\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\d}{\mathsf{d}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\]
Week 1 Tutorial
The middle-thirds Cantor set is defined as follows. Put
\[
C_1 = [\tfrac{0}{3},\tfrac{1}{3}] \cup [\tfrac{2}{3},\tfrac{3}{3}]
\]
and define $C_{k+1}$ from $C_k$ by removing the open middle-third of every interval in $C_k$.
The intersection
\[
\mathcal{C} = \bigcap_{n=1}^\infty C_n
\]
is the middle-thirds Cantor set.
- Write down $C_2$ and $C_3$.
- Why is $\mathcal{C}$ a Borel subset of $\R$?
- Every $x \in [0,1]$ can be written in the form
\[
x = \sum_{n=1}^\infty \dfrac{d(n)}{3^n}
\]
where each $d(n) \in \{0,1,2\}$. Describe in terms of the $d(n)$ what it means for $x$ to belong to $C_1$, to $C_2$, and to $\mathcal{C}$.
- Come up with a bijection between $\{0,1\}^\N$ and $\mathcal{C}$.
- Prove that $\Lambda(\mathcal{C}) = 0$.
Put
\[
S_1 = [\tfrac{0}{8},\tfrac{3}{8}] \cup [\tfrac{5}{8},\tfrac{8}{8}]
\]
and define $S_{k+1}$ from $S_k$ by removing from every interval in $S_k$ an interval of length $\tfrac{1}{4^{k+1}}$. The intersection
\[
\mathcal{S} = \bigcap_{n=1}^\infty S_n
\]
is a Smith-Volterra-Cantor set.
- Write down $S_2$ and $S_3$.
- Is there a bijection between $\mathcal{S}$ and $\{0,1\}^\N$?
- What is $\Lambda(\mathcal{S})$?