\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\B}{\mathscr{B}}
\newcommand{\D}{\mathscr{D}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\DeclareMathOperator{\borel}{\mathsf{Bor}}
\DeclareMathOperator{\baire}{\mathsf{Baire}}
\newcommand{\symdiff}{\mathop\triangle}
\]
Week 1 Coursework Test
- Prove that $\Lambda(\Q) = 0$.
- Let $X$ be a non-empty set. Say that a subset $E$ of $X$ is big if $X \setminus E$ is countable, and small if $E$ is countable. Prove that
\[
\{ A \subset X : A \textsf{ is small} \} \cup \{ A \subset X : A \textsf{ is big} \}
\]
is a σ-algebra on $X$.