\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\cont}{\operatorname{\mathsf{C}}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\B}{\mathscr{B}}
\newcommand{\D}{\mathscr{D}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\sph}{\mathsf{S}^\mathsf{1}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\DeclareMathOperator{\borel}{\mathsf{Bor}}
\DeclareMathOperator{\baire}{\mathsf{Baire}}
\newcommand{\orb}{\mathop{\mathsf{orb}}}
\newcommand{\symdiff}{\mathop\triangle}
\newcommand{\lp}[1][2]{\operatorname{\mathscr{L}^{\mathsf{#1}}}}
\newcommand{\Lp}[1][2]{\operatorname{\mathsf{L}^{\!\mathsf{#1}}}}
\]
Week 8 Coursework Test
-
Define $T : (0,1] \to (0,1]$ by
\[
T(x) = \dfrac{1}{x} \bmod 1
\]
for all $x \in (0,1]$. Write $f(x) = 1/(1+x)$. Verify that
\[
\int 1_{(a,b]} \cdot f \intd \lambda = \int 1_{(a,b]} \circ T \cdot f \intd \lambda
\]
for all $0 \le a \l b \le 1$ where $\lambda$ is Lebesgue measure.
- Criticise the strategy of the following outline of a proof that irrational rotations are ergodic.
Fix an interval $[a,b) \subset [0,1)$. Suppose that $[a,b)$ is $T$ invariant. Then
\[
[a,b) = \bigcup_{n=1}^\infty (T^n)^{-1}([a,b)) = [0,1)
\]
because every point has dense orbit. Since the σ-algebra generated by the intervals equals the Borel σ-algebra, every non-empty invariant set must equal $[0,1)$.