\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\d}{\mathsf{d}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\newcommand{\B}{\mathscr{B}}
\newcommand{\fou}{\mathcal{F}}
\]
Put $X = \{0,1\}^\N$. Given $x \in \{0,1\}^\N$ put
\[
\gamma(x) = \min \{ n \in \N : x(n) = 0 \}
\]
and define $R : X \to X$ by
\[
(R(x))(n) = \begin{cases} 0 & n \l \gamma(x) \\ 1 & n = \gamma(x) \\ x(n) & n \g \gamma(x) \end{cases}
\]
which is the 2-adic odometer.
- Calculate $R(x)$ for $x = \mathtt{1100011010}\cdots$
- Calculate $R(x)$ for $x = \mathtt{0010100101}\cdots$
- There is one $x \in \{0,1\}^\N$ where the above definition does not apply. How would you define $R$ at that point?
- What is $R^{-1}([1])$?
- Use your answer to 4. to show the $(1-p,p)$ coin measure is not an invariant measure for $R$ if $p \ne \tfrac{1}{2}$.