\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\cont}{\operatorname{\mathsf{C}}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\B}{\mathscr{B}}
\newcommand{\D}{\mathscr{D}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\sph}{\mathsf{S}^\mathsf{1}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\DeclareMathOperator{\borel}{\mathsf{Bor}}
\DeclareMathOperator{\baire}{\mathsf{Baire}}
\newcommand{\symdiff}{\mathop\triangle}
\newcommand{\lp}[1][2]{\operatorname{\mathscr{L}^{\mathsf{#1}}}}
\newcommand{\Lp}[1][2]{\operatorname{\mathsf{L}^{\!\mathsf{#1}}}}
\]
Week 4 Coursework Test
- Let $p,q > 1$ satisfy
\[
\tfrac{1}{p} + \tfrac{1}{q} = 1
\]
and fix a measure space $(X,\B,\mu)$. Fix $f$ in $\Lp[p](X,\B,\mu)$ and define
\[
\xi_f : \Lp[q](X,\B,\mu) \to \R
\]
by
\[
\xi_f(g) = \int f \cdot g \intd \mu
\]
for all $g \in \Lp[q](X,\B,\mu)$. Verify that $\xi_f$ is well-defined and linear.
- Let $\mu$ be Lebesgue measure on $\R$.
- If $f \in \Lp[1](\R,\borel(\R),\mu)$ must
\[
g(x) = x f(x)
\]
belong to $\Lp[1](\R,\borel(\R),\mu)$?
- If $f : \R \to \R$ is differentiable must $f'$ belong to $\Lp[1](\R,\borel(\R),\mu)$?