Math 42142 Analysis, Random Walks and Groups Spring 2020

Week 4 Tutorial Sheet

- 1. Fix $p \ge 7$ and $0 < \alpha < 1$. Define $\mu = \alpha \delta_1 + (1 \alpha) \delta_{-1}$. Compute $\mu \star \mu$ and $\mu \star \mu \star \mu$.
- 2. Given functions $f, g: \mathbb{Z}_p \to \mathbb{C}$ define

$$(f\star g)(t) = \sum_{s=0}^{p-1} f(t\ominus s)g(s)$$

for all $t \in \mathbb{Z}_p$. Prove the following identities for all $f, g, h : \mathbb{Z}_p \to \mathbb{C}$ and all $\alpha, \beta \in \mathbb{C}$.

- Commutativity: $f \star g = g \star f$
- Associativity: $(f \star g) \star h = f \star (g \star h)$
- Linearity: $f \star (\alpha g + \beta h) = \alpha f \star g + \beta f \star h$
- 3. Fix distributions μ, ν on \mathbb{Z}_p . Prove that $\mu \star \nu$ is a distribution.
- 4. a) Prove that $\max\{|A|, |B|\} \le |A \oplus B| \le |A||B|$ for all sets $A, B \subset \mathbb{Z}_p$.
 - b) Given examples of sets $A, B \subset \mathbb{Z}_p$ with $|A \oplus B| = \max\{|A|, |B|\}$.
 - c) Given examples of sets $A, B \subset \mathbb{Z}_p$ with $|A \oplus B| = |A||B|$.
- 5. Prove for all distributions μ, ν that $\max\{H(\mu), H(\nu)\} \leq H(\mu \star \nu) \leq H(\mu) + H(\nu)$.

Hint: For one direction use the fact that $\phi(x) = -x \log x$ is concave. For the other use the inequality

$$\phi\left(\sum_{j} x_{j}\right) \leq \sum_{j} \phi(x_{j})$$

which holds for all $x_i \ge 0$.

- 6. For which values of $0 < \alpha < 1$ is the probability distribution $\mu = \alpha \delta_0 + (1 \alpha) \delta_1$ on \mathbb{Z}_5 ergodic? Compute $\mathsf{d}(\mu_{\alpha} \star \mu_{\alpha}, \lambda)$.
- 7. Fix a probability distribution μ on \mathbb{Z}_4 that is not a Dirac distribution. Suppose that the support $spt(\mu)$ is a coset of a proper non-trivial subgroup of \mathbb{Z}_4 . Might the limit $\lim_{n \to \infty} \mu^{\star n}$ exist? What could it be?