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Recent experiments by Pihler-Puzović et al. (2012) have shown that the onset of vis-
cous fingering in circular Hele-Shaw cells in which an air bubble displaces a viscous fluid
is delayed considerably when the top boundary of the cell is replaced by an elastic mem-
brane. Non-axisymmetric instabilities are only observed at much larger flow rates, and
the large-amplitude fingers that develop are fundamentally different from the dendritic
fingers in rigid-walled cells.

We explain the mechanism for the suppression of the instability using a combination
of linear stability analysis and direct numerical simulations, based on a theoretical model
that couples a depth-averaged lubrication equation for the fluid flow to the Föppl-von
Kármán equations, which describe the deformation of the elastic membrane. We show
that fluid-structure interaction affects the instability primarily via two changes to the
axisymmetric base flow: the axisymmetric inflation of the membrane prior to the onset
of any instabilities slows down the expansion of the air bubble and forces the air-liquid
interface to propagate into a converging fluid-filled gap. Both of these changes reduce the
destabilising viscous effects that drive the fingering instability in a rigid-walled cell. In
contrast, capillary effects only play a very minor role in the suppression of the instability.

1. Introduction
The development of viscous fingers in Hele-Shaw cells is a classical and widely studied

fluid mechanical instability. When air is injected into a viscous fluid layer that fills the
narrow gap between two rigid, parallel plates, the radially expanding air bubble that
displaces the viscous fluid tends to be unstable to non-axisymmetric perturbations. These
perturbations grow rapidly into large-amplitude fingers, which undergo repeated tip-
splitting, resulting in complex dendritic structures such as the one shown in Fig. 1 (a);
see, e. g., Saffman & Taylor (1958); Paterson (1981); Homsy (1987); Thomé et al. (1989);
Chen (1989); Miranda & Widom (1998).

The continuing interest in viscous fingering arises from its close relation to a wide range
of phenomena, such as the printer’s and ribbing instabilities (Taylor 1963; McEwan &
Taylor 1966; Reinelt 1995), the solidification instability in crystal growth (Mullins &
Sekerka 1964), the dynamics of fractures (Hull 1999), the Darrieus-Landau instability of
flame fronts (Clanet & Searby 1998) and growth of bacterial colonies (Ben Jacob et al.
1992). Moreover, it is of direct practical relevance in fields like oil recovery (Orr Jr. &
Taber 1984) and carbon sequestration (Cinar et al. 2009). Much recent work has focused
on mechanisms that can be used to manipulate the pattern formation in Hele-Shaw
cells, e. g. via the use of non-Newtonian fluids (Kondic et al. 1998; Fast et al. 2001), by
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(a) Dendritic fingers: (b) Suppressed fingers: (c) Stubby fingers:

V̇ = 145 ml.min−1 V̇ = 145 ml.min−1 V̇ = 1.25 l.min−1

1 cm

Figure 1. Top view of the fingering patterns in (a) the rigid cell and (b, c) the elastic-walled
cell with a latex membrane of thickness h ≈ 0.33 mm and Young’s modulus E = 1.44 MPa, in
which a growing air bubble displaces silicone oil of viscosity µ = 1.04 kg m−1s−1 at a constant
flow rate V̇ .

controlling the injection rate (Li et al. 2009; Dias & Miranda 2010; Dias et al. 2012) or
by changing the geometry of the cell (Al Housseiny et al. 2012; Juel 2012).

In recent experimental work (Pihler-Puzović et al. 2012) we showed that the intro-
duction of fluid-structure interaction is a particularly powerful means of affecting the
viscous fingering instability. Specifically, we found that when the upper bounding plate
of the Hele-Shaw cell was replaced by an elastic membrane, the onset of fingering was
delayed considerably: for an injection flow rate that created the complex dendritic fin-
gering pattern shown in Fig. 1 (a), the expanding bubble remained axisymmetric in an
(otherwise identical) elastic-walled cell; see Fig. 1 (b). Non-axisymmetric instabilities still
developed, but only at much larger flow rates. Furthermore, the finite-amplitude fingers
that ultimately emerged from instabilities in the elastic-walled cell were found to have
a fundamentally different shape (“short and stubby”; see Fig. 1 (c)) compared to the
narrow dendritic fingers in rigid-walled cells.

Similar interactions between compliant boundaries and lubrication flows also arise in a
variety of natural processes including pulmonary airways reopening (Jensen et al. 2002;
Grotberg & Jensen 2004; Heap & Juel 2008; Heil & Hazel 2011) and the spreading of
magma underneath deforming strata (Michaut 2011; Bunger & Cruden 2011; Lister et al.
2013), as well as industrial application, such as roll coating (Carvalho & Scriven 1997,
1999; Chong et al. 2007) and fabrication of MEMS (Hosoi & Mahadevan 2004).

The aim of the present paper is to develop a theoretical model of flow in elastic-walled
Hele-Shaw cells in order to elucidate the mechanism responsible for the suppression of
viscous fingering by fluid-structure interaction. Our model is based on the classical work
by Saffman & Taylor (1958), who developed a two-dimensional viscous potential flow
model for the depth-averaged velocities in rigid-walled Hele-Shaw cells. In §2 we extend
this model by coupling it to the Föppl-von Kármán equations which describe the wall
deformation, accounting for both stretching and bending of the bounding membrane. §3
provides an overview of the methods used for the analysis – a linear stability analysis,
complemented by direct numerical simulations of the full nonlinear equations. In §4 we
analyse the system’s behaviour, studying the effect of fluid-structure interaction on the
axisymmetric base flow, its (linear) stability to non-axisymmetric perturbations, and
the evolution of the finite-amplitude fingers that develop from the initial instability.
Throughout this paper, we vary the the importance of fluid-structure interaction via
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Figure 2. Diagram of the elastic Hele-Shaw cell: (a) top view, (b) radial cross-section. All
quantities are given in dimensional variables. Shaded domains indicate the regions occupied by
the viscous fluid.

changes to the stiffness of the elastic membrane. This allows us to identify the mechanism
responsible for the suppression of viscous fingering in elastic-walled Hele-Shaw cells, which
we explain in §5. Finally, in §6 we provide a brief discussion and our conclusions.

2. The model
2.1. Flow equations

A sketch of the problem setup is shown in Fig. 2: a circular Hele-Shaw cell of radius Router

whose upper boundary is formed by an elastic membrane of thickness h, Young’s modulus
E and Poisson’s ratio ν. When the membrane is in its undeformed configuration, the cell
has a uniform depth b0 � Router. Air is injected at a constant flow rate V̇ at the centre
of the cell (at r = 0) and displaces the viscous fluid (of viscosity µ and surface tension
γ) that occupies the region Ωfluid. We non-dimensionalise all lengths in the plane of the
cell on the outer radius, [x∗1, x

∗
2, r
∗] = [x1, x2, r] Router, and time on the natural time

scale for flux-driven flow in the narrow gap between the walls of the cell, t∗ = T t, where
T = 2πRouter

2b0/V̇ . Throughout this paper a superscript asterisk is used to distinguish
dimensional quantities from their non-dimensional equivalents. Given the small aspect
ratio of the cell, A = b0/Router � 1, we describe the flow of the viscous fluid by the
Reynolds lubrication equation (Reynolds 1886),

∂b

∂t
= ∇ · (b3∇p) in Ωfluid, (2.1)

where b = b∗/b0 is the non-dimensional depth of the Hele-Shaw cell (which depends on the
deformation of the elastic membrane) and p = p∗/(6µV̇ /(πb03)) is the non-dimensional
fluid pressure.

Mass conservation for the volume of air in the bubble region, Ωair, requires that∫
Ωair(t)

b(x1, x2, t) dx1dx2 =
∫

Ωair(t=0)

b(x1, x2, t = 0) dx1dx2 + 2πt. (2.2)

We describe the position of the air-liquid interface by the vector R = R∗/Router =
R(θ, t) er (see Fig. 2). Its evolution is governed by the kinematic boundary condition

∂R
∂t
· n = u · n at ∂Ωair, (2.3)

where n is the unit normal to the air-liquid interface pointing into the viscous fluid and

u = −b2∇p (2.4)
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is the non-dimensional depth-averaged fluid velocity. We assume the pressure at the outer
edge of the Hele-Shaw cell to be atmospheric and set

p(r = 1) = 0. (2.5)

The capillary pressure jump over the curved air-liquid interface requires that

p|∂Ωair = pB(t)− 1
12
Ca−1 A κmean (2.6)

where Ca = µRouter/γT is the capillary number and pB(t) is the non-dimensional bubble
pressure, assumed to be spatially constant. κmean = Routerκ

∗
mean is the non-dimensional

mean curvature of the air-liquid interface, which we approximate by the sum of the
in-plane and transverse interface curvatures as

κmean = κ‖ + κ⊥ = A ∂t
∂S
· n +

2
b
, (2.7)

where t is the unit tangent to the air-liquid interface (in the plane of the Hele-Shaw cell)
pointing in the direction of an increase in the arclength S = S∗/Router; see Fig. 2 (a).
The expression for the transverse curvature, κ⊥ = 2/b, is itself an approximation (see
Fig. 7 below for a sketch of the assumed interface geometry).

We note that, as in the classical theory of Saffman & Taylor (1958), our dynamic
boundary condition (2.6) neglects the viscous normal stresses at the air-liquid interface.
Furthermore, the kinematic boundary condition (2.3) ignores the fact that a thin layer
of viscous fluid is deposited on the bounding plates of the Hele-Shaw cell. Both effects
could, in principle, be incorporated into the model using approaches similar to those of
Reinelt (1987), Jensen et al. (2002), Gadêlha & Miranda (2009) or Kim et al. (2009).

2.2. Membrane equations
In the experiments by Pihler-Puzović et al. (2012) the vertical deflection of the membrane,
w∗ = wRouter, in response to the fluid pressure tended to be large compared to the mem-
brane’s thickness. This suggests that self-induced in-plane stresses make an important
contribution to the membrane’s elastic response. We therefore describe the deformation of
the membrane by the non-dimensional Föppl-von Kármán equations (Landau & Lifshitz
1970):

∇4w − η
[
∂2φ

∂x2
2

∂2w

∂x2
1

+
∂2φ

∂x2
1

∂2w

∂x2
2

− 2
∂2φ

∂x1∂x2

∂2w

∂x1∂x2

]
= P, (2.8)

∇4φ+

[
∂2w

∂x2
1

∂2w

∂x2
2

−
(

∂2w

∂x1∂x2

)2
]

= 0, (2.9)

where we scaled the pressure acting on the membrane using the bending modulus K =
Eh3/12(1 − ν2) so that P = P ∗R3

outer/K. The function φ = φ∗/(EhRouter) is an Airy
stress function for the in-plane stresses in the membrane (such that σ11 = ∂2φ/∂x2

2,
σ22 = ∂2φ/∂x2

1 and σ12 = −∂2φ/∂x1∂x2), non-dimensionalised on the Young’s modulus
of the membrane. Finally, η = 12(1 − ν2) (Router/h)2 is a parameter that controls the
relative importance of in-plane and bending stresses. For sufficiently small deflections,
|w∗| � h, the nonlinear terms in the Föppl-von Kármán equations can be neglected and
the transverse deflections are governed by the classical linear bending equation ∇4w = P .

In the experiments the membrane rested freely on the viscous fluid layer and no sig-
nificant deformation was observed far ahead of the air-liquid interface. We mimic this
behaviour by assuming the membrane to be clamped and free of any in-plane stresses at
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its outer boundary by setting

w = 0,
∂w

∂n
= 0, φ = 0,

∂φ

∂n
= 0 at r = 1. (2.10)

2.3. The coupled problem
The fluid and solid equations are coupled because the pressure in the Föppl-von Kármán
equation (2.8) depends on the pressure in the fluid and the bubble

P =
{ I pB in Ωair,
I p in Ωfluid, (2.11)

where the final non-dimensional parameter, I = 12µV̇ /2πA3K, provides a measure of
the typical viscous stresses in the fluid relative to the stiffness of the elastic membrane.
The parameter I gives an indication of the importance of fluid-structure interaction (FSI)
in the sense that as I → 0 the membrane no longer “feels” the fluid stresses and the
system’s behaviour approaches that of a rigid-walled Hele-Shaw cell.

Furthermore, the membrane deflection affects the depth of the Hele-Shaw cell in (2.1),
(2.2), (2.3) and (2.7) via

b = 1 + w/A. (2.12)

3. Solution
We study the system’s behaviour using two complementary approaches. We perform a

linear stability analysis to assess the growth (or decay) of small-amplitude non-axisymmetric
perturbations to an axisymmetrically growing bubble and then use direct numerical sim-
ulations of the full nonlinear equations to study the evolution of the instabilities in the
large-amplitude regime.

3.1. Linear stability analysis
To determine the system’s axisymmetric evolution we expressed the governing equations
in cylindrical polar coordinates and assumed p = p̄(r, t), w = w̄(r, t), φ = φ̄(r, t) and
R = R̄(t). This transforms equations (2.1)-(2.12) into a spatially one-dimensional system
of PDEs with a free boundary, listed in Appendix B. We employed the time-dependent
transformations

ξ1 =
r

R̄(t)
for r ∈ [0, R̄(t)], and ξ2 =

r − R̄(t)
1− R̄(t)

for r ∈ [R̄(t), 1] (3.1)

to map the moving domain into two fixed reference domains and discretised the spatial
derivatives with respect to ξ1 and ξ2 by second-order accurate central finite-differences,
using virtual points for the boundary conditions. Starting from the initial condition
w̄(r, t = 0) = 0 and R̄(t = 0) = Rinit we then employed the first-order BDF scheme to
evolve the solution.

To assess the stability of the evolving axisymmetric solution to non-axisymmetric
perturbations we substituted the ansatz p = p̄(r, t) + εp̂(r, t) cos(Nθ), w = w̄(r, t) +
εŵ(r, t) cos(Nθ), φ = φ̄(r, t) + εφ̂(r, t) cos(Nθ), R = R̄(t) + εR̂(t) cos(Nθ) into the equa-
tions and linearised with respect to the amplitude ε � 1. This yields another spatially
one-dimensional system of PDEs for the evolution of the perturbations [p̂(r, t), ŵ(r, t),
φ̂(r, t), R̂(t)] with a given azimuthal wavenumber N (see Appendix B). The system of
PDEs is linear in the perturbation quantities but has time-dependent coefficients that
arise from the time-dependence of the evolving axisymmetric base state. We discretised
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the equations by the same finite-difference scheme that we employed for the axisymmet-
ric equations and followed the growth or decay of the perturbations by time-stepping the
equations, starting from a non-zero initial condition for R̂(t = 0).

3.2. Direct numerical simulations
We performed direct numerical simulations using the object-oriented multi-physics finite-
element library oomph-lib (Heil & Hazel 2006). The full nonlinear system of PDEs (2.1)-
(2.12) was discretised on an unstructured moving mesh, generated with the open-source
mesh generator Triangle (Shewchuk 1996). The initial mesh was designed so that the
air-liquid interface was aligned with an internal mesh boundary. To ensure that this line
followed the motion of the air-liquid interface, we treated the mesh as a (pseudo-)elastic
solid body which we deformed by applying a suitable line traction, p n, along the air-liquid
interface.

In the region Ωfluid the fluid pressure was expressed as p =
∑
j Pj ψj , where ψj are the

piecewise-quadratic shape functions associated with the six-noded triangles that make
up the mesh. Using the basis functions as the test functions, we integrated the Galerkin
weak form of the equation (2.1) by parts to obtain the discrete residuals

r
[p]
j =

∫
Ωfluid

(
b3
∂p

∂xk

∂ψj
∂xk

+
∂b

∂t
ψj

)
dx1dx2 +

∮
∂Ωair

b
∂R
∂t
· n ψ̃j dS = 0 (3.2)

which we treated as the equations for the unknown nodal pressures, Pj . Note that in
(3.2) the kinematic boundary condition (2.3) and the relation (2.4) were used to replace
the normal derivative of the pressure in the boundary integral by the instantaneous
normal velocity of the air-liquid interface. Throughout this section a tilde indicates that
a shape function is to be evaluated along the line representing the air-liquid interface. The
subscript j enumerates discrete unknowns and the associated residual equations. Other
subscripts take values 1 and 2, indicating the coordinate directions, and the summation
convention is used for these.

The weak form of the dynamic boundary condition (2.6),

r
[p]
j =

∮
∂Ωair

[
p− pB(t) +

1
12
Ca−1 A

(
A τττ · n +

2
b

)]
ψ̃j dS = 0, (3.3)

was then used as the equation for the nodal values Pj of the line traction (expanded as
p =

∑
j Pj ψ̃j), which drives the deformation of the pseudo-solid mesh in response to the

motion of the air-liquid interface. In (3.3) we have replaced the derivative of the tangent
vector, ∂t/∂S, by its smoothed counterpart, τττ . We expanded its Cartesian components,
τi, as τi =

∑
j Tij ψ̃j , and determined the coefficients, Tij , from the integrated-by-parts

projection equation

r
[τ ]
ij =

∮
∂Ωair

(
τiψ̃j + ti

∂ψ̃j
∂S

)
dS = 0. (3.4)

This projection is required because, given the piecewise quadratic representation of the
air-liquid interface in the moving mesh, ∂t/∂S is not sufficiently smooth to allow a direct
evaluation of the line integral in equation (3.3). Finally, we used the discretised version
of the volume constraint (2.2) as the equation that determines the bubble pressure pB(t).

To discretise the biharmonic operators in (2.8) and (2.9) we employed a standard mixed
formulation, based on an independent interpolation for the membrane displacement w,
the Airy stress function φ, and their Laplacians, l[w] = ∇2w and l[φ] = ∇2φ, respectively:
w =

∑
jWj ψj , φ =

∑
j Φj ψj , l[w] =

∑
j L

[w]
j ψj and l[φ] =

∑
j L

[φ]
j ψj . The second
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derivatives of w and φ in the nonlinear terms in the weak form of equations (2.8) and (2.9)
cannot be integrated by parts. We therefore evaluated them using smoothed versions of
the gradients g[{w,φ}]

i = ∂{w, φ}/∂xi, which we expanded as g[{w,φ}]
i =

∑
j{Wij , Fij}ψj ,

obtaining the coefficients Wij and Fij from the projection equations

r
[{W,F}]
ij =

∫
Ω

(
∂{w, φ}
∂xi

− g[{w,φ}]
i

)
ψj dx1 dx2 = 0, (3.5)

where Ω = Ωfluid ∪ Ωair. The weak form of (2.9) then yields the residuals

r
[φ]
j =

∫
Ω

∂l[φ]

∂xk

∂ψj
∂xk
−
∂g[w]

1

∂x1

∂g
[w]
2

∂x2
− 1

4

(
∂g

[w]
1

∂x2
+
∂g

[w]
2

∂x1

)2
 ψj

 dx1 dx2 = 0, (3.6)

which we treated as the equation for the unknown nodal values of the Airy stress function,
Φj . Similarly, we used the residuals associated with the weak form of equation (2.8),

r
[w]
j =

∫
Ω

(
η

[
∂g

[φ]
2

∂x2

∂g
[w]
1

∂x1
+
∂g

[φ]
1

∂x1

∂g
[w]
2

∂x2
− 1

2

(
∂g

[w]
1

∂x2
+
∂g

[w]
2

∂x1

)(
∂g

[φ]
1

∂x2
+
∂g

[φ]
2

∂x1

)]
ψj +

+
∂l[w]

∂xk

∂ψj
∂xk

+ P ψj

)
dx1 dx2 = 0, (3.7)

as the equation that determines the nodal values of the membrane displacements, Wj . Fi-
nally, the Laplacians of w and φ were determined from the integrated-by-parts projection
equations

r
[{l[w], l[φ]}]
j =

∫
Ω

(
∂{w, φ}
∂xk

∂ψj
∂xk

+ l[{w,φ}] ψj

)
dx1 dx2 = 0. (3.8)

The boundary terms that arise during the integration by parts in the derivation of equa-
tions (3.6)-(3.8) vanish because of the homogeneous boundary conditions (2.10).

We discretised the time-derivatives in the above equations using a second-order accu-
rate, adaptive BDF scheme. The time step was adjusted based on the error estimate for
the position of the air-liquid interface. The mesh velocity was taken into account when
evaluating the (Eulerian) time derivative of b in (3.2). To avoid strong distortion of ele-
ments in the moving mesh, the mesh was re-generated every few timesteps. Spatial error
estimates, obtained from Z2 flux recovery error estimator (Zienkiewicz & Zhu 1992), were
used to refine/coarsen the mesh in regions of large/small pressure gradients. All fields
were transferred between the meshes by projection.

The nonlinear algebraic equations listed above were solved “monolithically” by New-
ton’s method. We used the sparse direct solver SuperLU (Demmel et al. 1999) to solve
the large systems of linear algebraic equations for the Newton corrections. The number
of discrete unknowns varied throughout the simulations, but reached up to 130,000.

Computations were performed in a two-stage procedure. To generate a well-defined
geometric perturbation to the air-liquid interface we initially set I = 0 to ensure that
the membrane remained in its undeformed position. We then solved the steady equations,
obtained by setting all time-derivatives to zero, while applying a pressure perturbation,
εP cos(Nθ), to the bubble pressure in the dynamic boundary condition (2.6). The value
of εP necessary to generate a geometric perturbation of the required amplitude was
obtained from the linearised version of equation (2.6). The resulting steady solution was
then used as the initial condition for the subsequent unsteady simulation during which we
set εP = 0 and reset I to its desired value. We note that this procedure closely resembles
the experimental protocol used by Pihler-Puzović et al. (2012).
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Figure 3. Instantaneous (a) membrane profiles and (b) pressures for I = 102 at t = 0.01, 0.02,
0.03, 0.04 and 0.05. The dotted lines in (a) indicate the position of the air-liquid interface at
the given times. Variation of (c) the position of the interface, R̄, and (d) the deflection of the
membrane at the centre of the cell, w̄(r = 0), with time, t, for I = 0, 10, 102, 103, 104, 105 and
106. The direction of increasing I is indicated by the arrow.

4. Results
The problem is governed by four non-dimensional parameters: the aspect ratio A, the

capillary number Ca, the Föppl-von Kármán parameter η, and the FSI parameter I.
Since the main aim of our study is to explore the effect of wall elasticity on the viscous
fingering instability we focus on variations in the FSI parameter I, keeping all other
parameters constant. This can be interpreted as a variation in the elastic modulus of
the membrane with I = 0 corresponding to a rigid-walled cell. Throughout this section
we set the other parameters to A = 0.04, Ca−1 = 2.5685 and η = 102. The choice of
parameter values and the effect of their variation will be discussed in more detail in §6.

We ensured that the numerical results presented below are fully converged (in the sense
that an increase in the spatial or temporal resolution gives graphically indistinguishable
results) by repeating selected computations with smaller timesteps and element sizes; see
Fig. 8 in Appendix A for a representative result.

4.1. The axisymmetric solution
The axisymmetric evolution of the system is illustrated in Fig. 3. The solid lines in
Fig. 3 (a) show the shape of the elastic membrane at five equally-spaced instants, while
the dotted vertical lines indicate the corresponding position of the air-liquid interface.
The behaviour shown in this graph is fairly typical for all simulations performed in our
study: the continuously increasing volume of the air bubble is accommodated by the
increase in the bubble radius and the simultaneous inflation of the bounding membrane.
Fig. 3 (b) shows the radial pressure distribution at the same instants as in Fig. 3 (a). The
position of the air-liquid interface is clearly visible by the capillary pressure jump. The
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bubble pressure decreases continuously as the bubble grows. The transverse deflection of
the membrane (∂b/∂t 6= 0) has a noticeable effect on the velocity in the viscous fluid. In
the rigid-walled case the injection of air creates a positive radial velocity (identifiable by
∂p/∂r < 0; see (2.4)) throughout the Hele-Shaw cell. The plot of the pressure distribution
in the elastic-walled Hele-Shaw cell in Fig. 3 (b) shows positive and negative radial
velocities, indicating that the fluid required to occupy the expanding gap under the
inflating membrane is partially recruited from the region ahead of the expanding bubble.

The evolution of the bubble radius, R̄(t), is shown in Fig. 3 (c) for different values of the
FSI parameter I. For I = 0 (corresponding to a rigid-walled Hele-Shaw cell) the bubble
radius follows directly from volume conservation and is given by R̄(t) =

√
R2

init + 2t.
An increase in I (while keeping all other parameters constant) can be interpreted as a
reduction in the membrane’s Young’s modulus. This leads to a larger deflection of the
membrane (see also the plot of the maximum deflection, w̄(r = 0, t), in Fig. 3 (d)) and
thus reduces the growth rate of the bubble radius. The evolution of the bubble radius
R̄(t) shown in Fig. 3 (c) is well described by a power law, R̄ ∼ tα, where the exponent
α decreases with an increase in I. This is consistent with the findings of Pihler-Puzović
et al. (2012) and Lister et al. (2013).

4.2. Non-axisymmetric instabilities and fingering
4.2.1. Linear stability analysis

Next we consider the stability of the evolving axisymmetric system to non-axisymmetric
perturbations. Following Paterson (1981), we assess the stability of the axisymmetri-
cally growing bubble by analysing the instantaneous growth rate of small-amplitude
non-axisymmetric perturbations to the bubble radius. For a rigid-walled, finite-size cell
the growth rate of perturbations with azimuthal wavenumber N is given by

1
R̂

dR̂
dt

=
1
R̄2

[
N

R̄

(
1
12
Ca−1A2(1−N2) + R̄

)
1 + R̄2N

1− R̄2N
− 1
]
. (4.1)

The growth rate depends not only on the wavenumber N but also on the instantaneous
radius R̄(t) of the axisymmetric air-liquid interface, implying that the most unstable
perturbation may change during the system’s evolution.

We note that a decrease in Ca (which corresponds to an increase in the surface tension
or a decrease in the injection flow rate) reduces 1/R̂ dR̂/dt, and is therefore stabilising.
However, as in the case of an infinitely large Hele Shaw cell considered by Paterson (1981),
the axisymmetrically evolving system always becomes unstable to non-axisymmetric per-
turbations at some point in its evolution – there is no “critical flow rate” (or capillary
number) below which the non-axisymmetric instabilities are suppressed.

For the parameter values chosen in the simulations in Fig. 4 (a), the axisymmetric
initial configuration is immediately unstable to non-axisymmetric perturbations with a
range of wavenumbers. When R̄ = R̄(t = 0) = R̄init = 0.05, the most rapidly grow-
ing mode in a rigid-walled cell (I = 0) has wavenumber N = 7. The topmost line in
Fig. 4 (a) shows the evolution of this mode’s growth rate as a function of the radius
of the axisymmetric bubble, R̄(t). The growth rate decreases continuously but always
remains positive. The other lines in this figure show corresponding results (for the same
wavenumber) for the elastic-walled case. An increase in I decreases the growth rate of the
non-axisymmetric perturbations. For I = 104 the axisymmetric state is stable initially,
becomes unstable between R̄ = 0.052 and R̄ = 0.084 but then restabilises, illustrating
that the instabilities in the elastic-walled cell are in general transient. Finally, for I = 105,
the axisymmetric state remains stable to non-axisymmetric perturbations of the given
wavenumber over the whole range of radii shown.
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Figure 4. (a) Evolution of the growth rates of the non-axisymmetric instability as a function
of the radius R̄ for N = 7 and I = 0, 10, 102, 103, 104 and 105. (b) The growth rates at
a fixed radius R̄ = 0.06 as a function of the wavenumber N for I = 0, 10, 102, 103, 104, 105

and 106, indicated by small yellow circles, connected by a spline for easier visualisation. The
most unstable mode for a given I is highlighted by the square symbol, except for I = 106, for
which all growth rates are negative. (c) Comparison of the linear stability analysis (LSA) and

the nonlinear simulations (oomph-lib) by plotting the time-evolution of εR̂ for N = 7. The
direction of increasing I is indicated by the arrow.

(a) Dendritic fingers:
I = 0

(b) Stubby fingers:
I = 102

(c) Suppressed fingers:
I = 104

(d) Sheet displacement:
I = 102

N = 7 N = 7 N = 7

Figure 5. (a)-(c) Top view of seven successive positions of the air-liquid interface, with the
smallest shown at t = 0, the last one highlighted with the bold line and increments of (a)
∆t = 0.017; (b) ∆t = 0.063; (c) ∆t = 0.083. (d) The shape of the membrane (transverse
displacement increased by a factor of 5) and the pressure field in the fluid (darker regions
correspond to larger pressures in the range [0, 0.068]) at t = 0.38 for I = 102.
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Dendritic fingers:
I = 0

Stubby fingers:
I = 102

(a) (b) (c) (d)

N = 5 N = 6 N = 5 N = 6

Figure 6. Top view of seven successive positions of the air-liquid interface, with the smallest
shown at t = 0, the last one highlighted with the bold line and (a) ∆t = 0.017, (b) ∆t = 0.016,
(c) ∆t = 0.048 and (d) ∆t = 0.058.

So far we have only considered the effect of variations in I on the growth rate of
perturbation with the fixed wavenumber, N = 7, that results in the most rapid initial
growth in the rigid-walled cell. To assess the effect of wall elasticity on the growth rates
of other modes, in Fig. 4 (b) we plot the growth rate of perturbations with different
wavenumbers at a fixed radius, R̄ = 0.06 (close to the radius at which the growth rate
of the instabilities tends to be largest; see Fig. 4 (a)), for different values of I. The red
squares identify the maximum growth rate for each I and show that an increase in I
decreases the most unstable wavenumber. For sufficiently large values of I the growth
rates of all perturbations become negative, implying complete suppression of the fingering
instability.

We note that the maxima in the growth rate curves for fixed I are fairly shallow.
This implies that a large number of linearly unstable modes have comparable growth
rates, suggesting that the number of large-amplitude fingers that will ultimately emanate
from the linear instability will depend sensitively on the wavenumber(s) of the initial
perturbation.

4.2.2. Large-amplitude fingering
The dependence of the growth rate on both time (via R̄(t)) and the wavenumber N ,

makes it difficult to assess which of the (typically many) linearly unstable modes are likely
to evolve into the finite-amplitude fingers observed in the experiments. Furthermore,
the competition and interaction between different modes is impossible to explore using
a linearised (small-amplitude) analysis. To assess the range of validity of the linearised
analysis, Fig. 4 (c) shows the amplitude of the perturbation to the axisymmetric interface,
εR̂(t), predicted by the linear stability analysis (thick lines) and the direct numerical
simulation of the full, nonlinear equations with oomph-lib (thin lines), for a rigid-walled
and two elastic-walled cells. The three simulations were started from the same initial
radius and used the same small-amplitude perturbation εR̂(t = 0)/Rinit = 0.01 with
wavenumber N = 7. For I = 0 and I = 102 the system initially exhibits approximately
exponential growth, but nonlinear effects lead to a rapid saturation when εR̂(t) >∼ 0.006.
For I = 104 the linear stability analysis predicted a short transient period of growth
(while 0.052 < R̄(t) < 0.084; see Fig. 4 (a)). Fig. 4 (c) shows that this transient instability
produces only very small perturbations to the axisymmetric state so that εR̂(t) remains
close to zero throughout the system’s evolution.

The nonlinear evolution of the air-liquid interface for the three values of I is illustrated
in more detail in Fig. 5 (a-c). In each sub-figure, the various lines show the position of
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the air-liquid interface at fixed time-intervals (specified by the value of ∆t). In all cases
we applied an initial perturbation with wavenumber N = 7 and amplitude εR̂(t =
0)/Rinit = 0.01 to the air-liquid interface. This initial perturbation develops rapidly into
large-amplitude fingers, whose shape depends on the value of I. For the rigid-walled case
we obtain the characteristic dendritic fingering pattern in which the bases of the fingers
only move very slowly while the finger tips continue to grow outwards and split when
they have become sufficiently wide. In the elastic-walled case with I = 102 (Fig. 5 (b))
the large-amplitude fingers look fundamentally different and adopt the “short stubby”
shape observed in the experiments because their bases continue to propagate outwards.
Finally, for sufficiently large values of I fingering is either completely suppressed or the
short transient growth of non-axisymmetric instabilities is so weak that viscous fingering
is effectively suppressed, as in Fig. 5 (c) for I = 104. The initial perturbation ultimately
decays and the interface returns to a slowly expanding axisymmetric shape.

In Fig. 5 (d) we show the shape of the membrane (with the transverse displacement
increased by a factor of 5) at t = 0.38 for the case I = 102. Note that although the
air-liquid interface has already developed large-amplitude fingers and the pressure in the
viscous fluid is highly non-uniform, the deformation of the membrane remains very close
to axisymmetric.

The dependence of the large-amplitude fingers on the wavenumber of the initial pertur-
bation is explored in Fig. 6, which shows the nonlinear evolution of the air-liquid interface
for the same parameter values as in Figs. 5 (a,b) (for I = 0 and I = 102, respectively). In
the linear stability analysis the N = 7 mode was found to have the largest initial growth
rate for both of these cases and was therefore used as the wavenumber of the initial
perturbation for the simulations in Fig. 5. In Fig. 6 we show the system’s evolution if the
wavenumber of the initial perturbation is changed to N = 5 and N = 6, using the same
amplitude (1% of the initial radius) as in Fig. 5. The results show that even such small
perturbations suffice to generate large-amplitude fingers with a wavenumber that differs
from the most unstable wavenumber of the intial configuration, despite the fact that
imperfections in the unstructured computational mesh excite a large spectrum of modes.
This is consistent with the relatively flat maximum of the growth rate vs wavenumber
curves in Fig. 4 (b) that we already alluded to in §4.2.1.

5. The mechanism for suppression of fingering
The results presented in the last section indicate that the viscous potential flow model

developed in §2 is capable of predicting the experimentally observed behaviour. Its rela-
tive simplicity makes it possible to gain insight into the mechanism by which the presence
of wall elasticity suppresses the viscous fingering.

First we recall the physical mechanism responsible for fingering in the rigid parallel-
walled Hele-Shaw cell. For convenience we will present the argument for the case of a
planar cell in which air (at a spatially constant pressure pB) displaces a thin layer of
viscous fluid in an infinitely wide channel – the setup originally studied by Saffman &
Taylor (1958) (Fig. 7 (a, b)). Assuming that the viscous fluid leaves the channel far ahead
of the air-liquid interface at a constant pressure, p∞, the flow of the viscous fluid is driven
by the instantaneous pressure gradient ∇p = (p∞ − pB)/L̄ ex. If the position of the air-
liquid interface is disturbed slightly, so that L = L̄+ ε cos(Ny) (as shown in Fig. 7 (b)),
the pressure gradient – and via (2.3) the velocity of the interface – is increased [decreased]
in regions where the interface protrudes from [lags behind] its average position L̄. The
resulting instability is counteracted by capillary effects: the pressure gradient induced by
the in-plane curvature κ‖ in (2.6) aims to straighten the interface. In the rigid-walled
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Figure 7. Diagram showing (a, c) the unperturbed and (b, d) perturbed air-liquid interface
in (a, b) a parallel-sided and (c, d) tapered rectangular channel. Note how the taper increases
[decreases] the transverse curvature of the air-liquid interface and the viscous resistance in
regions where it protrudes [lags behind] its mean position.

cell, fingering is therefore controlled by the relative importance of (destabilising) viscous
and (stabilising) capillary effects. Note that in the simple approximation (2.7) for the
mean curvature, the (larger) transverse curvature, κ⊥ = 2/b � κ‖ does not contribute
to the dynamics of the interface because b = const.

The introduction of wall elasticity alters the two-phase flow in the Hele-Shaw cell
in two significant ways: (a) the velocity of the air-liquid interface is reduced because
a fraction of the injected volume of air is accomodated by the deflection of the elastic
upper boundary (see Fig. 3); (b) the inflation of the Hele-Shaw cell (which is largest at
the centre; see Fig. 3) implies that the air-liquid interface generally propagates into a
converging fluid-filled gap (as in the case considered by Reinelt (1995)), i.e. b decreases
in the direction of the flow as shown in Fig. 7 (c, d) (again for the planar case). These
observations suggest at least three mechanisms by which the presence of the elastic
membrane weakens the viscous fingering instability: (i) the increase [decrease] in the
transverse component of the interface curvature (κ⊥ = 2/b) in regions of the air-liquid
interface that protrude from [lag behind] its mean position leads to an increase in the
restoring capillary forces; (ii) the reduction in the interface speed reduces the destabilising
viscous effects; (iii) the destabilising effect of an increase [decrease] in the driving pressure
gradient is counteracted by the decrease [increase] in b since the normal velocity of the
interface is proportional to |b2∇p| (see equation (2.4)).

In order to assess the relative importance of viscous [(ii), (iii)] and capillary [(i)] sta-
bilising effects, we neglected the transverse curvature term (κ⊥ = 2/b) in the dynamic
boundary condition (2.6) and repeated the entire linear stability analysis (comprising the
computation of the axisymmetric base flow and the growth rate of small-amplitude non-
axisymmetric perturbations). The resulting predictions for the growth rate 1/R̂ dR̂/dt,
shown with big gray circles in Fig. 8 (a), agree extremely well with the predictions from
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Figure 8. (a) Growth rates at a fixed radius R̄ = 0.06 as a function of the wavenumber N .
The direction of increasing I is indicated by the arrow. Small yellow circles correspond to the
results from the full analysis (repeated from Fig. 4 (b)). Big gray circles and crosses show results
obtained when neglected the effect of the transverse interface curvature (by setting κ⊥ = 0),

and by ignoring non-axisymmetric perturbations to the wall shape (by setting ŵ = φ̂ = 0),
respectively. (b) Purple stars show the growth rates in a rigid cell, in which the interface prop-
agates at the same velocity as the interface in the corresponding elastic cell; blue squares show
the growth rates in an elastic cell, in which the interface propagates at the same velocity as the
interface in the rigid cell.

the full model (small yellow circle), indicating that the capillary effects play only a very
minor role in the suppression of viscous fingering – at least for the parameter values
considered here.

The analysis presented so far has neglected the fact that the onset of instabilities
deforms both the air-liquid interface and the elastic membrane. It is difficult to assess a
priori if perturbations to the shape of the membrane have a stabilising or destabilising
effect on the fingering instability. We therefore performed the stability analysis for a third
time, this time using the full equations (which include the transverse interface curvature)
for the computation of the axisymmetric base state, but neglecting the perturbation to
the membrane shape (by setting ŵ = φ̂ = 0) when computing the growth rate of the non-
axisymmetric perturbations. The resulting predictions for the growth rate 1/R̂ dR̂/dt are
indicated by crosses in Fig. 8 (a). Again they agree extremely well with the predictions
from the full model. This is consistent with our observation that the non-axisymmetric
perturbations to the membrane shape tend to be relatively small, even in cases when
the viscous fingers have grown to a large amplitude (see, e.g., Fig. 5 (d)). Therefore,
we conclude that the suppression of viscous fingering by fluid-structure interaction arises
predominantly through the two viscous effects: (i) the inflation of the bounding membrane



Modelling the suppression of viscous fingering in elastic-walled Hele-Shaw cells 15

reduces the speed at which the axisymmetric air bubble expands and therefore reduces
the destabilising viscous forces and/or (ii) the inflation of the membrane increases the
viscous resistance to fingers that protrude further into the converging gap between the
upper and lower boundaries of the Hele-Shaw cell. For sufficiently elastic membranes the
combination of the two effects is strong enough to suppress viscous fingering altogether.

In an attempt to assess the relative importance of the two viscous effects, we show in
Fig. 8 (b) the variation of the growth rate with the wavenumber for three values of the
FSI parameter I. The figure contrasts the predictions from the full model (identified by
the circular markers) with the growth rates obtained from two alternative models, each
designed to remove (approximately) one of the two stabilising viscous effects. Firstly, to
suppress the deceleration of the air-liquid interface caused by the inflation of the elastic
membrane (which is responsible for the stabilisation via mechanism (i)) we replace the
volume constraint (2.2) by the condition that the velocity of the axisymmetric air-liquid
interface matches that of the axisymmetrically expanding air bubble in the corresponding
rigid-walled cell, or, in other words, is equal to 1/

√
R2

init + 2t. The growth rates obtained
from the linear stability analysis of that problem are indicated by the star-shaped markers
in Fig. 8 (b). Secondly, to suppress the variation in the gap width (which is responsible
for the stabilisation by mechanism (ii)), we performed the linear stability analysis for
a rigid-walled cell but imposed the velocity of the axisymmetric air-liquid interface to
match that in the corresponding elastic-walled system. The growth rates for that problem
are indicated by the square markers in Fig. 8 (b).

The comparison of the growth rates from the three models shows that both viscous
effects are capable of significantly reducing the growth rates of non-axisymmetric per-
turbations. However, at least for the parameter values considered here, neither effect
appears to act in isolation and it would be difficult to claim that one is uniformly more
important than the other.

Finally, we assessed the relative importance of the bending and stretching terms in the
Föppl-von Kármán equations by repeating the stability analysis for a final time for η = 0,
thus ignoring the self-induced membrane tension represented by the nonlinear terms
in equations (2.8)-(2.9). The growth rates 1/R̂ dR̂/dt were found to agree extremely
well with the corresponding predictions for the default value of η = 102 used in all
other computations, with a maximum difference of less than 1% in the growth rates
for the cases shown in Fig. 8. This indicates that, for the parameter values considered
here, the bending terms in (2.8)-(2.9) are dominant and the self-induced tension can
be neglected. Additional computations showed that the self-induced membrane tension
becomes significant for η > 104.

6. Summary and Discussion
We have developed a theoretical model for flows in elastic-walled Hele-Shaw cells by

coupling the classical viscous potential flow model of Saffman & Taylor (1958) to the
Föppl-von Kármán equations which describe the deformation of the elastic wall. Our
model not only captures qualitatively all the features observed in the experiments by
Pihler-Puzović et al. (2012), but also allows us to explain how the presence of wall
elasticity alters (or even suppresses) the viscous fingering instability that arises in rigid-
walled cells. The key feature is that in an elastic-walled cell, the axisymmetric inflation
of the membrane prior to the onset of the instability reduces the growth rate of the
expanding air bubble (because the axisymmetrically expending air-liquid interface slows
down compared to the interface in a rigid cell) and the air-liquid interface propagates
into the narrowing fluid-filled gap. Both effects reduce the strength of the (viscous)
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destabilising mechanism that is the primary driver for the fingering instability. Capillary
effects and non-axisymmetric wall deformations only play a minor role in the onset of the
instability. The stabilising mechanism identified here is therefore fundamentally different
from the capillary mechanism responsible for the suppression of viscous fingering in
tapered rigid-walled cells analysed by Al Housseiny et al. (2012).

While the “short and stubby” fingers that develop in our nonlinear simulations re-
semble those observed in the experiments, we have not yet performed any quantitative
comparisons between our computational simulations and the experiments reported in
Pihler-Puzović et al. (2012). This is partly because the main aim of the present paper was
to identify the mechanism by which fluid-structure interaction, characterised by the FSI
parameter I, stabilises the fingering instability. In dimensional terms, variations in I (for
constant Ca, η and A) correspond to variations in the Young’s modulus of the bounding
membrane while keeping all other physical parameters, such as the injection flow rate V̇ ,
constant. This parameter variation differs from that employed in the experimental study
of Pihler-Puzović et al. (2012), which focused on the determination of the growth rate
of the fingering instability as a function of the injection flow rate V̇ , keeping all other
physical parameters, such as Young’s modulus, constant. The simulation/analysis of such
experiments is feasible with our model but would require simultaneous variations in Ca
and I since both parameters depend linearly on V̇ . Another difference between the com-
putations presented here and the experiments reported by Pihler-Puzović et al. (2012)
is that the instabilities observed under experimental conditions resulted in a relatively
large numbers of fingers whose nonlinear growth would have been very costly to simulate.
We therefore used the results of our linear stability analysis to adjust some of the param-
eters to reduce the most unstable wavenumbers for the computations presented in this
paper. Compared to the range of parameters used in the experiments (A = 0.002−0.006,
Ca−1 = 0.4− 25, η = 2.5× 105 − 2.5× 106 and I = 5× 104 − 6.5× 108), we decreased
the number of fingers by increasing the aspect ratio A. This required a reduction of the
Föppl-von Kármán parameter η to avoid the occurrence of wrinkling in the membrane
ahead of the air-liquid interface. We note that such wrinkling is not a numerical arte-
fact but has, in fact, been observed in more recent experiments with thinner sheets. The
interaction between membrane wrinkling and viscous fingering is the subject of ongoing
work and will be reported elsewhere.

The authors thank Alice Thompson and Andrew Hazel for many helpful discussions
and acknowledge early contributions of Guilherme Rocha to the numerical model. The
work is funded through EPSRC grant EP/J007927/1.

Appendix A. Convergence tests
In Fig. 9 we present the results of a representative mesh convergence test. Fig. 9(a)

shows the position of the air-liquid interface at an instant when the fingers have grown
to large amplitude. Fig. 9(b) shows the time-evolution of the bubble pressure pB(t) and
the mean radius

Rmean(t) =
1
`(t)

∫ `(t)

0

R(S, t) · er dS, (A 1)

where `(t) is the total arclength of the air-liquid interface. Solid lines represent results
obtained with our standard spatial resolution; the dashed lines were obtained from a
computation in which the number of elements was increased approximately five-fold.
The results are graphically indistinguishable.
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Figure 9. (a) Plot of the interface position at t = 0.38, and (b) time evolution of the mean
interface radius, Rmean(t), and pressure in the air bubble, pB(t), obtained with the standard
spatial resolution (solid lines) and with an approximately five-fold increase in the number of
elements (dashed lines). I = 102.

Appendix B. Equations used in the linear stability analysis
B.1. The axisymmetric base state

The nonlinear system of PDEs for the evolving axisymmetric base state [p̄(r, t), w̄(r, t),
φ̄(r, t), R̄(t), pB(t)] is(
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These equations are subject to the boundary conditions

p̄(R̄, t) = pB(t)− 1
12
Ca−1A

(A
R̄

+
2

1 + w̄(R̄, t)/A
)
, (B 4)

p̄(1, t) = 0, (B 5)
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the volume constraint ∫ R̄(t)

0

(
1 +

w̄(r, t)
A

)
rdr = R2

init/2 + t, (B 9)
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and the initial conditions

R̄(t = 0) = Rinit, and w̄(t = 0) = 0. (B 10)

B.2. The small-amplitude non-axisymmetric perturbations
The amplitudes of the perturbation, [p̂(r, t), ŵ(r, t), φ̂(r, t), R̂(t)] with azimuthal wavenum-
ber N satisfy the system of linear PDEs
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A
)3
[
∂2p̂

∂r2
− N2

r2
p̂+

1
r

∂p̂

∂r

]
+
(

1 +
w̄

A
) 6
A
∂w̄

∂r

∂p̄

∂r
ŵ for r ∈ [R̄(t), 1], (B 11)

[
∂4ŵ

∂r4
+

2
r

∂3ŵ

∂r3
− 1
r2

(1 + 2N2)
∂2ŵ

∂r2
+

1
r3

(1 + 2N2)
∂ŵ

∂r
+
N2

r4
(N2 − 4)ŵ

]

−η
r

[
∂2φ̄

∂r2

∂ŵ

∂r
+
∂2φ̂

∂r2

∂w̄

∂r
+
∂2w̄

∂r2

∂φ̂

∂r
+
∂2ŵ

∂r2

∂φ̄

∂r
− N2

r

(
∂2w̄

∂r2
φ̂+

∂2φ̄

∂r2
ŵ

)]

=
{

0 for r ∈ [0, R̄(t)),
Ip̂ for r ∈ [R̄(t), 1], (B 12)

[
∂4φ̂

∂r4
+

2
r

∂3φ̂

∂r3
− 1
r2

(1 + 2N2)
∂2φ̂

∂r2
+

1
r3

(1 + 2N2)
∂φ̂

∂r
+
N2

r4
(N2 − 4)φ̂

]

+
1
r

[
∂2w̄

∂r2

∂ŵ

∂r
+
∂2ŵ

∂r2

∂w̄

∂r
− N2

r

∂2w̄

∂r2
ŵ

]
= 0. (B 13)

They are subject to the boundary conditions

1
12
Ca−1A

(
A R̂

R̄2
(1−N2) +

2
A

1(
1 + w̄(R̄, t)/A)2

(
ŵ + R̂

∂w̄

∂r
(R̄, t)

))

−R̂∂p̄
∂r

(R̄, t) = p̂(R̄, t), (B 14)

p̂(1, t) = 0, (B 15)

dR̂
dt

= −
(

1 +
w̄(R̄, t)
A

)2 [
R̂
∂2p̄

∂r2
(R̄, t) +

∂p̂

∂r
(R̄, t)

]

− 2
A
(

1 +
w̄(R̄, t)
A

)
∂p̄

∂r
(R̄, t)

[
R̂
∂w̄

∂r
(R̄, t) + ŵ(R̄, t)

]
, (B 16)

∂ŵ

∂r
(0, t) = 0,

∂3ŵ

∂r3
(0, t) = 0, ŵ(1, t) = 0,

∂ŵ

∂r
(1, t) = 0, (B 17)

∂φ̂

∂r
(0, t) = 0,

∂3φ̂

∂r3
(0, t) = 0, φ̂(1, t) = 0,

∂φ̂

∂r
(1, t) = 0, (B 18)

and the initial conditions

R̂(t = 0) = 1, and ŵ(t = 0) = 0. (B 19)
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20 D. Pihler-Puzović, R. Périllat, M. Russell, A. Juel and M. Heil

McEwan, A. D. & Taylor, G. I. 1966 The peeling of a flexible strip attached by a viscous
adhesive. J. Fluid Mech. 26, 1–15.

Michaut, C. 2011 Dynamics of magmatic intrusions in the upper crust: Theory and applications
to laccoliths on Earth and the Moon. J. Geophys. Res. 116, B05205.

Miranda, J. A. & Widom, M. 1998 Radial fingering in a HeleShaw cell: a weakly nonlinear
analysis. Physica D 120, 315–328.

Mullins, W. W. & Sekerka, R. F. 1964 Stability of a planar interface during solidification
of a dilute binary alloy. J. Appl. Phys. 35, 444–451.

Orr Jr., F. M. & Taber, J. J. 1984 Use of carbon dioxide in enhanced oil recovery. Science
224, 563–569.

Paterson, L. 1981 Radial fingering in a Hele-Shaw cell. J. Fluid Mech. 113, 513–529.
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