\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\cont}{\operatorname{\mathsf{C}}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\B}{\mathscr{B}}
\newcommand{\D}{\mathscr{D}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\sph}{\mathsf{S}^\mathsf{1}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\DeclareMathOperator{\borel}{\mathsf{Bor}}
\DeclareMathOperator{\baire}{\mathsf{Baire}}
\newcommand{\orb}{\mathop{\mathsf{orb}}}
\newcommand{\symdiff}{\mathop\triangle}
\newcommand{\lp}[1][2]{\operatorname{\mathscr{L}^{\mathsf{#1}}}}
\newcommand{\Lp}[1][2]{\operatorname{\mathsf{L}^{\!\mathsf{#1}}}}
\]
Week 5 Coursework Test
- Fix $\alpha \in \Q$. Define $T : [0,1) \to [0,1)$ by $T(x) = x + \alpha$ mod 1. Describe $\orb(0,T)$ in terms of $\alpha$.
- Fix $\alpha$ irrational and define
\[
T(x) = x + \alpha \bmod 1
\]
on $[0,1)$.
Let $\mu$ be a Borel measure on $[0,1)$ with
\[
\mu([0,1)) = 1
\]
and the property that
\[
\int f \intd \mu = \int f \circ T \intd \mu
\]
for all continuous functions $f : [0,1) \to \C$. Recall that $\psi_k(x) = \exp(2 \pi i k x)$ for all $k \in \Z$.
- Verify that
\[
\int \psi_k \intd \mu = \int \dfrac{1}{N} \sum_{n=0}^{N-1} \psi_k \circ T^n \intd \mu
\]
for all $k \in \Z$ and all $N \in \N$.
- Apply the dominated convergence theorem to prove that
\[
\int \psi_k \intd \mu = 0
\]
for all $k \ne 0$.