\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\d}{\mathsf{d}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\newcommand{\B}{\mathscr{B}}
\newcommand{\fou}{\mathcal{F}}
\]
Put $X = [0,1)^2$. Define $T : X \to X$ by
\[
T(x,y) = (2x + y \bmod 1, x+y \bmod 1)
\]
for all $x,y \in [0,1)$.
- What is the orbit of $(\tfrac{1}{2},\tfrac{1}{2})$?
- What is the orbit of $(\tfrac{1}{3},\tfrac{2}{3})$?
- What is the connection between $T$ and the matrix $A = [\begin{smallmatrix} 2 & 1 \\ 1 & 1 \end{smallmatrix}]$?
- Fix a rectangle $R \subset \R^2$. What is the area of the polygon $A^{-1}(R)$?
Take for granted that there is a measure $\lambda$ on $X$ on the σ-algebra $\mathscr{B}$ generated by the rectangles in $[0,1)^2$ that assigns each rectangle $S \subset [0,1)^2$ its Euclidean area.
- Prove that with respect to $\lambda$ the map $T$ is measure-preserving.
- Using 1. or 2. write down another measure on $(X,\B)$ with respect to which $T$ is measure-preserving.