\[
\newcommand{\Ann}{\mathsf{Ann}}
\newcommand{\Arg}{\mathsf{Arg}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Im}{\mathsf{Im}}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\ball}{\mathsf{B}}
\newcommand{\wind}{\mathsf{wind}}
\newcommand{\Log}{\mathsf{Log}}
\newcommand{\l}{<}
\]
Week 8 Worksheet
Home | Assessment | Notes | Worksheets | Blackboard
Laurent Series
- For each of the following functions determine its Laurent series on the given annulus.
- $\dfrac{1}{z-3}$ on $\Ann(0,3,\infty)$
- $\dfrac{1}{z(1-z)}$ on $\Ann(0,0,1)$
- $\cos(1/z)\vphantom{\dfrac{1}{z}}$ on $\Ann(0,0,\infty)$
- Define $f : \C \setminus \{-1,3\}$ by $f(z) = \dfrac{1}{z+1} + \dfrac{1}{z-3}$. Calculate its Laurent series on $\Ann(0,0,1)$, $\Ann(0,1,3)$ and $\Ann(0,3,\infty)$.
- Define $f : \C \setminus \{0,1\} \to \C$ by $f(z) = \dfrac{1}{z^2(z-1)}$.
- Calculate its Laurent series on $\Ann(0,0,1)$.
- Calculate its Laurent series on $\Ann(1,0,1)$.
- Define $f : \C \setminus \{1\} \to \C$ by $f(z) = \dfrac{1}{(z-1)^2}$.
- Calculate its Laurent series on $\Ann(1,0,\infty)$.
- Calculate its Laurent series on $\Ann(0,0,1)$.
- Calculate its Laurent series on $\Ann(0,1,\infty)$.
Isolated Singularities
- For each of the following functions determine all the poles and their orders.
- $f(z) = \dfrac{1}{z^2 + 1}$
- $f(z) = \dfrac{1}{z^4 + 16}$
- $f(z) = \dfrac{1}{z^4 + 2z^2 + 1}$
- $f(z) = \dfrac{1}{z^2 + z - 1}$
- What type of singularity does each of the following functions have at the origin?
- $f(z) = \sin(1/z)$
- $f(z) = \dfrac{1}{z^3} (\sin(z))^2$
- $f(z) = \dfrac{\cos(z) - 1}{z^2}$
- Fix a domain $D$ and $b \in D$. Suppose $f$ is holomorphic and bounded on $D \setminus \{b\}$. Prove that $f$ has a removable singularity at $b$.