\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\d}{\mathsf{d}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\newcommand{\B}{\mathscr{B}}
\newcommand{\fou}{\mathcal{F}}
\]
Week 9 Tutorial
Define
\[
f_N(x) = \dfrac{N}{\pi} \dfrac{1}{1 + (Nx)^2}
\]
for all $N \in \N$ and all $x \in \R$.
- Calculate the indefinite Riemann integral
\[
\int\limits_{-\infty}^\infty f_N(x) \intd x
=
\lim_{T \to \infty} \int\limits_{-T}^T f_N(x) \intd x
\]
for each $N \in \N$.
- Prove that $\lim\limits_{N \to \infty} f_N(x) = 0$ for all $x \ne 0$.
Fix a continuous function $g : \R \to \R$ that is bounded.
- Prove that
\[
\lim_{N \to \infty} \int\limits_\delta^\infty f_N(x) g(x) \intd x = 0
\]
for every $\delta \g 0$.
- Prove that
\[
\lim_{N \to \infty} \int\limits_{-\infty}^\infty f_N(x) g(x) \intd x = g(0)
\]
by making use of 3. and the continuity of g at 0.
Define
\[
F_N(x) = \dfrac{1}{N}\sum_{K=0}^{N-1} \sum_{k=-K}^K e^{2 \pi i k x}
\]
for all $N \in \N$ and all $x \in [0,1)$.
- Prove for every continuous function $g : [0,1) \to \R$ that
\[
\lim_{N \to \infty} \int_0^1 F_N(x) g(x) \intd x = g(0)
\]
by mimicking the above arguments.