\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\d}{\mathsf{d}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\newcommand{\B}{\mathscr{B}}
\]
Week 2 Tutorial
- Let $G$ be a finite group. Define $\mu : \P(G) \to [0,\infty]$ by
\[
\mu(E) = \dfrac{|E|}{|G|}
\]
for all $E \subset G$ where $|\,\cdot\,|$ denotes cardinality.
- Check that $\mu$ is a measure.
- If $H$ is a subgroup of $G$ what is $\mu(H)$?
- Prove that $\mu$ is invariant in the sense that $\mu( g^{-1} E) = \mu(E)$ where
\[
g^{-1} E = \{ h \in G : gh \in E \}
\]
for all $E \subset G$ and all $g \in G$.
- Are there any other invariant measures on $G$?
- Define $\nu$ on $\mathcal{P}(\N)$ by
\[
\nu(E) = \limsup_{N \to \infty} \dfrac{| E \cap \{1,\dots,N\}|}{N}
\]
for all $E \subset \N$.
- Calculate $\nu(\N)$, $\nu( 2\N )$ and $\nu(\{ n^2 : n \in \N \})$.
- Is $\nu$ a measure?
- Describe explicitly what measures on $\N$ are like.