\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\cont}{\operatorname{\mathsf{C}}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\B}{\mathscr{B}}
\newcommand{\D}{\mathscr{D}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\sph}{\mathsf{S}^\mathsf{1}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\DeclareMathOperator{\borel}{\mathsf{Bor}}
\DeclareMathOperator{\baire}{\mathsf{Baire}}
\newcommand{\orb}{\mathop{\mathsf{orb}}}
\newcommand{\symdiff}{\mathop\triangle}
\newcommand{\lp}[1][2]{\operatorname{\mathscr{L}^{\mathsf{#1}}}}
\newcommand{\Lp}[1][2]{\operatorname{\mathsf{L}^{\!\mathsf{#1}}}}
\]
Week 10 Coursework Test
- Fix a measure-preserving transformation $T$ of a probability space $(X,\B,\mu)$. Suppose $f \in \Lp[2](X,\B,\mu)$ is fixed by the Koopman operator. Prove there is a function $g : X \to \R$ in the equivalence class defined by $f$ such that
\[
g(T(x)) = g(x)
\]
for all points $x \in X$.
- For each $r,s \in \Z$ define $\chi_{r,s}$ on $[0,1)^2$ by
\[
\chi_{r,s}(x,y) = e^{2 \pi i (rx + sy)}
\]
for all $x,y \in [0,1)^2$. Take for granted that\[
\{ \chi_{r,s} : r,s \in \Z \}
\]
is an orthonormal basis of $\Lp[2,\C](X,\B,\mu)$ where $X = [0,1)^2$ and $\B$ is the Borel σ-algebra and $\mu$ is the measure defined by assigning rectangles their Eucliden areas. Prove that
\[
T(x,y) = (2x+y \bmod 1, x+y \bmod 1)
\]
is ergodic.