
rspa.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

Applied Mathematics

Keywords:

Buckling, Indentation, Wrinkling,

Floating

Author for correspondence:

Dominic Vella

e-mail: dominic.vella@maths.ox.ac.uk

Indentation of a floating
elastic sheet: Geometry
versus applied tension
Finn Box1,2, Dominic Vella2, Robert Style3

and Jerome A. Neufeld1,4,5

1 BP Institute, University of Cambridge, Cambridge,

CB3 0EZ, UK
2 Mathematical Institute, University of Oxford, Andrew

Wiles Building, Woodstock Rd, Oxford OX2 6GG, UK
3 Department of Materials, ETH Zürich, 8093 Zürich,

Switzerland
4 Bullard Laboratories, Department of Earth Sciences,

University of Cambridge, CB3 0EZ, Cambridge, UK
5 Department of Applied Mathematics and Theoretical

Physics, University of Cambridge, Cambridge, CB3

0WA, UK

The localized loading of an elastic sheet floating on
a liquid bath occurs at scales from a frog sitting on a
lily pad to a volcano supported by the Earth’s tectonic
plates. The load is supported by a combination of
the stresses within the sheet (which may include
applied tensions from, for example, surface tension)
and the hydrostatic pressure in the liquid. At the same
time, the sheet deforms, and may wrinkle, because
of the load. We study this problem in terms of the
(relatively weak) applied tension and the indentation
depth. For small indentation depths, we find that the
force–indentation curve is linear with a stiffness that
we characterize in terms of the applied tension and
bending stiffness of the sheet. At larger indentations
the force–indentation curve becomes nonlinear and
the sheet is subject to a wrinkling instability. We
study this wrinkling instability close to the buckling
threshold and calculate both the number of wrinkles
at onset and the indentation depth at onset, comparing
our theoretical results with experiments. Finally, we
contrast our results with those previously reported for
very thin, highly bendable membranes.

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:dominic.vella@maths.ox.ac.uk


2

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

1. Introduction
Poking is a natural way in which to test the material properties of an object, both in everyday
life (for example an under-inflated bicycle tyre) or, more quantitatively, in AFM measurements
of graphene [1,2] and biological cells [3]. While in many situations, the object being poked is
a homogeneous bulk material, in others the object is a composite, consisting, for example, of a
bulk material with a thin coating. In such scenarios, poking may provide information about the
coating, the substrate that is coated or some combination of the two.

The canonical problem to understand the relative roles of coating and substrate is that of a thin
elastic film bonded to a substrate. Perhaps the simplest substrate response is one that provides
a restoring force linear in the vertical deflection — a Winkler foundation [4]. Physically, this
corresponds to an object floating on the surface of a liquid: the hydrostatic pressure within the
liquid provides a restoring force that is precisely linear in the vertical deflection. However, this
linear response is also commonly used as a model of an elastic substrate — this model assumes
that the substrate consists of an array of linear springs and is therefore also known as the mattress
model.

At the same time as being relatively simple to formulate mathematically, this scenario is also
of interest at a range of scales: at very large scales, floating ice sheets are often used in cold
regions as construction platforms for transport routes, airfields and offshore oil exploration sites.
Determining the bearing capacity and failure of ice sheets subject to vertical loads is essential
when assessing the operational potential of floating ice sheets [5–8]. This requires knowledge of
the bending rigidity of sea ice [9,10], which is usually measured by comparison with theoretical
results for the loading of a thin floating plate [11,12]. At still larger scales, the loading of ice sheets
by surface melt water has been implicated in the catastrophic collapse of the Larsen B ice sheet
in Antarctica [13] while at global scales the gravitational loading of the lithosphere by mountain
ranges [14,15] and volcanic sea mounts [16] involve much the same physical ingredients.

At the other end of the length-scale spectrum, the elastic properties of thin biological materials
may be characterized by measuring the deflection that results from an applied central point force
[17–19]. Similarly, the material properties of ultra-thin polymer films can be determined from
the readily observable wrinkle patterns that form when floating films are subject to a localized
force either from the capillary pressure of a fluid droplet or an imposed displacement from an
indenter [20–22]. In both cases, a vertical deflection pulls material radially inwards and in so doing
generates a compressive azimuthal stress in the film that ultimately results in a radial pattern of
wrinkles. The properties of these wrinkling patterns at very small scales have been extensively
studied both ‘near-threshold’ (close to the onset of instability) [23] and ‘far-from-threshold’ (once
the wrinkling pattern is well-developed) [21,22,24–26]. The key observation is that in highly
flexible films, the stress state is qualitatively changed by wrinkling: wrinkling relaxes the stress in
the direction perpendicular to the wrinkles [24,27,28]. This may have important consequences
for the mean shape of the wrinkled object, which is, in general, different to what would be
observed in the absence of wrinkles [22,29]. Furthermore, this wrinkling can have the surprising
consequence that the force–displacement response depends not on the mechanical properties of
the film (its modulus and thickness), but rather only its geometry (e.g. radius) and other physics
in the system [22,29]. As well as their aesthetic appeal, these wrinkle patterns are of interest as
a means of generating surfaces with functional patterned topology [30] that may be useful in
applications such as wetting [31] and photonic devices [32].

Although the large and small length scale problems discussed above contain the same physical
ingredients, the former are dominated by bending stresses and gravity, while the latter are
dominated by the surface tension of the interface, together with gravity. Indeed, it is this influence
of the liquid surface tension that distinguishes large scales from small scales. The two problems
may therefore be thought of as two limits of an elastic sheet floating at the surface of a liquid
and subject to a tension at its boundary. Here we study the relative effects of the sheet’s bending
stiffness and the applied (interfacial) tension, focussing, in particular, on the transition between
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regimes in which one dominates the other. However, we shall also see that a key third ingredient
is the amount of imposed deformation.

The paper is structured as follows: the detailed mathematical model used to describe this
system is discussed in §2. The experimental set up used to study axisymmetric deformations of
the floating sheet is described in §3. In §4, axisymmetric deformations are considered theoretically
with the results of numerical and analytical arguments compared with experiments. This section
finishes with a discussion of what distinguishes ‘small’ and ‘large’ deflections. The onset of
wrinkling is detailed in §5, including a linear stability analysis of the axisymmetric state, a
description of the experimental technique employed to identify the onset of wrinkling and
comparison between experimental results and the linear stability analysis, before conclusions are
presented in §6.

2. Theoretical setting
We consider an elastic sheet of thickness h, Young’s modulus E and Poisson ratio ν, floating on a
fluid of density ρ. The sheet is subject to a point-like force F at its centre (shown schematically in
figure 1) which results in the deformation of the sheet. Provided that deformations occur over a
length scale that is large compared to the thickness of the sheet, we may model the resulting elastic
deformation using the Föppl-von-Kármán equations, incorporating the hydrostatic pressure
exerted by the fluid phase on the elastic sheet. Accordingly, the vertical displacement of the sheet
from its neutral floating equilibrium, ζ(r, θ), satisfies the vertical force balance equation [22],

B∇4ζ − [ζ, χ] =−ρgζ − F

2π

δ(r)

r
, (2.1)

where B =Eh3/[12(1− ν2)] is the bending stiffness of the sheet, g is the acceleration due to
gravity, δ(r) is the Dirac δ-function and the operator [f, g] is given in polar coordinates by [33],
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. (2.2)

In (2.1), the Airy stress function χ(r, θ) is a potential for the in-plane stress and is introduced to
ensure that the stress within the solid sheet automatically satisfies the equilibrium equation; this
is achieved by setting

σθθ =
∂2χ

∂r2
, σrr =

1

r

∂χ

∂r
+

1

r2
∂2χ

∂θ2
, and σrθ =−

∂

∂r

(
1

r

∂χ

∂θ

)
.

A second differential equation arises from the “compatibility of strains", the requirement that
the strains associated with the stress of a particular stress function, χ(r, θ), match the geometric
strains associated with a particular out-of-plane displacement, ζ(r, θ). This condition may be
written

∇4χ=−1

2
Eh[ζ, ζ], (2.3)

where the product Eh is the stretching stiffness of the sheet.
Indentation may be achieved by imposing a given force F and measuring the indentation

depth ζ0 that results, or by imposing an indentation depth and measuring the force required to
produce this indentation. Both techniques were employed in our experiments, described in §3,
and are mathematically equivalent in terms of the model developed here. However, in numerical
calculations, it is simpler to prescribe the indentation depth ζ(0) = ζ0 and calculate the force F
that is required to achieve this level of indentation subsequently. The conditions imposed on ζ at
the indentation point are therefore the indentation depth, that the sheet does not have a cusp, and
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Figure 1: (Color online). Schematic diagrams of the (a) model system and (b) experimental set
up. In both cases, the vertical displacements of the sheet are measured from the free-floating
equilibrium of the sheet.

the requirement of zero horizontal displacement,

ζ(0, θ) =−ζ0,
∂ζ

∂r

∣∣∣∣
(0,θ)

= 0, ur(r= 0) = 0. (2.4)

The last condition on the horizontal displacement at the origin is equivalent to a condition on the
hoop strain, limr→0[rεθθ] = 0, which may, using Hooke’s law be restated as a condition on the
stress distribution at the origin, and hence on the derivatives of the Airy stress function χ, namely

lim
r→0

[
r
∂2χ

∂r2
− ν ∂χ

∂r
− ν 1

r

∂2χ

∂θ2

]
= 0. (2.5)

We also have an arbitrary choice of gauge in χ (since it is only the derivatives of χ that have
physical relevance), and so we take

χ(0, θ) = 0. (2.6)

We consider a sheet where out-of-plane deformation occurs over a distance much smaller
than the radial extent of the sheet. The effect of the finite radius of the sheet is known to play
an important role in the development of wrinkle patterns in very thin sheets [22]. Here we use
larger sheets for which the effects of finite size are negligible (we shall discuss later what ‘large’
means in this context). We therefore expect that, far from the indenter, the sheet will return to its
undeformed, freely floating position, i.e.

ζ,
∂ζ

∂r
→ 0 as r→∞. (2.7)

In the far field we imagine that the sheet is subject to a homogeneous, isotropic tension which, in
our experiments, arises from the surface tension of the liquid, γlv ; we therefore have σrr, σθθ→
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γlv as r→∞, which requires that

χ∼ γlv
r2

2
as r→∞. (2.8)

(a) Non-dimensionalization
In this paper, we seek to describe both relatively thick sheets (where we expect the applied, far-
field tension due to surface tension to be a perturbative effect) and thinner sheets where this
tension is important. We therefore choose a non-dimensionalization that does not break down in
the limit γlv→ 0. In particular, we let

Z = ζ/h, R= r/`g, Ψ = χ/B, F = F/(Bh/`2g) (2.9)

where
`g = (B/ρg)1/4 (2.10)

is the elasto-gravitational length scale over which the deformation of the elastic sheet produces a
bending stress comparable to the buoyancy force from the fluid.

With this non-dimensionalization, we find that (2.1) becomes

∇4Z − [Z, Ψ ] =−Z − F
2π

δ(R)

R
, (2.11)

while (2.3) becomes
∇4Ψ =−6(1− ν2)[Z,Z]. (2.12)

Equations (2.11)–(2.12) are to be solved subject to the boundary conditions

Z(0) =−δ=−ζ0/h, Z′(0) = 0, lim
R→0

[
R
∂2Ψ

∂R2
− ν ∂Ψ

∂R
− ν 1

R

∂2Ψ

∂θ2

]
= 0, Ψ(0) = 0. (2.13)

Far from the indenter we also have

Z,Z′→ 0, Ψ → 1
2τR

2 as R→∞. (2.14)

Here
τ =

γlv
(ρgB)1/2

(2.15)

is the dimensionless ’applied tension’. We note that τ is the ratio of the relevant applied stress
(surface tension, γlv) to the bending stresses when deformations occur on a length scale `g ,
i.e. B/`2g ; hence τ may also be thought of as a ‘mechanical bendability’, ε−1m in the terminology
of Hohlfeld & Davidovitch [34]. In our experiments, τ was varied predominantly by changing
the thickness of the sheets, but also by changing the interfacial tension, to attain values in the
range 10−3 . τ . 30. This range covers a wide range of behaviours and allows us to observe the
beginning of the transition to extremely bendable, ultra-thin films with τ & 104 that have been
studied previously [22,26].

Another measure of the bendability of a thin elastic sheet exists, besides the mechanical
bendability τ : since indentation will itself induce a stress within the sheet, there is also a
‘geometrical bendability’ [34]. To determine this geometrical bendability, we note that if an
indentation of amplitude ζ0 decays over a horizontal length scale `∗, then the geometry-induced
stress is Eh(ζ0/`∗)2, while the bending-induced stress is B/`2∗. The geometrical bendability is
therefore

ε−1g =
Ehζ20
B
∼
(
ζ0
h

)2

= δ2. (2.16)

This geometrical bendability is simply the square of the dimensionless indentation depth, δ, up
to constants whose only dependence on the sheet’s properties is through the Poisson ratio ν.

Our problem is therefore governed by two dimensionless parameters: the geometrical and
mechanical bendabilities, ε−1g and ε−1m , respectively. While one might expect, on counting
grounds, there to be another quantity measuring the significance of bending stresses to the
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Relevant DGs δc nonset Limit δ� δc Limit δ� δc

τ � 1 δ= ε
−1/2
g This work This work [35] Open

τ � 1 δ= ε
−1/2
g [22] This work This work [22]

τ = ε−1m [26]

Table 1: Dimensionless groups (DGs) that govern the behaviour of a floating elastic sheet subject
to a dimensionless indentation (geometrical bendability) δ and applied tension (mechanical
bendability) τ . Aspects of the limit τ � 1 have been considered previously, particularly the
critical indentation depth required for wrinkling, δc, and the behaviour of the system far beyond
this threshold. However, the detailed computations of the number of wrinkles at onset, nonset,
reported here is novel. For the limit τ � 1, very little has been studied previously.

stretching stiffness of the sheet, i.e. q= (Bρg)1/2/(Eh), we note that this q∝ (h/`g)
2, which must

be small for our use of the Föppl-von Kármán equations to be appropriate. Nevertheless, this
‘nearly inextensible’ limit is a regular limit [22].

Focussing instead on the two parameters δ= ε
−1/2
g and τ = ε−1m , we note that the geometrical

bendability is independent of the bending stiffness of the sheet, liquid density and applied tension
while the mechanical bendability depends on all of these and is, instead, independent of the
imposed indentation. We also emphasize that the behaviour of the limits τ � 1 and τ � 1 are
quite different. In the limit τ → 0, the problem is perfectly regular, but only the parameter δ
remains. As a result, we expect the behaviour of the sheet to be determined only by the value
of δ. A consequence of this is that features of the wrinkling instability in the sheet (e.g. the
critical indentation depth at which wrinkles appear) must be described by order one numbers
as τ → 0: we can immediately see that the dimensionless critical indentation depth δc =O(1),
so that the dimensional critical indentation depth ζ(c)0 ∝ h, and the number of wrinkles at onset
nonset =O(1) also. In contrast, when τ � 1 (ε−1m � 1), both of the dimensionless parameters τ
and δ will matter; in particular, we should expect to observe a dependence of δc and nonset
on τ . In table 1 we highlight the relevant dimensionless groups (DGs) observed in each of the
regimes τ � 1 and τ � 1, as well as focussing on which features of the problem have been studied
previously, are the focus of this work, or remain open problems for future work.

3. Experimental measurements of axisymmetric deformation
A schematic diagram of the experimental apparatus used to measure the elastic response of a
floating sheet to a localized load is shown in figure 1(b). Initially, a series of experiments were
performed on relatively large floating elastic sheets for which the mechanical bendability was
small, τ � 1. In this series of experiments, detailed in §3(a), sheets of varying thickness h were
indented with a known applied force and the resulting, axisymmetric, profiles of the sheets
were measured. Further experiments were then performed on smaller, thinner sheets of varying
bending stiffness B to assess the influence of τ . In these experiments, described in §3(b), the
centre of the sheet was indented to a known displacement and the force required to achieve such a
deformation was measured. Together, the results from both sets of experiments map the transition
from a regime in which bending controls the axisymmetric deformation to one in which the in-
plane tension dominates instead. The experimental techniques used to study the wrinkling that
occurs for large-amplitude deformation are described separately, in §5(b).
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(a) Low mechanical bendability, τ � 1
A first series of experiments were performed using a range of circular sheets of
Polydimethylsiloxane (PDMS) with diameter D& 0.5 m and thickness h& 1.5 mm. These sheets
were produced by spreading a commercial silicone elastomer (Sylgard 184, Dow Corning, UK) on
a carefully levelled table, and then curing the sample for one week in a temperature-controlled
room that maintained the temperature in the range 40− 45◦ C. The Young’s modulus and Poisson
ratio of these sheets were measured by performing compressive tests using an Instron 3345 and
were found to be E = 2.06± 0.03MPa and ν = 0.50± 0.01, respectively. The detailed properties
of the PDMS sheets used in these experiments are given in table 2.

For each experiment an elastic sheet was carefully positioned on top of a layer of water
contained within a tank of square cross-section and area 502 cm2 or 1m2, depending on the
diameter of the sheet in use. The density of PDMS, ρPDMS ≈ 929kg m−3, is less than that of water
at 20◦C, ρ= 998kg m−3, so that the sheet floats in equilibrium. The edge of the elastic sheet was
freely floating (with no normal force or bending moment applied). However, spacers attached
to the internal tank walls reduced the size of the tank cross-section to that of the sheet diameter
at four positions and contacted the sheet to ensure it did not rotate during experiments, whilst
minimizing any effect on the stress within the sheet.

In these experiments the mechanical bendability was calculated to be τ . 10−2. The relative
insignificance of surface tension was confirmed by adding surfactant (washing-up liquid) to
the liquid bath. The addition of surfactant reduced the surface tension of the fluid from γlv =

72.8 Nm−1 to γlv = 24.9 Nm−1, as was measured using a Drop Shape Analyser (DSA100, Krűss
GmbH, Germany). At the concentrations used the density of the water remains unaltered. Despite
a reduction in surface tension of more than a factor of two, the results obtained here were
quantitatively indistinguishable. Further, our surface tension measurements did not change when
compared before and after the experiment: any free polymer chains released by the sheets did not
modify the surface tension of our (relatively large bath) significantly, as recently reported for small
droplets [36].

A localized force was applied to the centre of the floating sheet using an indenter of length
300mm, diameter 6.0± 0.05mm with a hemispherical end cap (making contact with the sheet).
The radius of this contacting cap, rcap ≈ 3 mm is significantly smaller than the relevant horizontal
length scale (`g & 15 mm throughout this series of experiments); we therefore expect the point
indenter approximation to be reasonable, as we shall discuss in due course. The indenter was
weighted to obtain a given applied force in the range 0.34− 20.76N with an accuracy of±0.001N,
and was held inside a guiding tube to ensure the application of a central, vertical force.

For a small applied force, and therefore small indentation depth, the vertical deflection of the
sheet remained axisymmetric. The magnitude of this axisymmetric deformation was determined
by digitally imaging the deflection of a line drawn along the bottom surface of the sheet. The line
was ∼ 2 mm in width, fluorescent and illuminated using a blue-light LED lamp. The entire sheet
was imaged using a Nikon D5000 with a resolution of 4288× 2848 pixels which was positioned
at 27◦ to the horizontal and perpendicular to the line. A high-pass filter positioned between the
line and imaging camera produced a high contrast image, enabling the line to be distinguished
from other features in the experiment. The deflection of the line was measured with respect to a
reference image of the undeflected line. Vertical deflections were resolved to within 100 µm by
fitting a Gaussian profile across the line, and processing the differences between images of the
deflected line and the reference image [37].

(b) Moderate mechanical bendability, τ & 10−1

Further experiments were performed on thinner sheets for which the mechanical bendability was
no longer small (in particular, τ & 0.1). To obtain significantly thinner sheets of uniform thickness,
we used spin coating of two grades of polyvinylsiloxane (PVS) elastomer (Elite 8 Double and
Elite 22 Double, Zhermack, Italy). The thickness of the spin-coated sheets was measured prior to
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experimentation using a microscope (Leica DMIL, Leitz Wetzlar, Germany). The Young’s modulus
of the cured elastomers were measured by performing tensile tests on a structural testing machine
(Instron 3345, Instron, UK) and found to be 200± 13kPa and 801± 18kPa, respectively, with ν =
0.5 in both cases1. Experiments were also conducted on a Polyimide (PI) sheet of h= 8.5± 2.0µm,
E = 3.7± 0.7GPa and ν = 0.34 (supplied by Goodfellow, Cambridge). The material properties of
the PVS and PI sheets are detailed in Table 2.

Limitations of spin coating meant it was not possible to obtain very large, thin sheets. Here, we
used circular sheets of diameter D= 89± 0.5mm, floating on a layer of water contained within a
petri dish of inner diameter D= 91± 0.5mm.

The petri dish containing water and a floating thin sheet was itself positioned upon a
microbalance (Pioneer PA64C Analytic Balance, Ohaus, Switzerland). The centre of the sheets
were indented by a needle tip of diameter 0.4mm attached to a linear actuator (M228, Physik
Instrumente, Germany) that was driven by a computer-controlled stepper motor (Mercury Step
C663, Physik Instrumente, Germany); reported vertical deflections were accurate to 0.1 µm. The
applied force was measured by recording the mass reported by the microbalance (accurate to
within 0.1 mg).

4. Axisymmetric deformations
Having outlined the experimental techniques used for studying axisymmetric deformations, we
now return to the theoretical setting discussed in §2, and specialize to the case of axisymmetric
deformations, i.e. Z(R, θ) =Z(R).

(a) Numerical solution
For axisymmetric deformations, the vertical force balance and compatibility equations, (2.11) and
(2.12), become a pair of coupled, nonlinear ordinary differential equations,

1

R

d

dR

{
R

d

dR

[
1

R

d

dR

(
R
dZ

dR

)]}
− 1

R

d

dR

(
dZ

dR

dΨ

dR

)
=−Z − F

2π

δ(R)

R
(4.1)

and

R
d

dR

[
1

R

d

dR

(
R
dΨ

dR

)]
=−6(1− ν2)

(
dZ

dR

)2

, (4.2)

subject to force and symmetry boundary conditions on the deflection at the origin,

Z(0) =−δ, Z′(0) = lim
R→0

[
RΨ ′′ − νΨ ′

]
= Ψ(0) = 0, (4.3)

and far-field conditions
Z,Z′→ 0, Ψ → 1

2τR
2 (R→∞). (4.4)

The system of equations (4.1)–(4.4) can readily be solved numerically using, for example, the
MATLAB routine bvp4c. This numerical solution is computed on a finite domain, [0, D/(2`g)],
where we use D/`g = 2000 to ensure that the domain is large enough that its finite size is not
apparent when comparing with our analytical results (which are calculated withD/`g =∞). This
yields predictions for the axisymmetric shape Z(R) and the stresses within the sheet, and may
also be used to determine the indentation force F required to produce a given indentation depth
δ, since the first integral of (4.1) gives

F =−2π lim
R→0

{
R

d

dR

[
1

R

d

dR

(
R
dZ

dR

)]}
. (4.5)

The force–displacement relationship calculated for τ = 0 is shown as the solid curve in figure 2(a)
along with the results from experiments, obtained for τ . 10−2 and detailed in §3(a). In
figure 2(b), the numerically determined force–displacement relationship is shown for a variety
1In Tables 2 and 3, PVS8 and PVS22 correspond to elastomers Elite double 8 and 22, which had measured moduliE = 200kPa
andE = 801kPa, respectively.
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Material h (mm) D (mm) B (Pa m3) `g (mm) τ marker
PDMS 9.0±0.02 931±0.5 1.67x10−1 64.3 1.80x10−3 H
PDMS 5.5±0.02 890±0.5 3.81x10−2 44.4 3.76x10−3 �
PDMS 5.0±0.02 480±0.5 2.86x10−2 41.3 4.35x10−3 N
PDMS 2.0±0.02 890±0.5 1.83x10−3 20.8 1.72x10−2 ©
PDMS 1.5±0.02 480±0.5 7.73x10−4 16.8 2.63x10−2 ×
PVS22 (929±8)×10−3 89±0.5 7.14x10−5 9.24 8.61x10−2 ♦
PVS22 (367±7)×10−3 89±0.5 4.39x10−6 4.60 3.47x10−1 ×
PVS22 (169±5)×10−3 89±0.5 4.30x10−7 2.57 1.11 ∗
PVS22 (100±1)×10−3 89±0.5 8.90x10−8 1.74 2.44 ©
PVS22 (65±1)×10−3 89±0.5 2.44x10−8 1.26 4.65 �
PVS8 (244±13)×10−3 89±0.5 3.23x10−7 2.40 1.14 C
PVS8 (90±3)×10−3 89±0.5 1.62x10−8 1.13 5.11 O
PVS8 (57±4)×10−3 89±0.5 4.12x10−9 0.805 10.1 B
PVS8 (26±4)×10−3 89±0.5 3.91x10−10 0.447 32.9 4

PI (8.5±2)×10−3 200±0.5 2.14x10−7 2.16 1.59 +

Table 2: The properties of the elastic sheets used in the investigation of the axisymmetric
deformation of a floating sheet subject to a localized load, including: the material, sheet thickness
(h), diameter (D), and bending stiffnesses (B =Eh3/[12(1− ν2)]), together with the calculated
values of the elasto-gravitational length (`g) and mechanical bendability, τ , defined in (2.15). The
table also includes the data marker used to denote experimental results with each elastic sheet in
figures 2 and 3.

of values of τ together with experimental results for 10−1 . τ . 30, detailed in §3(b). Both the
numerical and experimental results reveal the existence of two apparent regimes in the force–
displacement law: for ‘small’ displacements, δ . 1, the displacement of the sheet scales linearly
with the applied force, while for ‘large’ displacements, δ & 1, the force scales with the square of
the imposed displacement. Moreover, the results shown in figure 2(b) also expose a dependence
of the force–displacement on the mechanical bendability τ that appears to only be present for
‘small’ displacements. We therefore turn to try and understand these relationships analytically
and to quantify more precisely what is meant by ‘small’ and ‘large’ displacements.

(b) Small displacement theory
For small displacements, we expect that the stress within the sheet should remain axisymmetric
(independent of θ) being close to the unperturbed value set by the far-field tension (or mechanical
bendability), and, further, that the vertical displacement will be everywhere small. Following a
similar analysis for the indentation of pressurized elastic shells [38], we seek small deviations
from this uniform tension state and so let Ψ = τR2/2 + Ψ̃ and Z = Z̃. Hence (4.1) and (4.2) may
be linearized to give

∇4Z̃ − τ∇2Z̃ + Z̃ =− F
2π

δ(R)

R
(4.6)

and

R
d

dR

[
1

R

d

dR

(
R
dΨ̃

dR

)]
= 0. (4.7)

The solution of (4.6) can be found by noting that solutions of the Helmholtz equation ∇2Z̃ =

λZ̃ are also solutions of (4.6) if

λ2 − τλ+ 1= 0, (4.8)
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Figure 2: (Color online). Localized dimensionless force, F = F/[h(Bρg)1/2], required to impose a
given central deformation, δ= ζ0/h, of a floating sheet for a variety of mechanical bendabilities,
τ . (a) Experimental results, obtained with τ . 10−2, are represented by markers (see table 2 and
legend for details) together with numerical results for the case τ = 0 (solid black curve) and the
small loads resultF = 8δ (dashed line). For large loads, the scaling predicted in (4.17) is observed.
The onset of wrinkling, which was observed for sheets of thickness 1.5 and 2mm, is indicated by
a solid star. (b) Experimental results for 10−1 . τ . 30 are represented by markers (see table 2
and legend for details) together with numerical results for τ = 0, 1, 5, 10 and 33 (as indicated in
the legend). The applied force in the experiments on PDMS were measured with an accuracy of
0.001N and the indentation depth in experiments on PVS, PI and PC were measured with an
accuracy of 0.1µm, respectively. (Error bars are not shown on the plots for visual clarity.)

and hence that
λ= λ± = 1

2

(
τ ±

√
τ2 − 4

)
. (4.9)

We therefore have that the relevant general solution for small vertical deflections is

Z̃ = αK0(λ
1/2
+ R) + βK0(λ

1/2
− R), (4.10)

where K0(x) is the modified Bessel function of zeroth order and the constants α and β need to
be chosen to satisfy the boundary conditions as R→ 0. (The conditions as R→∞ have already
been satisfied by our choice of the solution of the Helmholtz equation — we have neglected the
possibility of any solutions ∝ I0(x), which would diverge as x→∞.) We find that

Z̃ =− 2δ

log(λ−/λ+)

[
K0(λ

1/2
+ R)−K0(λ

1/2
− R)

]
. (4.11)

It is possible to repeat this calculation to account for the effect of a finite-sized indenter, rin. We
find that the prefactor in (4.11) is correct toO(rin/`g) and so the limit of a point indenter, rin/`g→
0, is regular. (This regularity is a result of the finite bending stiffness of the sheet, and is distinct
from the indentation of a membrane, where a logarithmic dependence on the indenter radius
was found [39] analytically, although a power-law correction has also been claimed [40].) In the
majority of our experiments, rin/`g . 0.1� 1 and so the effect of indenter size may be neglected.
Finally, we note that, at this order, the perturbed Airy stress function Ψ̃ = 0: from (4.7), Ψ̃ =AR2 +

B, which cannot satisfy the boundary conditions unless A=B = 0.
To compute the force required to produce the displacement in (4.11) we use (4.5), which gives

that
F =K1δ (4.12)

where

K1 = 2π
(τ2 − 4)1/2

arctanh
[(
1− 4/τ2

)1/2] (4.13)
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Figure 3: The small indentation, δ < 1 spring stiffnessK1 measured as a function of the mechanical
bendability τ . The data markers correspond to the force–displacement experiments detailed in
Table 2 and the black curve corresponds to the theoretical prediction (4.13). Error bars represent
the standard deviation of the measured values of K1 calculated from force-displacement
measurements for δ < 1.

is the dimensionless ‘stiffness’, or spring constant, of the floating sheet.
It is important to note that the dimensionless stiffness (4.13) is a function solely of τ , as defined

in (2.15). In figure 3, experimental values of K1 are shown as a function of τ alongside the
theoretical result (4.13). (For definiteness, experimental calculations of the spring constant used
experimental data with δ < 1.)

We note that in the limits of small and large mechanical bendabilities the dimensionless
stiffness takes the values

K1 ∼

{
8, τ � 1

2π τ
log(4τ)

, τ � 1.
(4.14)

For τ � 1 the stiffness of the sheet becomes insensitive to the value of that tension (since the
restoring force is provided predominantly by the bending stiffness of the sheet). In dimensional
terms, we have that for τ � 1

F ≈ 8
B

`2g
ζ0 = 8(Bρg)1/2ζ0, (4.15)

which is a result derived first by Hertz [35]. For large mechanical bendability, τ � 1, however,
the stiffness of the sheet is instead dominated by the surface tension of the interface; the
corresponding dimensional result is

F ≈ 2πγlv
log(4τ)

ζ0. (4.16)

In this limit, the bending stiffness of the sheet enters only via a logarithmic correction.

(c) Large displacement scaling analysis
The theoretical analysis just presented for small displacements relied on the stress state within
the sheet remaining close to its pre-indentation levels. However, as the indentation, ζ0, increases
the sheet is forced to stretch over a horizontal region of size `∗ (with `∗ currently unknown).
This stretching induces a strain ∼ (ζ0/`∗)

2 and hence costs an elastic energy ∼Eh(ζ0/`∗)4`2∗ =
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Figure 4: (Color online). Deformation profile of a floating elastic sheet with low mechanical
bendability, τ � 1, and subject to a localized load for various indentation depths (as indicated
in each legend). (a) For small displacements, δ= ζ0/h< 1, the normalized vertical displacement
ζ/ζ0 is plotted as a function of the radial distance scaled by the elasto-gravity bending length
`g . The analytical prediction, (4.11), is also shown for the case τ = 0 (solid curve). (b) For large
indentation depths, δ= ζ(0)/h> 1, the normalized vertical displacement ζ/ζ0 is plotted as a
function of the radial distance scaled by the emergent horizontal scale, `∗ = (Ehζ20/ρg)

1/4 =

`gδ
1/2[12(1− ν2)]1/4; also shown are the numerically obtained predictions for δ= 5 (dashed

curve) and δ= 8 (solid curve). The inset shows how these data would collapse if `g were used
to rescale horizontal lengths, as is appropriate for small indentation depths. The experimental
data was obtained for PDMS sheets with (a) h= 5mm and (b) h= 1.5mm; however, for all of the
data presented, the deformation of the sheet remains axisymmetric so that imaging the deflection
of a line drawn across the centre of the sheet provides a measure of the deformation independent
of azimuthal angle.

Ehζ40/`
2
∗. Since this elastic energy decreases as the sheet stretches over a greater horizontal

distance (the strain is smaller), it is tempting to assume that `∗ =Rsheet, the radius of the sheet.
However, such a deformation is extremely expensive in terms of the gravitational potential energy
of the liquid that is displaced, ∼ ρgζ20`2∗. Instead, an indentation-dependent horizontal scale
`∗ ∼ (Ehζ20/ρg)

1/4 emerges that minimizes the sum of gravitational and elastic energies. Using
this estimate of `∗ in the above energy estimates, we find that the total energy of the system then
scales like (Ehρg)1/2ζ30 , which must balance the work done in indentation, Fζ0. This argument
predicts that the indentation force F ∼ (Ehρg)1/2ζ20 , or in dimensionless terms that

F ∼ δ2 (4.17)

with a pre-factor that is independent of τ . This scaling is consistent with both numerical and
experimental results shown in figure 2. However, it seems possible that this scaling might fail
with τ � 1; for example, the relevant stretching energy might be that in the flat portion of the
membrane, r& `∗, rather than that induced by the out of plane deformation. We shall carefully
consider this possibility shortly.

Profiles of the deflection of the PDMS sheets measured as a function of radial position are
shown in figure 4 for various ratios of indentation displacement to sheet thickness, δ= ζ0/h.
Naturally, an increase in the applied load resulted in greater deformation of the elastic sheet.
For the results shown in figure 4(a) the indentation of the sheet is less than the thickness of the
sheet, δ < 1, while in figure 4(b) the indentation is greater than the sheet thickness, δ > 1 (though
in all cases plotted in figure 4, the measured deformation of the sheet remains axisymmetric). For
small deformations, the normalized indentation displacement, ζ/ζ0, is plotted as a function of
the radial distance scaled by the elasto-gravity bending length, r/`g , in figure 4(a); we observe
good collapse, particularly with the smallest δ� 1. In contrast, for large deformations, shown
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Figure 5: (Color online). Numerically determined profiles of the hoop stress in the sheet for
different indentation depths, δ, and mechanical bendabilities, τ . Results are shown for τ = 0.1

(red curves), τ = 1 (green curves) and τ = 10 (blue curves). (a) At relatively small indentation
depths (here δ= 1) the stress is approximately uniform and close to the initial stress, τ , except
very close to the indenter. For larger indentation depths the region in which the stress changes
significantly grows and σθθ < 0 in an annular region that also grows: in (b) δ= 102 and in (c)
δ= 103. In both (b) and (c) curves are shown for τ = 0.1, 1 and 10 with the direction of increasing
τ indicated by arrows. (d) Rescaling the results in (a)-(c) as suggested by the scaling analysis, and
in particular (4.18), shows that the hoop stress profile approaches a universal profile (black dotted
curve) when δ� 1 and δ/τ � 1.

in 4(b), the normalized indentation displacement ζ/ζ0 is plotted as a function of the radial
distance r scaled by the horizontal scale that emerges from the large displacement scaling analysis
`∗ ∼ (Ehζ20/ρg)

1/4 — we see that plotting the data in this way provides a better collapse in this
regime than would be obtained by using r/`g (see inset of figure 4(b)). For both small and large
displacements, we see that the vertical deflection of the edge of the sheet is negligible, though this
is expected to break down for very large indentations, i.e. once `∗ ∼Rsheet.

Figure 5(a)-(c) presents numerically determined profiles of the hoop stress, σθθ , within the
sheet for τ = 0.1, 1 and 10, and different values of the indentation depth δ. These stress profiles
show that the stress differs from the applied (interfacial) tension only near the indenter, but also
that the indenter’s region of influence grows with increasing indentation depth. The key feature
of these plots is, however, that the hoop stress becomes increasingly compressive as δ increases
— this compression ultimately leads to wrinkling, as we shall see in §5.

The scaling law that led to (4.17) predicts that the stresses within the sheet, σij ∼ δ. It is
therefore natural to test this scaling law by rescaling the numerical results of figure 5(a)-(c) using
a lateral length scale δ1/2 and stress scale δ. This collapse is shown in figure 5(d) and supports the
validity of the scaling argument as already presented. However, two dimensionless groups, both
τ and δ, influence the behaviour and so it seems plausible that some τ -dependence may remain.
To test this possibility, we use the rescalings suggested by our scaling analysis to rescale the full,
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axisymmetric dimensionless problem (4.1)–(4.2). In particular, we let

R̃=R/δ1/2, Z̃ =Z(R)/δ, Ψ̃ =
(
Ψ − 1

2τR
2
)
/δ2 (4.18)

and find that the system of equations (4.1)–(4.4) becomes

δ−2
1

R̃

d

dR̃

{
R̃

d

dR̃

[
1

R̃

d

dR̃

(
R̃
dZ̃

dR̃

)]}
− 1

R̃

d

dR̃

[
dZ̃

dR̃

(
τ

δ
R̃+

dΨ

dR

)]
=−Z̃ − F

2πδ2
δ(R̃)

R̃
(4.19)

and

R̃
d

dR̃

{
1

R̃

d

dR̃

[
R̃

(
τ

δ
R̃+

dΨ̃

dR̃

)]}
=−6(1− ν2)

(
dZ̃

dR̃

)2

, (4.20)

subject to

Z̃(0) =−1, Z̃′(0) = lim
R̃→0

[
R̃Ψ̃ ′′ − νΨ̃ ′

]
= Ψ̃(0) = 0, (4.21)

and far-field conditions

Z̃, Z̃′→ 0, Ψ̃ → 0 (R̃→∞). (4.22)

This rescaling shows that the effect of the bending stiffness (the first term on the LHS of (4.19))
may be neglected for δ� 1, apart from a small boundary layer near the origin. Interestingly,
this rescaling also reveals that the effect of the mechanical bendability is perturbative, provided
that the indentation depth is sufficiently large that τ/δ� 1. Therefore in the limit δ�max{τ, 1},
a universal problem is recovered and the problem, including the force law (4.17), is indeed
independent of the mechanical bendability τ , even for τ � 1.

(d) Transition from small to large displacements
To understand what is meant by large and small displacements, we now compare the two force
laws given by (4.12) and (4.17). We expect that these two forces become of the same order when

δ∼K1(τ), (4.23)

and hence that the transition between the linear and quadratic regimes will occur when the
dimensionless displacement is comparable to the dimensionless stiffness of the sheet, i.e. δ=
O[K1(τ)]. Since K1(τ)∼max{1, τ/ log(τ)}, we note that the criterion (4.23) for the transition
between small and large indentation depths is also consistent with the condition δ�max{τ, 1}
for which the rescaled problem (4.19)–(4.22) becomes universal.

The analysis of this section has characterized the axisymmetric behaviour of the sheet. As
the load, F , or, equivalently, the indentation depth δ, increase, the stresses within the sheet are
changed from the uniform, homogeneous tension applied by surface tension initially. As might
be expected, the application of a load generally stretches the sheet, increasing the magnitude of
the stress. However, indentation also acts to pull material within the sheet to a a smaller radial
coordinate: to fit within this smaller circle, the hoop stress, σθθ , becomes relatively compressive
(see for example figure 5 and stress profiles for the membrane, τ =∞, case [22]). The degree of
relative compression increases with indentation depth and, at sufficiently large δ, the hoop stress
becomes absolutely compressive, σθθ < 0. Very thin membranes (τ � 1) offer very little resistance
to bending [22], and so this compression signals the onset of wrinkling. However, to determine
this onset of wrinkling for finite mechanical bendability requires more detailed consideration, and
it is to this that we now turn.
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5. Large-amplitude deformation: the onset of wrinkling
In the limit of infinite mechanical bendability, τ =∞, it was shown previously [22] that the hoop
stress first becomes compressive when

ζ0 = ζ
(c)
0 ≈ 11.75`c

( γlv
Eh

)1/2
, (5.1)

which in the non-dimensionalization used here reads

δc =
ζ
(c)
0

h
≈ 11.75

[12(1− ν2)]1/2
τ. (5.2)

It was also shown experimentally that very thin membranes do indeed wrinkle at this indentation
depth, to within experimental resolution.

However, sheets of finite mechanical bendability are of most interest here and do, by definition,
have a finite resistance to bending. As such, they may accommodate some compressive stresses
before buckling. We therefore expect that there will be a τ -dependent critical indentation depth
δc(τ) at which a wrinkled solution first exists. Determining this critical indentation depth should
also reveal the properties of the wrinkle pattern at onset. We therefore focus on the behaviour
of the system close to the threshold of wrinkling: this is a ‘Near Threshold’ analysis, rather than
the ‘Far from Threshold’ analysis in which the stress field is fundamentally changed to relax
compression [22,24].

(a) Linear stability analysis
We seek a solution of (2.11) and (2.12) that is a small perturbation of the axisymmetric solution
found in §4. We therefore let

Z(R, θ) = Z(0)(R) + Z(1)(R) cosnθ + ...,

χ(R, θ) = Ψ(0)(R) + Ψ(1)(R) cosnθ + ....

Substituting this ansatz into (2.11) and (2.12), we find that at leading order we recover the
axisymmetric membrane problem considered in §4, which takes the form of (4.1)–(4.2) with
Ψ → Ψ(0) and Z→Z(0), i.e.

∇4Z(0) =
1

R

d

dR

(
dZ(0)

dR

dΨ(0)

dR

)
− Z(0) −

F
2π

δ(R)

R
,

∇4Ψ(0) = −6(1− ν2)
R

d

dR

(
dZ(0)

dR

)2

.

However, at next order, and after retaining only those terms that are linear in the perturbation,
we find that

1

R2

[
Ψ ′′(0)

(
RZ′(1) − n

2Z(1)

)
+RΨ ′(0)Z

′′
(1) + Z′′(0)

(
RΨ ′(1) − n

2Ψ(1)

)
+RZ′(0)Ψ

′′
(1)

]
=Z(1) + L

2
n

{
Z(1)

}
(5.3)

and

L2n
{
Ψ(1)

}
+

12(1− ν2)
R2

[
RZ′(0)Z

′′
(1) + (RZ′(1) − n

2Z(1))Z
′′
(0)

]
= 0, (5.4)

where f ′ denotes differentiation with respect to R and the operator Ln is defined by

Ln {f}=
(

d2

dR2
+

1

R

d

dR
− n2

R2

)
f. (5.5)

For practical purposes, it is useful to note that

L2n {f}= f ′′′′(R) +
2

R
f ′′′(R)− 2n2 + 1

R2
f ′′(R) +

2n2 + 1

R3
f ′(R) +

n2(n2 − 4)

R4
f(R). (5.6)
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Figure 6: (Color online). Image of the wrinkles that result from the indentation of a floating PDMS
sheet for δ� δc. (Here h= 2mm and D= 890mm.)

Equations (5.3) and (5.4) are to be solved subject to the boundary conditions that the
perturbation to the displacement and its slope must vanish both at the indenter and as R→∞,
that is

Z(1)(0) =Z′(1)(0) = 0, Z(1)(R→∞) =Z′(1)(R→∞) = 0. (5.7)

Considering the condition that the components of the displacement have to vanish at the indenter
gives

lim
R→0

[
RΨ ′′(1) − νΨ

′
(1) + νn2

Ψ(1)

R

]
= 0, (5.8)

as well as Ψ(1)(0) = 0.
The problem (5.3)–(5.8) is a quadratic eigenvalue problem for n2 [41]. We solve this problem

numerically by first solving the axisymmetric problem via relaxation (using bvp4c in MATLAB).
With this solution, we then discretize the resulting linear equations for Ψ(1) andZ(1) using centred
finite differences and solve the resulting quadratic eigenvalue problem by restricting n to be
an integer and determining the smallest value of δ for which the linear system has vanishing
determinant. This gives a range of critical indentation depths δc(n), which can then be minimized
to give the smallest value of δ at which wrinkles may occur, as well as the corresponding number
of wrinkles at the onset of wrinkling, nonset. The results of this numerical analysis, together with
the results from experiments focussed on the onset and form of wrinkling, are detailed below.

(b) Experimental investigations of the onset of wrinkling
To explore the onset of wrinkling, further experiments were performed on the elastic sheets
described in §3. An image of the relatively large amplitude wrinkles observed with a thick
PDMS sheet, for δ� δc, is shown in figure 6. The key parameters of interest here, however,
are those determined by our Near Threshold analysis, namely the critical indentation depth at
which wrinkling first occurs, δc, and the number of wrinkles present at the onset of wrinkling,
nonset. (We do not investigate how the wrinkle patterns evolve beyond onset, which has been
studied in detail for highly bendable sheets [26].) The physical properties of the sheets used in
these experiments are summarized in Table 3.

As before, relatively thick PDMS sheets and thin PVS sheets (material properties as detailed in
Table 3) were floated on water and indented until the wrinkles became visible so that the number
of wrinkles could be counted by eye. Additional experiments were performed on a Polyimide
(PI) sheet (detailed in §3(b)) and a Polycarbonate (PC) sheet of h= 2.2µm and E = 2.73GPa and
ν = 0.37 (supplied by Goodfellow, Cambridge). The experiments performed on the PI and PC
sheets were performed with the sheets floating on water (γlv = 72.81± 0.12dyn/cm) and also on
a well-mixed solution of water and washing-up liquid (γlv = 24.85± 0.12dyn/cm, measured as
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Material h (µm) D (mm) B (Pam3) `g (mm) `c (mm) τ marker
PDMS 2000 890±0.5 1.83× 10−3 20.8 2.72 1.72× 10−2 •
PDMS 1500 480±0.5 7.73× 10−4 16.8 2.72 2.63× 10−2 •

PI 8.5±2.0 200±0.5 2.14× 10−7 2.16 2.72 1.59 •
PC 2.2± 0.6 118±0.5 3.80× 10−9 0.79 2.72 11.9 •
PI 8.5± 2.0 200±0.5 2.14× 10−7 2.16 1.59 5.43×10−1 H
PC 2.2± 0.6 118±0.5 3.80× 10−9 0.79 1.59 4.07 H

PVS8 191± 3 89±0.5 1.56× 10−7 2.00 2.72 1.84 �
PVS8 189± 2 89±0.5 1.51× 10−7 1.98 2.72 1.87 �
PVS8 83± 5 89±0.5 1.28× 10−8 1.07 2.72 6.43 �
PVS8 67± 5 89±0.5 6.72× 10−9 0.91 2.72 8.84 �
PVS8 48± 5 89±0.5 2.47× 10−9 0.71 2.72 14.6 �
PVS8 48± 3 89±0.5 2.47× 10−9 0.71 2.72 14.6 �
PVS8 45± 4 89±0.5 2.04× 10−9 0.67 2.72 16.1 �
PVS8 38± 3 89±0.5 1.23× 10−9 0.59 2.72 20.1 �
PVS8 32± 3 89±0.5 7.32× 10−10 0.52 2.72 26.87 �

Table 3: Details of the properties of the elastic sheets used in the experiments concerning the onset
of wrinkling, including: the material, the sheet thickness h, diameter D, bending stiffness B, the
elasto-gravity bending length `g , the liquid-vapour capillary length `c and τ = `2c/`

2
g . The table

also includes the data marker used to denote the elastic sheet in figure 7.

described previously). The variation in the sheet thickness and material, as well as of the liquid–
vapour surface tension γlv permitted the variation of τ : here we report experiments with 10−2 .
τ . 30.

(c) Linear stability and experimental results
The key quantities of interest are the critical depth, δc, at which wrinkling begins and nonset,
the number of wrinkles observed at this onset. Figure 7(a) and (b) therefore show how nonset
and δc, respectively, vary with the dimensionless mechanical bendability τ . The experimental
observations of both the number of wrinkles at onset and the critical indentation depth broadly
agree with the results of the linear stability analysis. In particular, both theory and experiment
illustrate that the number of wrinkles and onset indentation are approximately constant for small
mechanical bendability, τ � 1. This is as should be expected: recall that the limit τ = 0 is regular
and so, for τ � 1, the problem is governed by the indentation depth δ alone (or equivalently, the
geometrical bendability ε−1g = δ2). This implies that the wrinkling instability must occur at some
critical value δc, independently of τ . This critical value δc must therefore be some O(1) constant
for τ � 1 (in agreement with the numerical and experimental results).

In the limit of large mechanical bendability, τ � 1, we find that the numerical results for
the indentation depth at onset, δc, are consistent with previous results for τ =∞ [22], which is
written in our dimensionless notation in (5.2), and is shown in figure 7(b) for comparison. In this
limit our numerical results for the wrinkle number suggest nonset ∼ ε−1/3m ∼ τ2/3, which is the
scaling expected by modifying a previous scaling analysis of the problem close to threshold [24].
Our experimental results reproduce the numerically expected values (to within experimental
error) but do not reach the very large mechanical bendability regime where a true scaling exists.
Instead, the experimental results taken on their own appear to suggest a scaling nonset ∼ τ1/2. We
emphasize that this apparent scaling law is simply the transition between different scaling laws
(nonset =O(1) at τ � 1 and nonset ∼ τ2/3 at τ � 1) and should not be relied upon. This is similar
to the behaviour observed in a related, Near Threshold, buckling problem [42]. Finally, we note
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Figure 7: (a) The number of wrinkles observed at onset, nonset as a function of τ . (b) The
dimensionless indentation depth at which a wrinkled solution first exists, δc, and (inset) a
measure of the dimensional depth at which wrinkling should occur as the thickness h of the
membrane is varied (see text). In both figures the markers denote the results of simulations
(×), the experiments performed on PDMS, PI and PC, for which γlv = 72 mN/m (•) and γlv =
22 mN/m (H), and on PVS, for which γlv = 72 mN/m (�). In (a) the triangle indicates the
near-threshold scaling prediction, following [24], for the wrinkle number, nc ∼ τ2/3. In (b) the
prediction of membrane theory, (5.2), valid for τ � 1 [22], is shown by the dashed line. The
additional points in the inset (/,4, .) are taken from previous experiments with highly bendable
sheets and ν = 0.3 [22] illustrating the non-monotonicity of ζ(c)0 as h varies. We attribute the
quantitative disagreement of these experiments to the finite size of the sheets used previously [22],
though the different Poisson ratio may also make a small difference. In both figures, error bars
represent the standard deviation from at least 10 measurements.

that since δc/τ ∼ τ−1/3→ 0 as τ →∞ the rescaling of the axisymmetric problem suggested in
(4.18) is unphysical for sheets with high mechanical bendability, τ � 1: such sheets will wrinkle
before they reach the limit δ/τ � 1 for which the axisymmetric state becomes universal and
the length scale `∗ ∝ δ1/2 emerges, see figure 5(d). Whether similar scalings persist ‘Far from
threshold’ remains to be seen.

For many applications it may also be interesting to understand how the indentation depth
required for wrinkling varies with sheet thickness as the other, material, properties of the system
are maintained. In particular, with fixed E, ρg and γlv , the dimensional indentation depth at
the onset of wrinkling has a minimum as the sheet thickness h varies. To see this, consider first
a scaling point of view: one expects ζ(c)0 ∝ h for τ � 1, while previous work [22] showed that

ζ
(c)
0 ∝ h−1/2 in the limit τ � 1. These qualitatively different scalings of ζ(c)0 with h, combined

with the monotonic decrease of τ with h (τ ∝ h−3/2 from (2.15)) leads us to expect that ζ(c)0 will
attain a minimum value at intermediate thicknesses. In more detail, the dimensional indentation
depth at the onset of wrinkling may be written (with other material properties assumed fixed) as
a function of τ alone:

ζ
(c)
0 = h× δc(τ)∼ δc(τ)/τ2/3. (5.9)

Our numerical results confirm the expectation that this quantity is minimized as the sheet
thickness varies (see inset of figure 7(b)) with the minimum located at δc/τ2/3 ≈ 12.6 and
τ−2/3 ≈ 0.27 for ν = 0.5. Our experiments were not able to reproduce this minimum cleanly but,
when combined with previously published experimental data [22], do show a clear minimum.

The appearance of a minimum in the indentation depth required for wrinkling is surprising
at first, but may be understood qualitatively by recalling that wrinkling requires both a sufficient
level of compression and a sufficiently low bending rigidity. Thin sheets have a high mechanical
bendability (τ � 1) and so the precise value of their bending rigidity is irrelevant. Instead,
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the threshold for wrinkling is governed by the compression level: wrinkling occurs when the
azimuthal compression induced by indentation overcomes the applied (interfacial) tension. As
a result, when the tensile load is reduced (e.g. by using a thicker, but still ‘thin’, sheet) a lower
compression level is needed to induce wrinkling. At the other end of the spectrum, thick sheets
have a low mechanical bendability (τ � 1) and hence can withstand large compressive forces
before buckling through wrinkling. As a result, the threshold for wrinkling of such sheets is
governed by the bending rigidity: the thinner a ‘thick’ sheet is, the lower the compression level
required for wrinkling. Between these two extremes, the indentation depth required for wrinkling
is minimized.

6. Discussion and Conclusions
In this paper, we have investigated the response of a floating, elastic sheet to an applied, localized
load focussing on the limit of low-to-moderate mechanical bendability, 10−2 . τ . 102. For loads
insufficient to wrinkle the sheet, the resultant deformation is axisymmetric and is characterized
by two regimes in the force-displacement law: with small displacements, the force is linearly
proportional to the imposed indentation, while for large displacements the force is proportional to
the square of the imposed indentation. These different responses can be understood as the result
of the elastic object deforming over a horizontal length scale ` that is deformation-independent for
small indentation depths (but varies with the sheet thickness) but that is deformation dependent
for large indentation depths. For small indentation depths, the gravitational potential energy of
the liquid displaced by this deformation∼ ρg`2ζ20 , which balances the work done by the indenter,
∼ Fζ0, giving a linear force–displacement relation. For large indentation depths, the deflection
of the elastic object occurs over the horizontal length scale `∗ ∼ ζ1/20 and so the gravitational
potential energy of the liquid displaced by this deformation ∼ ρgζ30 . The resulting force law is
therefore quadratic in ζ0 (though we emphasize that the development of wrinkling far beyond
threshold may return the system to a linear force law [22]).

We began this study by posing the question of which material we feel when we poke a sheet
that coats a liquid layer. We can now answer this question, assuming our poking is limited to
small vertical displacements, by examining the small indentation spring stiffness

K1 = F/ζ0 ∼

{
8(Bρg)1/2, τ � 1,

2π
log(4τ)

γlv, τ � 1.
(6.1)

With this result we see that for sheets with low mechanical bendability (τ � 1), the linear stiffness
is a mixture of that due to the substrate and that due to the sheet itself. This observation can
be rationalized by the fact that the limit of zero mechanical bendability, τ = 0 is regular, and
determined entirely between the balance between the bending stiffness of the sheet and the
hydrostatic pressure within the liquid. However, for sheets with high mechanical bendability
(τ � 1) this stiffness is instead dominated by the surface tension of the interface with the
mechanical properties of the sheet entering only via a logarithmic correction. In the analogous
case of a Winkler foundation — an elastic composite comprising a thin sheet bonded to a substrate
that provides a linear restoring force — we anticipate that a similar result will hold: for relatively
unbendable sheets the stiffness will result from a combination of the sheet and the substrate, while
for highly bendable sheets the stiffness will be dominated by any boundary tension existing in the
sheet prior to indentation.

Larger indentations cause a significant perturbation to the stress (compared to the stress prior
to indentation). This is the origin of the emergent length scale `∗, and the transition between
the small-displacement and large-displacement force laws. However, another consequence of the
change in the stress is that the hoop stress becomes compressive: material is pulled to a radial
position at which its natural length is too great. If this compression becomes large enough, the
sheet relieves this frustration by buckling out of the plane, with radial wrinkles forming. We
have analysed the onset of this wrinkling instability as a function of the mechanical bendability
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τ determining both the critical indentation depth required to bring about wrinkling, and the
number of wrinkles observed at onset. Our result for the critical indentation required to generate
wrinkling in the high mechanical bendability, τ � 1, limit agree with those determined from
membrane theory and verified experimentally previously [22]. Our results for the number of
wrinkles at onset in this regime suggest that nonset ∼ τ2/3 for highly bendable sheets. Our study
of the onset of wrinkling at low and moderate mechanical bendabilities, τ . 1, suggests that both
the onset indentation, and the number of wrinkles at onset are O(1) quantities as τ → 0, and are
confirmed by our own experiments.

We note in closing that our analysis of the onset of wrinkling assumed that wrinkling occurs
with a single wavenumber. In the case of well-developed wrinkling (far-from-threshold) with
high bendability, it has recently been observed that the wrinkle number may, in fact, evolve with
both indentation depth and radial position [26]. More detailed analysis of this problem beyond
onset is needed to understand whether this spatial variation is also observed at low and moderate
mechanical bendabilities — the parameter regime highlighted as ‘open’ in table 1. Nevertheless,
our study of the small-indentation behaviour up to and including the threshold of instability
extends our understanding of deformation in such scenarios. In particular, our exploration of the
role of the dimensionless parameters τ and δ in this problem allows the behaviour of a wide range
of systems from the nano-indentation of ultra-thin films to the geological context of the loading
of ice sheets and tectonic plates to be studied within a single framework.
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