Home | Assessment | Notes | Index | Worksheets | Blackboard
Write $z = x+iy$ so that the equation becomes $x^2 - y^2 + 2xyi = -5 - 12i$. Real and imaginary parts must be equal, so $x^2 - y^2 = -5$ and $2xyi = 12i$. By inspection we can take $x = 2, y = 3$ or $x = -2, y = -3$. The solutions are $z = 2 + 3i$ and $z = -2 - 3i$.
Completing the square gives $(z + 2)^2 - 4 = -12 + 6i$ so $(z+2)^2 = -8 + 6i$. Writing $z+2 = x+iy$ gives the equations $x^2 - y^2 = -8$ and $2xyi = 6i$. By inspection, we can take $x = 1, y = 3$ or $x = -1, y = -3$. The solutions are therefore $-1+3i$ and $-3 - 3i$.
Take $z = w = i$. Then \[ \Re(z) = \Re(w) = 0 \] but $\Re(zw) = \Re(-1) = -1$. Also $\Im(z) = \Im(w) = 1$ but $\Im(zw) = \Im(-1) = 0$.
Calcuate \[ \begin{align*} \overline{z+w} & = \overline{(x+iy) + (u + iv)} \\ & = \overline{(x+u) + i(y+v)} \\ & = (x+u) - i(y+v) \\ & = \overline{z} + \overline{w} \end{align*} \]
Calcuate \[ \begin{align*} \overline{zw} & = \overline{(xu - yv) + i(xv + yu)} \\ & = (xu - yv) - i(xv + yu) \\ & = (x-iy)(u-iv) \\ & = \overline{z} \overline{w} \end{align*} \]
Calcuate \[ \begin{align*} \overline{1/z} & = \overline{\dfrac{x}{x^2+y^2} - i \dfrac{y}{x^2+y^2}} \\ & = \dfrac{x}{x^2+y^2} + i \dfrac{y}{x^2+y^2} \\ & = \dfrac{x}{x^2+(-y)^2} - i \dfrac{(-y)}{x^2+(-y)^2} \\ & = 1 / \overline{z} \end{align*} \]
The case $n = 1$ is immediate. We assume \[ (\cos \theta + i \sin \theta)^n = \cos(n \theta) + i \sin(n \theta) \] and calculate \[ \begin{align*} & (\cos \theta + i \sin \theta)^{n+1} \\ = & (\cos \theta + i \sin \theta)^n (\cos \theta + i \sin \theta) \\ = & (\cos(n \theta) + i \sin(n \theta))(\cos \theta + i \sin \theta) \\ = & (\cos(n \theta + \theta) + i \sin(n\theta + \theta)) \\ = & \cos((n+1)\theta) + i \sin((n+1)\theta) \end{align*} \] because when we multiply complex numbers we add arguments and multiply moduli.
We have \[ \begin{align*} & \cos(3\theta) + i \sin(3\theta) \\ = & (\cos \theta + i \sin \theta)^3 \\ = & (\cos \theta)^3 + 3i (\cos \theta)^2 (\sin \theta) - 3 (\cos \theta)(\sin \theta)^2 - i(\sin \theta)^3 \end{align*} \] so equating real and imaginary parts tell us \[ \cos(3\theta) = (\cos \theta)^3 - 3 (\cos \theta)(\sin \theta)^2 \] and \[ \sin(3\theta) = 3 (\cos \theta)^2(\sin \theta) - (\sin \theta)^3 \] hold.
From \[ \begin{align*} & (\cos \theta + i \sin \theta)^4 \\ = & (\cos \theta)^4 + 4 i (\cos \theta)^3(\sin \theta) -6 (\cos \theta)^2 (\sin \theta)^2 - 4i (\cos \theta) (\sin \theta)^3 + (\sin \theta)^4 \end{align*} \] we get also that \[ \cos (4\theta) = (\cos \theta)^4 - 6(\cos \theta)^2(\sin \theta)^2 - (\sin \theta)^4 \] and \[ \sin(4\theta) = 4 (\cos \theta)^3(\sin \theta) - 4 (\cos \theta)(\sin \theta)^3 \] hold.
Write $z = r(\cos \theta + i \sin \theta)$. If $z^n = w_0$ then $|z|^n = |w_0|$ and $n \theta$ is an argument of $w_0$. Thus $n \theta = \Arg(w) + 2k \pi$ for some $k \in \Z$. This means \[ \theta = \frac{\Arg(w) + 2 k \pi}{n} \] for some $k \in \Z$. Taking $k \in \{0,1,\dots,n-1\}$ gives all possible distinct $z$ as after that we repeat.
Take $z_1 = z_2 = -1 + i \sqrt{3}$. We have $\Arg(z_1) = \Arg(z_2) = \frac{2\pi}{3}$. But \[ (-1 + i\sqrt{3})^2 = -2 - 2 \sqrt{3} i \] has principal argument $-\frac{2\pi}{3}$.
Calculate \[ |z_n| = \dfrac{|(1+i)|^n}{n} = \dfrac{(\sqrt{2})^n}{n} \] and note that if $n$ is large enough then $(\sqrt{2})^{n/2} > n$ so $|z_n| \ge (\sqrt{2})^{n/2}$ which does not converge, so $z_n$ does not converge.
Fix $1 \le c \le 2$. We calculate \begin{align*} \lim_{t \to c} \gamma(t) & = \lim_{t \to c} 4t^2 + 2it \\ & = 4 \lim_{t \to c} t^2 + 2i \lim_{t \to c} t \\ & = 4c^2 + 2ic = \gamma(c) \end{align*} using the limit laws, which proves $\gamma$ is continuous at $c$. Since $1 \le c \le 2$ was arbitrary $\gamma$ is continuous on $[1,2]$.
Take \[ \gamma(t) = (1-t)2 + t(i-1) = 2 + t(i-3) \] which is continuous and satisfies has $\gamma(0) = 2$ and $\gamma(1) = i-1$.
The red and blue sets above are both domains. However, their intersection is not path connected. The intersection of two domains need not be a domain.