We consider an elastic half plane \(\Omega = \{ x \in \mathbb{R}, z > 0 \} \) subject to a distributed load from a curved lip at the boundary. Inside the domain, the deformation is described by a displacement field \(u = (u_x, u_z) : \Omega \rightarrow \mathbb{R}^2 \) such that a point originally at \(x \in \Omega \) displaces to a point at \((x + u) \in \mathbb{R}^2 \). The (infinitesimal) strain tensor \(E \) is

\[
E = \frac{1}{2} \left(\nabla u + (\nabla u)^T \right).
\]

As shown in Fig. 1, the boundary \(\Gamma = \partial \Omega \) is split into two subsets where the elastic material is either in contact (\(\Gamma_c \)) or traction free (\(\Gamma_f = \Gamma \setminus \Gamma_c \)). On \(\Gamma_c \), the vertical displacement of the elastic material is constrained such that \(u_z(x, z) = u_0(z) \), where \(u_0 \) is directly related to the profile of the plate. Note that apart from the curved edges, the plate is flat and rigid so that \(u_0 = 0 \) is constant. At the boundary \(\Gamma_f \), outside of \(\Gamma_c \), the material is traction free.

The material is assumed to be a compressible, isotropic, initially unstressed, and linearly elastic solid with Young’s modulus \(E \) and Poisson’s ratio \(\nu \). Let \(T \) be the Cauchy stress tensor, then the constitutive relationship between stresses and strains [13] is

\[
T = \frac{E}{1 + \nu} \left(E + \frac{\nu}{1 - 2\nu} (\text{tr} E) I \right).
\]

where \(I \) is the identity tensor.

For a given profile \(u_0(x) \), the bulging problem consists in finding the displacement \(u \) and the contact region \(\Gamma_c \), such that

\[
\begin{align*}
\text{div} T &= 0, & x &\in \Omega, \\
T n &= 0, & (x, 0) &\in \Gamma_f, \\
u_z(x) &= u_0(x), & (x, 0) &\in \Gamma_c.
\end{align*}
\]

* Corresponding author.

E-mail address: goriely@maths.ox.ac.uk (A. Goriely).

https://doi.org/10.1016/j.ijnonlinmec.2018.07.004
Received 26 March 2018; Received in revised form 21 May 2018; Accepted 9 July 2018
Available online xxxx
0020-7462/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
where S is the subset of \mathbb{R} where contact is established ($S = \{x \in \mathbb{R} \mid (x, z) \in \Gamma_c\}$) and

$$
A = \frac{2}{\pi} \frac{1 - \nu^2}{E}, \quad B = \frac{(1 + \nu)(1 - 2\nu)}{E}.
$$

In the bulging problem, \mathcal{S} is the union of two unbounded set $\mathcal{S} = (-\infty, -a) \cup [a, \infty)$. Further since the derivative of the sign function can be expressed in the sense of distribution by Dirac’s delta: $\delta \sgn(x)/dx = 2\delta(x)$, differentiating (1.14) with respect to x leads to the following system of equations

$$
\forall x \in \mathbb{R}, \begin{cases}
\frac{du_x}{dx} = B\rho(x) \\
\frac{du_z}{dx} = -A \left(\int_{-a}^0 + \int_a^\infty \right) \frac{p(s)}{x - s} ds.
\end{cases}
$$

These relations directly connect the applied load to the surface displacement gradient. If the displacements are specified at the surface, the pressure needed to maintain this displacement is obtained by solving this system of equations. Once the pressure is known, the system (1.11)–(1.13) gives the stress at all points, from which the strains and displacements can be obtained. Notice that if the material is incompressible (i.e. $\nu = 1/2$), then $B = 0$.

1.4. Calculations of the pressure and the displacement

Since $u_x = u_0(x)$ is known in the contact zone, we have

$$
\left(\int_{-a}^0 + \int_a^\infty \right) \frac{p(s)}{x - s} ds = \frac{1}{A} \frac{du_0}{dx}(x) \equiv f(x), \quad |x| \geq a.
$$

Mathematically, the problem is then to solve

$$
\left(\int_{-a}^0 + \int_a^\infty \right) \frac{p(s)}{x - s} ds = f(x), \quad |x| \geq a,
$$

for p. This is a singular integral equation of the first kind with a gap. This is not a standard problem for which solutions are readily available. In Appendix A, we use ideas from [17] to obtain the general homogeneous solutions (in the case where $f(x) = 0$) and, in Appendix B, we show how to obtain the solution for a particular $f(x)$ corresponding to a curved edge.

1.4.1. Sharp edges

We consider a uniform displacement δ in Γ_c. Therefore f vanishes identically and the pressure is given by the even homogeneous solution p_{even} of (1.18) as given in Appendix A.1:

$$
p(s) = \frac{cE}{2 \sqrt{s^2 - a^2}}, \quad |s| \geq a.
$$

where $c > 0$ is an arbitrary dimensionless constant (note that the solution given in [12] contains typos that have been corrected here). From p, we find the derivative of the displacement in the bulging area i.e. outside of Γ_c:

$$
\frac{du}{dx} = -2Ax \int_a^{|s|} \frac{p(s)}{x^2 - s^2} ds = Ax \frac{cE}{2 \sqrt{a^2 - x^2}}, \quad |x| \leq a
$$

and the vertical displacement is therefore

$$
u_z(x) = \delta - c(1 - \nu^2)\sqrt{a^2 - x^2}, \quad |x| \leq a,
$$

in which the constant c is related to both the height $h = c(1 - \nu^2)a$ and the area of the bulge $A_0 = \pi ah/2$. We note that, remarkably, we recover the same expression as for the axisymmetric case for the bulging of a half-space [12] and that the shape of the bulge is an ellipse in two dimensions and an ellipsoid of revolution in three dimensions. The vertical displacement and the normal pressure at the surface are shown in Fig. 2 for $\delta = 0$. Note that the pressure is infinite at the edges.
1.4.2. Experiments

Bulging experiments were performed by compressing confined elastic solids using a plate with a circular aperture. Under uniaxial compression, the soft solid bulged through the aperture permitting measurement of the axisymmetric deformation profile. The material properties and dimensions of the soft samples used in the experiments are detailed in Appendix C.

We compare the solution (1.21) with the experimentation profile for increasing bulging. For each experimental data set, we show the corresponding analytical solution with the same height for increasing bulging. For each experimental data set, we show the vertical displacement is calculated numerically and plotted with the normal pressure at the surface in Fig. 4 for \(\delta = 0 \). Notice that at the curved edges, the pressure is regularized.

In Fig. 5, we compare the resulting pressure in the case of straight and curved edges for \(R/b = 0.2 \). We notice that pressure in the curved-edge case is lower at equal height than it is in the sharp-edge case. For instance a bulge sticking to curved edges of radius \(R/b = 0.2 \) till \(a = 0.9b \) is subject to the same pressure as a bulge out of a sharp-edge opening of height \(h \approx 0.1a \) while being 1.6 times as high.

The displacements in the two cases are compared in Fig. 6. For the same height at 0, the profile of the bulge is almost identical in both cases. Experimental results are shown in Fig. 7.

We also note that the bulging area is slightly bigger in the curved-edge case since the material follows the edges before bulging out (for \(R/b = 0.2 \) the difference is less than 9%). This trend is recovered in the experiments where for a given aperture and swelling volume, the height of the profile for a curved-edge aperture is always larger than for the straight-edge case as shown in Fig. 8.

1.5. Calculations of the stresses

Since the normal surface pressure \(p \) is known for all values of \(x \), the Cartesian components of the stress tensor \(T \) can be calculated by using expression (1.11)–(1.13).

1.5.1. Sharp edges

First, we rescale the variables through \(\tilde{z} = z/a \) for each variables \(z \), \(x \) and \(a \). Moreover we introduce the new variables \(X, Y \) and \(\rho \) in which the expressions for \(T_{ij} \) are easily expressed:

\[
\begin{align*}
X &= 1 + z^2 - \tilde{z}^2, \\
Y &= 2\tilde{z}, \\
\rho &= \sqrt{X^2 + Y^2}.
\end{align*}
\]

Finally, setting \(E' = \frac{1}{2\sqrt{E}} E \) we obtain the following expressions for \(x \geq 0 \) and \(z \geq 0 \):

\[
\begin{align*}
\frac{T_{xx}}{E'} &= -\frac{1}{\rho} \left(\frac{X}{\sqrt{\rho - X + z\sqrt{\rho + X}}} + \frac{z}{\rho} \right) \left(Y\sqrt{\rho - X - X\sqrt{\rho + X}} \right), \\
\frac{T_{yy}}{E'} &= \frac{z}{\rho^3} \left(X\sqrt{\rho - X + Y\sqrt{\rho + X}} \right), \\
\frac{T_{zz}}{E'} &= -\frac{1}{\rho} \left(\frac{Y}{\sqrt{\rho - X + z\sqrt{\rho + X}}} - \frac{z}{\rho} \right) \left(Y\sqrt{\rho - X - X\sqrt{\rho + X}} \right).
\end{align*}
\]

Notice that the parabolic approximation is only valid if \(a > b - R \). The vertical displacement is calculated numerically and plotted with the normal pressure at the surface in Fig. 7 for \(\delta = 0 \). Notice that at the curved edges, the pressure is regularized.

In Fig. 5, we compare the resulting pressure in the case of straight and curved edges for \(R/b = 0.2 \). We notice that pressure in the curved-edge case is lower at equal height than it is in the sharp-edge case. For instance a bulge sticking to curved edges of radius \(R/b = 0.2 \) till \(a = 0.9b \) is subject to the same pressure as a bulge out of a sharp-edge opening of height \(h \approx 0.1a \) while being 1.6 times as high.

The displacements in the two cases are compared in Fig. 6. For the same height at 0, the profile of the bulge is almost identical in both cases. Experimental results are shown in Fig. 7.

We also note that the bulging area is slightly bigger in the curved-edge case since the material follows the edges before bulging out (for \(R/b = 0.2 \) the difference is less than 9%). This trend is recovered in the experiments where for a given aperture and swelling volume, the height of the profile for a curved-edge aperture is always larger than for the straight-edge case as shown in Fig. 8.
Fig. 3. Bulge solution with straight edges. Comparison between the analytical solution and experimental bulging (parameters given in Appendix, all values on the axes are in meters). Note that the analytical solution uses an aperture of $a = 0.014$ m rather than the aperture of $a = 0.015$ m used in the experiment as it provides a better fit to the data. This small discrepancy may be due to a small bending of the sample at the straight edge. The experimental data can be found in the supplemental material file (ExpData_Fig3.csv).

Fig. 4. Bulge solution with curved edges. Here we show the pressure $p(x)$ (blue online), and vertical displacement $u_z(x)$ (green online) for a given parabolic profile $u_0(x)$ (orange online) for $R/b = 0.2$. The solid loses contact at $a/b = 0.9$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Comparison of the pressure generated by a straight edge, p_s (blue online) with the pressure generated with a curved edge p_c (orange online). The singularity for the straight-edge case is placed at b and $a/b = 0.9$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We note that in the far field (for large value of x), the stress tensors at the boundary ($z = 0$) tends to a hydrostatic field with $T_{xx} = T_{zz} = -cE/2$, necessary to maintain a uniform displacement of the plate. Close to the contact, we are specifically interested in the shear stress T_{xz} as a potential indicator of damage. In Fig. 9, we show the shear stress with respect to the reference configuration. Close to the edges, we observe typical drop-like regions of damage that have been experimentally studied in [10]. Their shape is approximated by using the right-side polar representation ($x \geq 0$):

$$
\begin{align*}
 x &= a + r \cos \theta \\
 z &= r \sin \theta.
\end{align*}
$$

(1.27)
Fig. 6. Comparison of the displacement generated by a sharp edge, \(u_s \) (dashed) with the displacement \(u_c \) (solid green online) generated by a curved edge \(u_0(x) \) (orange online). Here \(a/b = 0.9 \) and \(R/b = 0.2 \). The values are chosen so that \(u_s(0) = u_c(0) \). We conclude that the displacements for a curved edge are very close to those generated by a sharp edge of a slightly smaller radius. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Bulge solution with curved edges. Comparison between the analytical solution and experimental bulging (parameters given in Appendix, all values on the axes are in meters). Note that since the profile with straight and curved edges are almost identical, the analytical solution shown here is the simpler straight edge case.

Fig. 8. Profile height as a function of the uniaxial compression (corresponding to an increasing swelling volume) for curved-edge and straight-edge apertures. The experimental data can be found in the supplemental material file (ExpData_Fig8.csv).

For \(r \ll a \), shear stress is approximated at the lowest order in \(\bar{r} \) by

\[
\sigma_{xz}^{\text{app}} = \frac{cE \sin \theta}{8} \left(\cos \theta \sqrt{1 + \cos \theta} - \sin \theta \sqrt{1-\cos \theta} \right).
\]

(1.28)

We recover the well-known scaling law \(r^{-1/2} \) of stress around the singularity [18].

Let \(r_{\text{crit}} \) be the critical value of shear stress past which damage occurs. We introduce the dimensionless parameter \(K = cE/8r_{\text{crit}} \) to measure the extent of the damage zone. The shape of a damage drop is then defined by the polar curve

\[
\hat{r}(\theta) = K^2 \sin^2 \theta \left(1 + \cos 3\theta \right), \quad 0 \leq \theta \leq \pi.
\]

(1.29)
shown in Fig. 10. The two damage drops are inclined with angles
\[\alpha_z = 2 \arctan \left(\frac{1}{2} \sqrt{\frac{3}{3} \left(13 \pm \sqrt{145} \right)} \right) \approx 111^\circ \text{ and } 32^\circ \] (1.30)

Their area are
\[A_4 = \frac{3 \sqrt{280 \pi + 243 \sqrt{3}}}{1440} a^2 K^4 \approx 3.48 a^2 K^4 \] (1.31)
\[A_5 = \frac{3 \sqrt{140 \pi - 243 \sqrt{3}}}{1440} a^2 K^4 \approx 5.07 \times 10^{-2} a^2 K^4. \]

The relative growth of the total area of the four drops compared with the area of the bulge is given by
\[2 \frac{A_4 + A_5}{A_4} = \frac{9}{2^{10}} \frac{c^3}{1 - \nu^2} \left(\frac{E}{E_{\text{crit}}} \right)^4 \approx 1.10 \times 10^{-3} \frac{c^3}{1 - \nu^2} \left(\frac{E}{E_{\text{crit}}} \right)^4. \] (1.32)

At a given \(\tau_{\text{crit}} \), the drops area increase as \(c^3 \) compared to the bulge area. Thus, we expect these damage drops to grow quickly after initiation. For instance, the largest bulge shown in Fig. 2 has a dimensionless height \(h/a = c(1 - \nu^2) = 1.5 \), for \(\nu = 0.3 \) and \(\tau_{\text{crit}} = E/2 \). Its area is almost 9% of the total bulge area.

1.5.2. Curved edges

For curved edges, the shear stress is calculated numerically (Fig. 11). We note that for \(a/b = 0.9 \), the damage drops are so small that the smaller one is no longer visible and can be neglected. Therefore, we restrict our attention to the bigger damage drops.

The big damage drops are plotted for increasing values of \(a \) in Fig. 11. Furthermore their areas \(A_4 \) are numerically evaluated and fitted by a polynomial. It is worth noticing that even the big damage drop is no longer visible for \(a/b < 0.8 \) at \(K = 1 \).

1.6. Stretching

Another possible indicator of damage is the stretches of fibers contained within a material (axons in the case of the brain). So far, only stress-related damages have been studied. Nevertheless intense stretching may also damage axons. In order to study the stretches, we need to calculate the displacement field everywhere in the half space. The strain and stress tensors respectively noted with components \(e_{ij} \) and \(T_{ij} \) are related by
\[E = \frac{1 + \nu}{E} T - \frac{\nu}{E} (\text{trace } T) \mathbf{1}. \] (1.33)

Although we have been working under the assumption that the material is homogeneous and isotropic, it is only an approximation since brains are made of axons. In the case of bulging, axons are likely to lean towards the bulging direction which is vertical in the geometry studied here. Thus, in order to study the damage caused to axons by stretching, we further investigate the vertical stretch \(\lambda_z = 1 + \partial_z u_z \), which is given by
\[\lambda_z = 1 + \frac{T_{zz} - \nu T_{z\z}}{E}. \] (1.34)

1.6.1. Sharp edges

In the sharp-edge case, the vertical stretch is given by
\[\lambda_z = 1 - \frac{c(1 - \nu)(\xi \sqrt{\rho - X} + \xi \sqrt{\rho + X})}{2 \sqrt{2 \rho}} \left(\frac{Y \sqrt{\rho - X} - X \sqrt{\rho + X}}{2 \sqrt{2 \rho}} \right). \] (1.35)

The vertical strain \(e_z = \lambda_z - 1 \) is plotted in Fig. 13.

As expected, the stretch takes minimal values close to the edges with a singularity in \(r^{-1/2} \) as for shear stress. Moreover, the stretch takes maximal values on the symmetry line \(x = 0 \) at the point \(\tau_{\text{max}} = a \sqrt{2v/3 + v} \). In the incompressible limit \(\nu \to 1/2 \) at which the stretch is maximal , since \(c = \frac{1}{\sqrt{a^2 + z^2}} \), it is written on the symmetry line :
\[\lambda_z(0, z) = 1 + \frac{h}{3a} \frac{z}{a^2 + z^2} \left(\frac{2a^2 - z^2}{a^2} \right)^{2/2}. \] (1.36)

with the maximal value
\[\lambda_{\text{max}} = 1 + 4\sqrt{2} \frac{h}{a^2} \frac{z}{a^2}. \] (1.37)

1.6.2. Curved edges

In the case of curved edges, the vertical strain is numerically calculated and plotted in Fig. 14 in both cases for comparison. Unlike the shear stress, for \(a/b = 0.9 \), damage areas related to vertical stretching are much larger with a curved-edge.

In the case of a curved edge, we find that in order to prevent large stretching along the axis so that it is comparable to the sharp-edge case, the ratio \(a/b \) must be larger than 0.95 (Fig. 15). Since, we know that in the particular case where \(R/b = 0.2 \), the ratio \(a/b \) is about 0.9 for small bulges, we see that the radius of curvature must further decrease in order to reduce the fiber stretch.
Fig. 10. Shape of the damage drops close to the edge and comparison between the approximation (red) and the actual damage drops (black) for $\tau_{\text{crit}} = \frac{E}{2}$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Contour plot of the shear stress for $cE = 1$ in the sharp-edge case with the singularity placed at $b = 1$ (right) and in the curved-edge case for $a/b = 0.9$ and $R/b = 0.2$ (left).

2. Conclusion

We have investigated edge effects in material bulging. Our analysis reveals that smoothing the edges decreases shear stresses in the material and increase slightly the overall height of the bulge. Damage areas related to both shear stress and stretching still exist but they are greatly diminished as long as the radius of curvature of the edges is small enough.

The results presented in this paper were obtained in the context of linear elasticity. It is important to consider the limitations of such results as it is well appreciated that soft tissues can operate in large deformations where nonlinearities play an important role. At the theoretical level, the importance of nonlinear effects in contact mechanics has been investigated by various authors [19–23]. In particular, it is known [21] that a treatment in linear elasticity can generate self-penetration in the solution and anomalous behaviors (such as the profile...
Fig. 12. Damage drops (left) and associated area A_d (fitted with a power law) for $K = 1$ in the flat case (red dot online) and in the curved-edge case for $a/b \in \{0.8, 0.9, 0.95, 0.99, 0.9999\}$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Contour plot of the vertical strain for $\nu = 0.5$ and $c = 1.5$.

Fig. 14. Contour plot of the vertical strain for $\nu = 0.5$ and $c = 1.5$ in the sharp-edge case with the singularity placed at $b = 1$ (right) and in the curved-edge case for $a/b = 0.9$ and $R/b = 0.2$ (left).
A.1. \(x \) equation

Appendix A. The homogeneous solution to the singular integral equation with gap:

\[
\int_{\infty}^{a} + \int_{-\infty}^{-a} \frac{p(s)}{x-s} \, ds = f(x), \quad |x| \geq a.
\]

We first look for homogeneous solutions when pressure \(p \) is either an even or odd function of \(x \).

A.1. \(p \) even

If \(p \) is even, we can rewrite the integral in (A.1) as

\[
\int_{-\infty}^{-a} + \int_{a}^{\infty} \frac{p(s)}{x-s} \, ds = \int_{a}^{\infty} p(s) \left(\frac{1}{x-s} + \frac{1}{x+s} \right) \, ds = 2x \int_{a}^{\infty} \frac{p(s)}{x^2-s^2} \, ds.
\]

Then the integral equation (A.1) is

\[
\int_{a}^{\infty} \frac{p(s)}{x^2-s^2} \, ds = \frac{f(x)}{2x}, \quad |x| \geq a.
\]

Following [26], we introduce new \(x^2 = u \) and \(s^2 = v \), so that (A.3) reads now

\[
\int_{a^2}^{\infty} \frac{p(v)}{u-v} \, dv = F(u), \quad |u| \geq a^2.
\]

where

\[
P(v) = \frac{p(\sqrt{v})}{\sqrt{v}} \quad \text{and} \quad F(u) = \frac{f(\sqrt{u})}{\sqrt{u}}.
\]

From [17], we find that the solution of (A.4) is given by

\[
P(v) = \frac{c_0}{\sqrt{v-a^2}} + \frac{1}{\pi} \frac{\int_{-a}^{a} \sqrt{\frac{v-a^2}{v-u}} F(u) \, du}{\int_{-a}^{a} \sqrt{\frac{v-a^2}{v-u}} \, du}, \quad s \geq a.
\]

In the case \(f(x) = 0 \), we extract from this last expression the even kernel

\[
p_{\text{even}}(s) = \frac{c_0|s|}{\sqrt{s^2-a^2}}, \quad |s| \geq a.
\]

A.2. \(p \) odd

We enforce the condition that \(p \) is odd:

\[
\int_{-\infty}^{-a} + \int_{a}^{\infty} \frac{p(s)}{x-s} \, ds = \int_{a}^{\infty} p(s) \left(\frac{1}{x-s} + \frac{1}{x+s} \right) \, ds = -\int_{a}^{\infty} \frac{p(s)}{x^2-s^2} \, ds.
\]

Then (A.1) is rewritten

\[
\int_{a}^{\infty} \frac{p(s)}{x^2-s^2} \, ds = f(x), \quad |x| \geq a.
\]

Using the same transformation \(x^2 = u \) and \(s^2 = v \), (A.10) becomes

\[
\int_{a}^{\infty} \frac{p(\sqrt{v})}{u-v} \, dv = f(\sqrt{u}), \quad |u| \geq a^2.
\]

Its solution is [17]:

\[
p(\sqrt{v}) = \frac{c_1}{\sqrt{v-a^2}} + \frac{1}{\pi^2} \int_{a^2}^{\infty} \frac{u-a^2}{u-a^2} F(\sqrt{u}) \, du.
\]
where c_1 is a real constant. Hence the pressure is given by
\[
p(s) = \frac{c_1}{\sqrt{s^2 - a^2}} + \frac{2}{\pi^2} \int_0^\infty \frac{xf(x)}{\sqrt{x^2 - a^2} \sqrt{x^2 - s^2}} \, dx, \quad s \geq a, \tag{A.13}
\]
from which we extract the odd homogeneous solution:
\[
\rho_{odd}(s) = \frac{c_1 \text{sgn}(s)}{\sqrt{s^2 - a^2}} \quad |s| \geq a. \tag{A.14}
\]

Appendix B. Non-homogeneous solutions to the singular integral equations

The previous analysis provides a way to identify homogeneous solutions to the singular integral equations. Expressions (A.7) and (A.13) can also be used to find some non-homogeneous solutions. However, these expressions do not capture all solutions. In particular in the case of a curved edge, we notice that the non-homogeneous parts appearing in both expressions vanish identically. Thus, we must solve equation (A.1) in a different way. Here, we use the following result from [17], valid for an inhomogeneous term defined on a finite domain of the form:
\[
f(x) = \begin{cases}
0, & |x| \geq b \\
\frac{x-b}{AR}, & a \leq x \leq b \\
\frac{x+b}{AR}, & -b \leq x \leq -a.
\end{cases}
\] (B.1)

Then the pressure is
\[
p(s) = \frac{\text{sgn}(s)}{\pi^2 \sqrt{s^2 - a^2}} \left[c_1 + \left(\int_{-\infty}^{-a} + \int_a^\infty \right) \frac{f(t)\sqrt{t^2 - a^2}}{t-s} \text{sgn}(t) \, dt \right] \tag{B.2}
\]
where we recognize the odd homogeneous solution. The explicit evaluation of this integral gives
\[
I(s) = -\sqrt{s^2 - a^2} \left(s \left[b^2 - 2a^2 + s^2 + 2\sqrt{(b^2 - a^2)(s^2 - a^2)} \right] + \ln \frac{b - s}{b + s} + \ln \frac{a^2 + b - s}{a^2 + b + s - \sqrt{(b^2 - a^2)(s^2 - a^2)}} \right) \tag{B.3}
\]
\[
+ 2\left(\sqrt{b^2 - a^2} + b \ln \frac{a}{b + \sqrt{b^2 - a^2}} \right).
\]

When adding the even kernel, we obtain the general solution
\[
p(s) = \frac{c_1}{\sqrt{s^2 - a^2}} + \frac{2|s|}{\sqrt{s^2 - a^2}} \left(c_0 + \sqrt{b^2 - a^2} + b \ln \frac{a}{b + \sqrt{b^2 - a^2}} \right) - \left(\int_{-\infty}^{-a} + \int_a^\infty \right) \frac{f(t)\sqrt{t^2 - a^2}}{t-s} \text{sgn}(t) \, dt \tag{B.4}
\]
\[
- b \text{sgn}(s) \ln \frac{b - s}{b + s} + \ln \frac{a^2 + b - s}{a^2 + b + s - \sqrt{(b^2 - a^2)(s^2 - a^2)}}.
\]

Physically, we are looking for a non-divergent even solution. Therefore, we choose $c_0 = 0$ and c_1 such that $p(a) = p(-a)$ does not diverge:
\[
c_0 + \sqrt{b^2 - a^2} + b \ln \frac{a}{b + \sqrt{b^2 - a^2}} = 0. \tag{B.5}
\]

Take together, the solution for the pressure is
\[
p(s) = -\frac{1}{\pi^2 AR} \left[b^2 - 2a^2 + s^2 + 2\sqrt{(b^2 - a^2)(s^2 - a^2)} \right] \tag{B.6}
\]
\[
+ b \text{sgn}(s) \ln \frac{b - s}{b + s} + \ln \frac{a^2 + b - s}{a^2 + b + s - \sqrt{(b^2 - a^2)(s^2 - a^2)}}
\]

Appendix C. Experimental details

Bulging experiments were performed by compressing confined elastic solids using a plate with a circular aperture. The solid is confined on all faces except for a circular opening in the top plate. As the plate is displaced (axial compression) the solid is free to expand through the circular opening. Under this compression, the soft solid bulged through the aperture permitting measurement of the axisymmetric deformation profile.

The experimental sample, of $R = 45$ mm and $H = 20.5$ mm, was fabricated from poly-vinyl siloxane (Elite Double 8, Zhermack). The PVS sample was produced by mixing together a base polymer and crosslinker in a ratio of 9:1, which resulted in soft solid with Young’s modulus $E = 40$ kPa and Poisson’s ratio $\nu = 0.5$. After thorough mixing, and while still liquid, the sample was degassed in a vacuum chamber before being left to cure at room temperature inside a cylindrical container, of radius 45 mm and height 30 mm, with no lid. Prior to compressive testing the Young’s modulus of the sample was measured by performing flat punch indentation experiments using a custom-built structural testing machine. The sample was positioned on a precision micro-balance (Pioneer PA64C Analytic Balance, Ohaus) and indented by a cylindrical indenter, of diameter $2r_1 = 1.25$ mm, connected to a linear actuator (M22810S, Physik Instrumente) and driven by a computer-controlled stepper motor. Simultaneous readings of both the mass, m, and indentation, δ_i, provided a stress–strain curve from which the Young’s modulus, E, could be calculated via $F = 2r_1 E \delta_i$, where $F = mg$, $E = E’(1 - \nu^2)$ and ν is the Poisson’s ratio of the material.

Confined inside the container, the soft solid was subject to axial compression by a circular plate of radius 44 mm with a circular aperture of radius $b = 15$ mm located at its center. To investigate the effect of edges on bulging, tests were performed with plates that had apertures with straight edges and apertures with a radii of curvature $R = 2$ mm and $R = 3$ mm. The plates, and the container that held the sample, were fabricated from ABS plastic using a 3D printer (MakerBot) with a resolution of 0.2 mm. The plate was attached to a computer-controlled linear actuator (M22926S, Physik Instrumente) with a precision of ± 0.1 mm, that moved at 10 mm/s, applying an axial compression to the sample. Under compression, the soft solid bulged through the central aperture and the axisymmetric deformation profile was measured by imaging a line along the center of the sample. The line was approximately 1 mm wide, made from the same material, and with the same E, as the bulk and colored using an oil-based dye to contrast the rest of the sample. The line was imaged using a DSLR camera (D7000, Nikon), with a spatial resolution of 0.02 mm/pixel, positioned at 45 degrees to the horizontal and orthogonal to the line, at a rate of 1 fps. The line was detected in images using image processing techniques in Matlab, and compared to an undeformed reference line obtained for zero compression, resulting in measurements of the deformation profile accurate to 0.1 mm. The profiles shown in this paper were obtained for fixed values of axial compression in the range of 0.5 mm to 3.5 mm in 0.5 mm increments; in Fig. 7 for a curved-edge aperture of $R = 3$ mm.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.ijnonlinmec.2018.07.004.

References

