\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\B}{\mathscr{B}}
\newcommand{\D}{\mathscr{D}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\DeclareMathOperator{\borel}{\mathsf{Bor}}
\DeclareMathOperator{\baire}{\mathsf{Baire}}
\newcommand{\symdiff}{\mathop\triangle}
\]
Week 2 Coursework Test
- Fix $E \subset \R$. Define what it means for a function $f : E \to \R$ to be measurable. For your definition, prove or disprove the following statement.
Statement Whenever $f : \R \to \R$ is Borel measurable the restriction of $f$ to $E$ is measurable.
- Fix a mesaure $\mu$ on $(\R,\borel(\R))$. Prove that the complement of
\[
\{ x \in \R : \mu(x-r,x+r) > 0 \textsf{ for every } r > 0 \}
\]
is assigned zero measure by $\mu$.