\[ \newcommand{\Arg}{\mathsf{Arg}} \newcommand{\C}{\mathbb{C}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Im}{\mathsf{Im}} \newcommand{\intd}{\,\mathsf{d}} \newcommand{\Re}{\mathsf{Re}} \newcommand{\ball}{\mathsf{B}} \newcommand{\wind}{\mathsf{wind}} \]

Week 2 Worksheet - Solutions

Home | Assessment | Notes | Worksheets | Blackboard

Functions

  1. Write $z = x+iy$. For $f(z) = \Re(z)$ we have $u(x,y) = x$ and $v(x,y) = 0$. For \[ f(z) = |z| = \sqrt{x^2 + y^2} \] we have $u(x,y) = \sqrt{x^2 + y^2}$ and $v(x,y) = 0$.

    1. $(x+iy)^2 = x^2 - y^2 + 2xyi$ so $u(x,y) = x^2 - y^2$ and $v(x,y) = 2xy$.
    2. $(\nabla u)(x,y) = \langle 2x, -2y \rangle$ and $(\nabla v)(x,y) = \langle 2y, 2x \rangle$.
    3. Calculate \[ \begin{align*} & (\nabla u)(x,y) \bullet (\nabla v)(x,y) \\ ={} & \langle 2x, -2y \rangle \bullet \langle 2y, 2x \rangle \\ ={} & (2x)(2y) + (-2y)(2x) \\ ={} & 0 \end{align*} \]

    1. $u(x,y) = \dfrac{x}{x^2 + y^2}$ and $v(x,y) = \dfrac{-y}{x^2 + y^2}$
    2. Fix $k \in \R$ non-zero. The equation $u(x,y) = k$ has the form \[ \begin{align*} & \dfrac{x}{x^2 + y^2} = k \\ \Rightarrow{} & kx^2 - x + y^2 = 0 \\ \Rightarrow{} & k \left(x - \frac{1}{2k} \right)^2 - \frac{1}{4k} + ky^2 = 0 \end{align*} \] so we have \[ \left( x - \frac{1}{2k} \right)^2 + y^2 = \left( \frac{1}{2k} \right)^2 \] which is a circle centered at $(\frac{1}{2k},0)$ of radius $\frac{1}{2k}$.
  2. Fix $a \in \C$ non-zero. We need to prove that \[ \lim\limits_{z \to a} \dfrac{1}{z} = \dfrac{1}{a} \] holds. Fix $\epsilon > 0$. If $|z-a| < |a|/2$ then $| |z| - |a| | < |a|/2$ so $|z| > |a|/2$. We then have \[ \left| \frac{1}{z} - \frac{1}{a} \right| = \left| \dfrac{z-a}{za} \right| \le \dfrac{2}{|a|^2} |z-a| \] which will be at most $\epsilon$ if $|z-a| = \epsilon |a|^2 / 4$. Take $\delta = \min \{ |a|/2, \epsilon |a|^2 / 4 \}$.
    1. With $z = t$ we have \[ \lim\limits_{t \to 0} \dfrac{|t|}{t} = 1 \] and with $z = it$ we have \[ \lim\limits_{t \to 0} \dfrac{|it|}{it} = -i \] so the complex limit does not exist.

    2. Here $\left| \dfrac{|z|^2}{z} \right| = |z|$ which does go to zero as $z \to 0$.

    3. With $z = t > 0$ we have \[ \lim\limits_{t \to 0} \Arg(t) = 0 \] while with $z = it$ we have \[ \lim\limits_{t \to 0} \Arg(t) = \dfrac{\pi}{2} \] so the complex limit does not exist.

    1. One can use the fact that $|\Re(z) - \Re(a)| \le |z-a|$ to prove \[ \lim\limits_{z \to a} \Re(z) = \Re(a) \] for all $a \in \C$. Therefore $f$ is continuous on $\C$.

    2. Use the reverse triangle inequality $||z| - |a|| \le |z-a|$ to prove that \[ \lim\limits_{z \to a} |z| = |a| \] holds.

    3. Fix $a \in \C \setminus (-\infty,0]$ and put $\theta = \Arg(a)$.

Holomorphic Functions

    1. We calculate $f(z+h) = z^2 + 2zh + h^2 + z + h$ so that \[ \dfrac{f(z+h) - f(z)}{h} = \dfrac{2zh + h^2 + h}{h} = 2z + h + 1 \] and \[ \lim_{h \to 0} \dfrac{f(z+h) - f(z)}{h} = \lim_{h \to 0} 2z + h + 1 = 2z + 1 \] for all $z \in \C$.

    2. We calculate \begin{align*} \dfrac{f(z+h) - f(z)}{h} & = \dfrac{\dfrac{1}{z+h} - \dfrac{1}{z}}{h} = \dfrac{\dfrac{-h}{(z+h)z}}{h} = \dfrac{-1}{(z+h)z} \end{align*} and \[ \lim_{h \to 0} \dfrac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \dfrac{-1}{(z+h)z} = -\dfrac{1}{z^2} \] for all $z \in \C \setminus \{0\}$.

    1. From the definition \[ \lim_{h \to 0} \dfrac{f(h) - f(0)}{h} = \dfrac{|h|^2}{h} = \lim_{h \to 0} \dfrac{h \overline{h}}{h} = \lim_{h \to 0} \overline{h} = 0 \] so the function has a derivative of zero at the origin.

    2. Fix $z \in \C$. The limit \begin{align*} \lim_{h \to 0} \dfrac{f(z+h) - f(z)}{h} & = \lim_{h \to 0} \dfrac{(z+h)\overline{(z+h)} - z \overline{z}}{h} \\ & = \lim_{h \to 0} \dfrac{z\overline{h} + \overline{z} h + |h|^2}{h} \end{align*} does not exist because if $h = t$ is real we get \[ \lim_{t \to 0} \dfrac{zt + \overline{z} t + t^2}{t} = z + \overline{z} \] whereas if $h = it$ is imaginary we get \[ \lim_{t \to 0} \dfrac{zit - \overline{z} it + t^2}{it} = \overline{z} - z \] so $f$ is not differentiable at any non-zero $z$. It is therefore not holomorphic on any domain.

Cauchy-Riemann Equations

  1. From the definition \begin{align*} (\partial_1 h)(x,y) & = \lim_{t \to 0} \dfrac{h(x+t,y) - h(x,y)}{t} \\ & = \lim_{t \to 0} \dfrac{2(x+t)y - 2xy}{t} = \lim_{t \to 0} 2y = 2y \end{align*} and \begin{align*} (\partial_2 h)(x,y) & = \lim_{t \to 0} \dfrac{h(x,y+t) - h(x,y)}{t} \\ & = \lim_{t \to 0} \dfrac{2x(y+t) - 2xy}{t} = \lim_{t \to 0} 2x = 2x \end{align*} as expected from rules of differentiation.

  2. From \[ \frac{1}{z} = \frac{x-iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} + i \frac{(-y)}{x^2+y^2} \] we get $u(x,y)$ and $v(x,y)$. The partial derivatives are \begin{align*} (\partial_1 u)(x,y) & = \dfrac{(x^2 + y^2) - 2x(x)}{(x^2 + y^2)^2} = \dfrac{y^2 - x^2}{(x^2 + y^2)^2} \\ (\partial_2 u)(x,y) & = \dfrac{-2xy}{(x^2 + y^2)^2} \end{align*} and \begin{align*} (\partial_1 v)(x,y) & = \dfrac{2xy}{(x^2 + y^2)^2} \\ (\partial_2 u)(x,y) & = \dfrac{-(x^2 + y^2) + 2y(y)}{(x^2 + y^2)^2} = \dfrac{y^2 - x^2}{(x^2 + y^2)^2} \end{align*} so the Cauchy-Riemann equations are satisfied.

  3. For this function $u(x,y) = \sqrt{x^2 + y^2}$ and $v(x,y) = 0$. Thus \[ (\partial_1 u)(x,y) = \dfrac{x}{\sqrt{x^2 + y^2}} \qquad (\partial_2 u)(x,y) = \dfrac{y}{\sqrt{x^2 + y^2}} \] and $(\partial_1 v)(x,y) = (\partial_2 v)(x,y) = 0$ for all $(x,y) \ne (0,0)$. The Cauchy- Riemann equations are therefore not satisfied at any non-zero complex number.

    Since the partial derivatives of $u$ do not even exist at $(0,0)$ the function $f$ is certainly not differentiable there.

  4. We calculate \begin{align*} (\partial_1 u)(x,y) & = 3x^2 - 3y^2 \\ (\partial_2 u)(x,y) & = -6xy \\ (\partial_1 v)(x,y) & = 6xy \\ (\partial_2 v)(x,y) & = 3x^2 - 3y^2 \end{align*} and see that the equations are satisfied for all $(x,y)$.

    From \[ u(x,y) + i v(x,y) = x^3 + 3i x^2 y - 3xy^2 - y^3 \] we see that \[ f(z) = z^3 = (x+iy)^3 \] has the above real and imaginary parts.

  5. We write \[ \dfrac{1}{(x+iy)^4} = \dfrac{(x-iy)^4}{(x^2+y^2)^4} = \dfrac{x^4 - 4ix^3 y - 6x^2y^2 + 4ixy^3 + y^4}{(x^2 + y^2)^4} \] so that $u$ and $v$ are the real and imaginary parts of $f(z) = \frac{1}{z^4}$ on $\C \setminus \{0\}$. Since $f$ is holomorphic on that domain, the Cauchy-Riemann equations are satisfied for all $z$ therein.

  6. We calculate \begin{align*} \partial_1(\partial_1 u) + \partial_2(\partial_2 u) & = \partial_1(\partial_2 v) + \partial_2 (-\partial_1 v) \\ & = \partial_1 (\partial_2 v) - \partial_2 (\partial_1 v) = 0 \end{align*} by Clairaut's theorem.

  7. From an earlier problem we have \[ u(x,y) = x^3 - 3x y^2 \qquad v(x,y) = 3x^2 y - y^3 \] and can calculate that \begin{align*} \partial_1 (\partial_1 u) + \partial_2 (\partial_2 u) & = \partial_1(3x^2 - 3y^2) + \partial_2(-6xy) = 6x - 6x = 0 \\ \partial_1 (\partial_1 v) + \partial_2 (\partial_2 v) & = \partial_1(3x^2 - 3y^2) + \partial_2(-6xy) = 6x - 6x = 0 \end{align*} as desired.

  8. We have \begin{align*} (\partial_1 u)(x,y) & = 5x^4 - 30x^2 y^2 + 5y^4 \\ (\partial_2 u)(x,y) & = -20x^3 y + 20xy^3 \end{align*} so \begin{align*} (\partial_1 v)(x,y) & = 20x^3 y - 20 x y^3 \\ (\partial_2 v)(x,y) & = 5x^4 - 30x^2 y^2 + 5y^4 \end{align*} from the Cauchy-Riemann equations. Partially integrating gives \[ 5x^4 y - 10 x^2 y^3 + y^5 + h(x) = v(x,y) = 5 x^4 y - 10x^2 y^3 + g(y) \] which will be satisfied if e.g. $h(x) = 0$ and $g(y) = y^5$. Then \[ f(x+iy) = (x^5 - 10x^3 y^2 + 5xy^4) + i(5x^4 y - 10x^2 y^3 + y^5) = (x+iy)^5 \] and $f(z) = z^5$.

  9. We have \begin{align*} (\partial_1 u)(x,y) & = 3x^2 - k y^2 + 12y - 12 \\ (\partial_2 u)(x,y) & = -2kxy + 12x \end{align*} so \begin{align*} (\partial_1 v)(x,y) & = 2kxy - 12x \\ (\partial_2 v)(x,y) & = 3x^2 - k y^2 + 12y - 12 \end{align*} from the Cauchy-Riemann equations. Partially integrating gives \[ 3x^2 y - \frac{k}{3} y^3 + 6y^2 - 12y + h(x) = v(x,y) = kx^2y - 6x^2 + g(y) \] and therefore \[ 3x^2 y = kx^2 y \] if $h(x) = -6x^2$ and $g(y) = -\frac{k}{3} y^3 + 6y^2 - 12y$. Therefore, the only value of $k$ for which $u$ could possibly be the real part of a holomorphic function is $3$. When $k = 3$ we have \[ v(x,y) = 3x^2 y - 6x^2 - y^3 + 6y^2 - 12y \] and $u,v$ are the real and imaginary parts of $f(z) = z^3 + 6 iz^2 - 12z$.

  10. If $u$ is constant and the real part of a holomorphic function then the Cauchy-Riemann equations would force $(\partial_1 v)(x,y) = 0 = (\partial_2 v)(x,y)$ whence $v$ is constant as well.

  11. In the purported situation the Cauchy-Riemann equations become \begin{gather*} u'(x) = (\partial_1 u)(x,y) = (\partial_2 v)(x,y) = v'(y) \\ 0 = (\partial_2 u)(x,y) = - (\partial_1 v)(x,y) = 0 \end{gather*} which tells us that $u'$ and $v'$ are constant. But then $u(x) = \mu x + b$ and $v(y) = \nu y + c$. Put $\lambda = \mu + i \nu$ and $a = b + ic$.

  12. If we apply $\partial_1$ to the equation we get \[ 0 = 2(\partial_1 u)(x,y) + (\partial_1 v)(x,y) = 2(\partial_2 v)(x,y) + (\partial_1 v)(x,y) \] from the Cauchy-Riemann equations. We get \[ 0 = 2(\partial_2 u)(x,y) + (\partial_2 v)(x,y) = -2(\partial_1 v)(x,y) + (\partial_2 v)(x,y) \] if we apply instead $\partial_2$. Adding twice the first equation to the second gives $5 (\partial_2 v)(x,y) = 0$ for all $(x,y)$. It then follows from the second equation that $(\partial_1 v)(x,y) = 0$ for all $(x,y)$. The Cauchy-Riemann equations then gives $(\partial_1 u)(x,y) = 0$ and $(\partial_2 u)(x,y) = 0$ for all $(x,y)$. We conclude that $u$ and $v$ are constant, so that $f$ is as well.