\[ \newcommand{\C}{\mathbb{C}} \newcommand{\haar}{\mathsf{m}} \newcommand{\B}{\mathscr{B}} \newcommand{\D}{\mathscr{D}} \newcommand{\P}{\mathcal{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\g}{>} \newcommand{\l}{<} \newcommand{\intd}{\,\mathsf{d}} \newcommand{\Re}{\mathsf{Re}} \newcommand{\area}{\mathop{\mathsf{Area}}} \newcommand{\met}{\mathop{\mathsf{d}}} \newcommand{\emptyset}{\varnothing} \DeclareMathOperator{\borel}{\mathsf{Bor}} \DeclareMathOperator{\baire}{\mathsf{Baire}} \newcommand{\symdiff}{\mathop\triangle} \]

Exam Practice Questions

    1. Fix a set $X$ and a set $A \subset X$. Prove that \[ \{ \emptyset, A, X \setminus A, X \} \] is a σ-algebra on $X$.
    2. Show by example that the union of two σ-algebras need not be a σ-algebra.
    1. Prove that $f : \R \to \R$ defined by \[ f(x) = \dfrac{1}{1+x^2} \] belongs to $\mathsf{L}^{\!\mathsf{1}}(\R,\B,\lambda)$ where $\B$ is the Borel σ-algebra on $\R$ and $\lambda$ is Lebesgue measure.
    2. With \[ f_n(x) = \begin{cases} \dfrac{\sin(\tfrac{x}{n})}{\tfrac{x}{n} (x^2+1)} & x \ne 0 \\ 1 & x = 0 \end{cases} \] for all $n \in \N$ and all $x \in \R$ evaluate \[ \lim_{n \to \infty} \int f_n \intd \lambda \] using the dominated convergence theorem.
  1. Fix a measure-preserving transformation $T$ on a probability space $(X,\B,\mu)$.
    1. What is the definition of ergodicity for $T$?
    2. Write down a characterization of ergodicity using the Koopman operator of $T$.
    3. Suppose $T$ is ergodic. Prove that if $T^2$ is not ergodic then $T$ has an eigenfunction with eigenvalue $-1$.
  2. Fix a measure-preserving transformation $T$ on a probability space $(X,\B,\mu)$.
    1. State the pointwise ergodic theorem.
    2. Let $T$ be the full shift on $\{0,1\}^\N$ and let $\mu$ be the fair-coin measure. Use $f : \{0,1\}^\N \to [0,\infty)$ defined by \[ f(x) = \begin{cases} 1 & x(1) = 1 \\ 1 & x(1) = 0 \textup{ and } x(2) = 1 \\ 0 & \textup{otherwise} \end{cases} \] for all $x$ in $\{0,1\}^\N$ to deduce a statistical statement about coin tosses from the pointwise ergodic theorem.