\[ \newcommand{\Ann}{\mathsf{Ann}} \newcommand{\Arg}{\mathsf{Arg}} \newcommand{\C}{\mathbb{C}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Im}{\mathsf{Im}} \newcommand{\intd}{\,\mathsf{d}} \newcommand{\Re}{\mathsf{Re}} \newcommand{\Res}{\mathsf{Res}} \newcommand{\ball}{\mathsf{B}} \newcommand{\wind}{\mathsf{wind}} \newcommand{\Log}{\mathsf{Log}} \newcommand{\l}{<} \]

Week 11 Worksheet - Solutions

Home | Assessment | Notes | Worksheets | Blackboard

Summing Series

  1. We take $f : \C \setminus \{0\} \to \C$ to be $f(z) = \dfrac{1}{z^4}$. Recall that $g(z) = \dfrac{\sin(\pi z)}{\cos(\pi z)}$ is uniformly bounded on $\Gamma_N$. We can estimate that \[ \left| \int\limits_{\Gamma_N} fg \right| \le \ell(\Gamma_N) \dfrac{M}{N^4} \le \dfrac{16M}{N^3} \] because $|z| \ge N$ for all $z \in \Gamma_N$. Thus the contour integral converges to zero as $N \to \infty$. Cauchy's residue theorem gives \[ \int\limits_{\Gamma_N} fg = 2 \pi i \sum_{n=-N}^N \Res(fg,n) \wind(\Gamma_N,n) \] because the only poles of $fg$ are at $n \in \{-N,\dots,N\}$. As usual \[ \Res(fg,n) = \dfrac{1}{\pi n^4} \] for all non-zero $n$ and it reamins to calculate the residue at zero. The order of the pole at zero is five. From our lemma \[ \Res(fg,0) = \lim_{z \to 0} \dfrac{1}{4!} \left( \dfrac{z^5 \cos(\pi z)}{z^4 \sin(\pi z)} \right)^{(4)} = \lim_{z \to 0} \dfrac{1}{4!} \left( \dfrac{z}{\sin(\pi z)} \cos(\pi z) \right)^{(4)} \] and the power series \[ \dfrac{w}{\sin w} = 1 + \dfrac{w^2}{6} + \dfrac{w^4}{240} + \cdots \] we get \begin{align*} \Res(fg,0) & = \lim_{z \to 0} \dfrac{1}{4!} \left( \left( \dfrac{1}{\pi} + \dfrac{\pi}{6} z^2 + \dfrac{7\pi^3}{360} z^4 - \cdots \right) \left( 1 - \dfrac{\pi^2}{2} z^2 + \dfrac{\pi^4}{24} z^4 - \cdots \right) \right)^{(4)} \\ & = \lim_{z \to 0} \dfrac{1}{4!} \left( \dfrac{1}{\pi} - \dfrac{\pi}{3} z^2 - \dfrac{\pi^3}{45} z^4 + \cdots \right)^{(4)} \\ & = -\dfrac{\pi^3}{45} \end{align*} and we can put everything together. Cauchy's residue theorem gives \[ 2 \pi i \left( 2 \sum_{n=1}^N \dfrac{1}{\pi n^4} - \dfrac{\pi^3}{45} \right) = \int\limits_{\Gamma_N} fg \] and the limit as $N \to \infty$ gives $\displaystyle\sum_{n=1}^\infty \dfrac{1}{n^4} = \dfrac{\pi^4}{90}$
  2. We would want to use $f(z) = 1/z^3$ but with that choice \[ \Res(fg,-n) = -\dfrac{1}{\pi n^3} = - \Res(fg,n) \] for all $n \in \N$ and Cauchy's residue theorem only gives \[ \int\limits_{\Gamma_N} fg = 2 \pi i \Res(fg,0) \] which does not involve $\displaystyle\sum_{n=1}^N \dfrac{1}{n^3}$