\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\d}{\mathsf{d}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\newcommand{\B}{\mathscr{B}}
\newcommand{\fou}{\mathcal{F}}
\]
Put $X = \{0,1\}^\N$. Write $\mu_p$ for the $(p,1-p)$ coin measure.
- What is $\mu_p([01])$?
- What is $\displaystyle\int 1_{[01]} \intd \mu_p$?
- Define $Z_1(x) = x(1) x(2)$. What is $\displaystyle\int Z_1 \intd \mu_p$?
- What is $\mu_p(T^{-1}([01]))$?
- Define $Z_2 = Z_1 \circ T$. What is $\displaystyle \int Z_2 \intd \mu_p$?
For $n \ge 2$ define $Z_n = Z_1 \circ T^{n-1}$. Define
\[
Y_n = Z_n - \int Z_n \intd \mu_p
\]
for all $n \in \N$.