\[ \newcommand{\C}{\mathbb{C}} \newcommand{\haar}{\mathsf{m}} \newcommand{\P}{\mathcal{P}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\d}{\mathsf{d}} \newcommand{\g}{>} \newcommand{\l}{<} \newcommand{\intd}{\,\mathsf{d}} \newcommand{\Re}{\mathsf{Re}} \newcommand{\area}{\mathop{\mathsf{Area}}} \newcommand{\met}{\mathop{\mathsf{d}}} \newcommand{\emptyset}{\varnothing} \newcommand{\B}{\mathscr{B}} \newcommand{\fou}{\mathcal{F}} \]

Week 4 Tutorial

For these problems $(X,\B,\mu)$ is the measure space where $X = [0,2\pi]$ and $\B$ is the Borel σ-algebra on $[0,2\pi]$ and $\mu$ is the restriction of Lebesgue measure to $[0,2\pi]$.

Take for granted that if $f : [0,2 \pi] \to \R$ is continuous then its integral with respect to $\mu$ equals its Riemann integral on $[0,2\pi]$.

  1. Verify that $\phi_1(x) = 1$ and $\phi_{2n+1}(x) = \cos(n x)$ and $\phi_{2n}(x) = \sin(nx)$ both belong to $\mathsf{L}^{\!\mathsf{2}}([0,2\pi],\B,\mu)$ for all $n \in \N$.
  2. Check that \[ \langle f, g \rangle = \dfrac{1}{2\pi} \int f \cdot g \intd \mu \] defines an inner product on $\mathsf{L}^{\!\mathsf{2}}([0,2\pi],\B,\mu)$.
  3. Check that $\phi_0,\phi_1,\phi_2,\dots$ is an orthonormal collection of functions for the above inner product.

Define \[ (\fou f)(n) = \langle f, \phi_n \rangle \] for all $n \ge 0$ and all $f$ in $\mathsf{L}^{\!\mathsf{2}}([0,2\pi],\B,\mu)$.

  1. By expanding \[ \left\| f - \sum_{n=0}^N \langle f, \phi_n \rangle \phi_n \right\|_\mathsf{2}^\mathsf{2} \] prove Bessel's inequality that \[ \sum_{n=0}^N | (\fou f)(n) |^2 \le \| f \|_\mathsf{2}^\mathsf{2} \] for all $N \in \N$ and conclude $\fou f$ always belongs to $\ell^\mathsf{2}(\N \cup \{0\})$.