\[ \newcommand{\C}{\mathbb{C}} \newcommand{\haar}{\mathsf{m}} \newcommand{\P}{\mathcal{P}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\d}{\mathsf{d}} \newcommand{\g}{>} \newcommand{\l}{<} \newcommand{\intd}{\,\mathsf{d}} \newcommand{\Re}{\mathsf{Re}} \newcommand{\area}{\mathop{\mathsf{Area}}} \newcommand{\met}{\mathop{\mathsf{d}}} \newcommand{\emptyset}{\varnothing} \DeclareMathOperator{\borel}{\mathsf{Bor}} \]

Week 9 Tutorial Solutions

  1. We calculate \[ \begin{align*} \int\limits_{-T}^T \dfrac{N}{\pi} \dfrac{1}{1 + (Nx)^2} \intd x &{} = \left[ \dfrac{\arctan(Nx)}{\pi} \right]_{-T}^T \\ &{} = \dfrac{\arctan(NT)}{\pi} - \dfrac{\arctan(-NT)}{\pi} \\ \end{align*} \] which converges to $1$ as $T \to \infty$.
  2. For $x \ne 0$ we have \[ 0 \le f_N(x) = \dfrac{1}{N} \dfrac{1}{\pi} \dfrac{1}{\tfrac{1}{N^2} + x^2} \le \dfrac{1}{N} \to 0 \] as $N \to \infty$.
  3. Fix a bound $B$ on $g$. We calculate that \[ \begin{align*} \left| \int\limits_\delta^T f_N(x) g(x) \intd x \right| &{} \le B \int\limits_\delta^T f_N(x) \intd x \\ &{} = B \left(\dfrac{\arctan(NT)}{\pi} - \dfrac{\arctan(N\delta)}{\pi} \right) \end{align*} \] so that \[ 0 \le \left| \int\limits_\delta^\infty f_N(x) g(x) \intd x \right| \le \dfrac{B}{2} - \dfrac{B \arctan(N\delta)}{\pi} \] and the right-hand side converges to zero as $N \to \infty$.
  4. Fix $\epsilon > 0$. As $g$ is continuous there is $\delta \g 0$ such that \[ |x| \l \delta \Rightarrow |g(x) - g(0)| \l \epsilon/4 \] and we have \[ \begin{align*} &{} \int\limits_{-\infty}^\infty f_N(x) g(x) \intd x - g(0) \\ = {}& \int\limits_{-\infty}^\infty (g(x) - g(0)) f_N(x) \intd x \\ = {}& \int\limits_{-\delta}^\delta (g(x) - g(0)) f_N(x) \intd x + \int\limits_\delta^\infty (g(x) - g(0)) f_N(x) \intd x \\ & \qquad + \int\limits_{-\delta}^{-\infty} (g(x) - g(0)) f_N(x) \intd x \end{align*} \] which, combined with \[ \left| \int\limits_{-\delta}^\delta (g(x) - g(0)) f_N(x) \intd x \right| \le \dfrac{\epsilon}{4} \int\limits_{-\delta}^\delta f_N(x) \intd x \to \dfrac{\epsilon}{4} \] as $N \to \infty$ and the conclusion of 3., implies that if $N$ is large enough then \[ \left| \int\limits_{-\infty}^\infty f_N(x) g(x) \intd x - g(0) \right| \l \epsilon \] as desired.
  5. We can follow the same outline provided the sequence $F_N$ has the necessary properties. First, since \[ \int\limits_0^1 e^{2 \pi i k x} \intd x = \begin{cases} 1 & k = 0 \\ 0 & k \ne 0 \end{cases} \] we see that \[ \int\limits_0^1 F_N(x) \intd x = 1 \] for all $N \in \N$. Secondly, using lots of trigonometric identities, we can write \[ F_N(x) = \dfrac{1}{N} \dfrac{1 - \cos(2 \pi Nx)}{1 - \cos(2 \pi x)} \] from which we see that $F_N(x) \ge 0$ for all $x \in [0,1)$ and that $F_N(x) \to 0$ as $N \to \infty$ for all $x \ne 0$. Thus, if $g$ is continuous on $[0,1)$ then \[ \int\limits_\delta^{1-\delta} F_N(x) g(x) \intd x \to 0 \] as $N \to \infty$ and we can repeat the argument in 4.