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Summary

This report presents preliminary research describing the construction of a multi-parameter pa-

tient vital-sign monitoring system. We demonstrate optimisation of an existing system and also

describe alternative methods of creating the probabilistic model of normality used to identify

deterioration in patient condition. A number of results are presented that motivate the research

proposed for the remainder of this D.Phil. The aim is to substantially improve upon work in

the identi�cation of patient deterioration using multi-parameter monitoring, focussing on the

inclusion of recently-acquired data from clinical trials, incorporating temporal information to

perform dynamical analysis, and creating systems personalised to individual patients.

A large number of adverse clinical events can be detected prior to their onset, and it is widely

recognised that early detection and intervention of such events is likely to lead to better patient

outcome. Vital signs have been shown to be good indicators of patient health, including heart

rate, breathing rate, blood pressure, temperature and arterial oxygen saturation. However, on

acute general hospital wards, these vital signs are typically observed once every four hours,

during which a patient's condition can worsen considerably.

A model of normality constructed using four vital sign parameters (the heart rate, breathing

rate, blood pressure, and arterial-oxygen saturation) has been previously developed which has

been used to continuously identify abnormal vital signs that may be predictors of an adverse

clinical event. The model was trained using �normal� patient data, such that vital signs di�ering

considerably with respect to the training set are deemed abnormal. This technique has an

advantage over �expert systems�; prior knowledge about clinically adverse events is not required,

as the model is entirely data driven and thus simpler to train.

The set of training data was acquired from a representative group of patients. Machine

learning techniques were used to estimate the probability density function (p.d.f.) of the four-

dimensional vital sign data. The unconditional probability is calculated using the trained p.d.f.,

where a low probability indicates an abnormal recording. If the probability is below a critical

threshold, an alert call can be triggered. The model has been validated on data from the

University of Pittsburgh Medical Centre (UPMC).

In this report, attempts have been made to improve the data fusion model. Initially, the

parameters in the current data fusion technique were adjusted to minimise a global error score.
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After this, an alternative data fusion method, the Weighted Parzen Windows Algorithm, was

tested. The new method was then qualitatively assessed by applying it on real patient data.

During this preliminary research, a number of tests required visualisation of high-dimensional

data in order to gain an intuitive understanding of the techniques used. Limitations in current

visualisation methods were discovered, and a novel visualisation algorithm is presented and ap-

plied to clinical data. The algorithm is a modi�cation on Sammon Mapping [47], but extends

the method so that it is applicable to very large datasets containing > 104 elements.

Work in the immediate future will focus on developing the data fusion model in three

main areas. Firstly, the breadth of vital signs monitored by the model will be increased,

including a score of patient consciousness based on the Glasgow Coma Scale (GCS). Initial

investigations will be made to assess whether the GCS can be estimated continuously, using

Electroencephalogram (EEG) recordings. Secondly, a dynamic model of normality, such that

trends in vital sign data are incorporated. Finally, a patient speci�c model will be developed,

which aims to improve the speci�city of the model of normality by retraining it on individual

patient vital signs as patients are �rst admitted onto the ward.
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1 Introduction

As medical practice improves, an increasing number of acutely ill patients are being admitted

for major surgical procedures where previously the risk of complications was considered too

high. Advances in technique have also enhanced medical procedures so that for many patients,

the procedures are carried out during day surgery, removing the need for overnight stays [16].

Furthermore, the number of patients requiring emergency medical admission has increased

signi�cantly over the last two decades, and a rise of 50% was reported between 1984 and 1997

[8]. The combination of these factors has meant that current patients admitted into acute

wards are typically �older, undergoing major surgical procedures, or are acutely ill� [12].

Because the proportion of seriously ill inpatients has increased, the number of patients

who are at greater risk of catastrophic deterioration while on a general ward has also increased.

Important indicators of well-being are a patient's vital signs. These are physiological parameters

often recorded by healthcare professionals in order to assess the functioning of vital organs such

as the heart or the lungs. The vital signs that are most commonly measured in clinical practice

are the heart rate, breathing rate, temperature, blood pressure, and arterial oxygen saturation.

Numerous studies have shown that abnormalities in vital signs often precede adverse clinical

events, such as a cardiac arrest (that is, the life-threatening onset of a chaotic and unproductive

heart rhythm caused by an abnormal heart rhythm), unanticipated Intensive Care Unit (ICU)

admission, or unexpected death.

One such study reports that respiratory and mental instability are often early precursors of

a cardiac arrest [48], while another shows that �fty percent of patients who were later admitted

to ICU showed vital sign abnormalities for at least three days prior to their admission [36].

Kause et al. [28] conducted an international prospective study at 90 hospitals in the UK,

Australia and New Zealand, which showed that 60% of the patients who su�ered an adverse

event had documented antecedents. Various other articles [53, 9] also report that in many

cases, deterioration in a patient's condition can be readily observed prior to other adverse

events requiring ICU admission.

If such deterioration in patient well-being can be detected quickly, appropriate prophylactic

measures can be taken to avert further deterioration. Early clinical intervention should reduce

the number of preventable adverse events and the number of unexpected ICU admissions. In
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the UK alone, it is estimated that at least 20,000 unanticipated ICU admissions per year may be

avoided, and that 23,000 cardiac arrests per year may also be preventable [24, 36]. Furthermore,

patients still requiring admission to ICU could be transferred earlier from general wards - one

study links an e�cient transfer from general wards to ICU with a reduced mortality rate [65].

This makes sense, as one expects that patients who are quickly transferred to ICU will be less

acutely admission, and would therefore expect a better outcome or a shorter length of stay on

ICU. As each ICU bed costs ¿1000-¿1800 per day (in 1999) [6], early intervention also has clear

economic bene�ts.

However, in general wards, vital signs are routinely observed by nurses approximately every

four hours [51], or even less frequently, and a nurse may be expected to look after up to ten

patients. Both of these factors contribute to the problem of signi�cant patient deterioration

often going unnoticed. This is supported by a recent study conducted on 326 patients at a

24-bed Step Down Unit (SDU) at a University Medical Centre in the U.S., where clinically

signi�cant vital sign deterioration occurred in 59 patients, of which only 7 were detected by

clinical sta� [26]. A step-down unit is a transitional care area with a greater degree of monitoring

than on a general ward, but with less monitoring than on an ICU.

In many instances the vital sign deterioration may not be obvious, especially if it manifests

itself as small changes in several vital signs, rather than a major change in a single vital sign.

Furthermore, even when clear deterioration can be seen, studies indicate that in up to 25% of

cases, the optimal course of action is not taken, partly because communication between nurses

and physicians is inadequate, and because sta� training and hospital procedure are not best

suited to deal with rapid response to patient deterioration [17, 4].

In summary, clinicians recognise the importance of detecting early patient deterioration,

but hospitals have previously been unable to respond optimally, due to lack of manpower,

and appropriate technology and infrastructure. Current systems have started to address this

problem, and are outlined in the literature review chapter. The primary purpose of this report

is to document the development of an alternative solution originally proposed in our research

group that aims to signi�cantly improve on existing methods for detecting early deterioration

in patient vital signs [60].

The solution uses data fusion techniques to combine vital sign data recorded from patient
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monitors. It di�ers from many of the systems presented in the literature, which use a clas-

si�cation approach requiring a large training set including examples of rare clinical events.

Instead, the method presented here is based on a novelty detection approach, whereby novelty

is identi�ed in new data when it is su�ciently di�erent from a training set of normal data.
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2 Literature Review

This chapter provides an overview of methods used to monitor seriously ill patients on acute

wards (i.e. outside ICU). It is split into two sections. Firstly, methods that are part of current

practice are analysed and critiqued. In particular, the concept of the Medical Emergency Team

is explained and we discuss the criteria used to call these teams out to the ward. Following this,

current concepts in the relevant literature are presented, including alternative calling criteria

for the Medical Emergency Team, and intelligent alarm systems.

2.1 Medical Emergency Teams and Current Systems

In the introduction, it was stated that early intervention by clinicians can avert further deteri-

oration in patient health. In an increasing number of hospitals, recognition of this has led to

the introduction of the Medical Emergency Team (MET). The MET was initially introduced

in Liverpool hospital New South Wales, Australia, and is becoming part of common practice

in the US [13]. In the UK, a similar concept called the `Critical Care Outreach Team' is used.

An MET is a specialised team targeted towards patients at risk of cardiopulmonary arrest and

other adverse events such as unscheduled admission to the ICU or emergency surgical proce-

dures. The team has speci�c calling criteria such that any member of the nursing team may

summon the MET when a patient deteriorates, a strategy commonly known as �track and trig-

ger�. While this strategy allows a rapid response once deterioration is detected, its e�ectiveness

is still limited by the frequency of patient observations.

A number of studies have reported a marked reduction in mortality and morbidity associated

with the seriously ill and those at risk from cardiac arrest when the MET system is present [44].

Bellomo et al. record a 65% reduction in cardiac arrests and 26% reduction in overall hospital

death rate [5]. However, the design of these trials has been questioned by Smith and Nolan [54].

To date, only one Randomised Control Trial, the MERIT study has been conducted for MET

assessment [22]. The study showed no improvements in patient outcome in the hospitals where

an MET was used. However, the MERIT study investigators noted that one cause for this

may be the fact that �Even in MET hospitals,... monitoring, documentation, and response to

changes in vital sign were not adequate� . Further analysis by Jacques et al. also suggest that

the MET calling criteria used were inadequate, and only detected late signs of deterioration[27].
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ACUTE CHANGES IN: VITAL SIGNS

AIRWAY Threatened
BREATHING All Respiratory Arrests, Respiratory rate

< 5 breaths/min, Respiratory rate > 36
breaths/min

CIRCULATION All Cardiac arrests
Pulse rate < 40 beats/min
Pulse rate >140 beats/min

Systolic blood pressure < 90 mmHg
NEUROLOGY Sudden fall in level of consciousness.

Repeated or prolonged seizures
Other Any patient who does not �t the criteria

above whom you are seriously worried
about.

Table 1: Medical Emergency Team Original Calling Criteria from Hourihan et al. [25]

2.1.1 Early Warning Scores Calculated by Nursing Sta�

The original MET calling criteria are listed in Table 1. A wide range of calling criteria similar

to those in Table 1 are in clinical practice. These are single channel calling criteria, so the

MET is called when any one of a single parameter reaches a critical value. While this has the

advantage of being easy for the nursing team to follow, it may be considered over-simplistic,

and does not account for the fact that deterioration may initially involve smaller changes in

a combination of parameters. A recent evaluation suggests that single-parameter criteria have

poor sensitivity, and are unable to identify patients at risk of in-hospital death using a set of

one-o� vital signs recorded on admission to the ward [56].

One alternative set of calling criteria, the Modi�ed Early Warning Score (MEWS) is based

on the Acute Physiology and Chronic Health status Evaluation (APACHE) system for assessing

patient condition in ICU. MEWS is an aggregate scoring system for use in acute wards outside

the ICU, based on the breathing rate, heart rate, temperature, systolic blood pressure and

an indication of consciousness (the Alert-Verbal-Painful-Unresponsive AVPU score). Points

are allocated according to criteria such as those shown in Table 2, and the MET is called

if the overall score exceeds a critical threshold. In principle, this is a good strategy as it

assesses a patient's health based on all of the vital sign measurements simultaneously. Goldhill

demonstrates the e�ectiveness of the scheme by showing an instance where the MEWS score

recognises a serious incident before any single vital sign is considered abnormal [20].

In practice, there have been mixed results using MEWS. In studies by Smith and Wood [53]
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Score Systolic
Blood
Pressure
(mmHg)

Heart
Rate

(beats/inm)

Breathing
Rate

(breaths/min)

Temperature
(◦C)

AVPU score

3 <70
2 71-80 <40 <9 <35
1 81-100 41-50
0 101-199 51-100 9-14 35-38.4 Alert
1 101-110 15-20 Reacting to

Voice
2 ≥200 111-129 21-29 ≥38.5 Reacting to

Pain
3 ≥130 ≥30 Unresponsive

Table 2: The Modi�ed Early Warning Score. A score of 5 or more was de�ned as a `critical
score'

and Subbe et al. [57], MEWS has been shown to be e�ective. In initial retrospective tests, it was

shown that high MEWS scores correlated with a greater risk of death or ICU admission. Pittard

assesses the use of MEWS in practice, and showed a reduction in unexpected ICU admission,

with better outcome for the emergency patients [45]. However, other studies, such as a second

study conducted by Subbe et al. did not detect any discernible di�erence in outcome when

using the MEWS system [58]. As well as questions concerning its e�ectiveness, its practical

implementation has also been called into consideration. A study by Prytherch et al. suggests

that MEWS is being inaccurately calculated by ward sta� in a number of instances, and from

a data set of 2607 vital signs recorded at a Medical Assessment Unit of Queen Alexandra

Hospital, Portsmouth, 2.5% contained scores that should have triggered an alarm, but had

been miscalculated [46]. While the e�ectiveness of MEWS is still not clear, such physiological

scoring systems have been recommended by the UK's Department of Health and have been

implemented in many UK hospitals in combination with a MET team [1].

Despite the quantity of research invested in early warning score systems, the tables used

to calculate the MEWS scores (see Table 2) are empirical, being based on expert opinion. In

response, Duckitt et al. have conducted studies aimed at adjusting the scoring thresholds so

that their scoring system, the Worthing physiological scoring system, outperforms the MEWS

system when tested on patient data from a general hospital [15]. A large number of studies

have also attempted to modify the MEWS system by either adjusting the thresholds on the

vital sign parameters, or by introducing additional parameters such as analysing urine samples
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(for example, see Gardner-Thorpe et al. [18]). One recent study by Smith at al. analysed

the e�ectiveness of the MEWS system by assessing the correlation between the MEWS score

recorded upon a patient's admission to hospital, and subsequent in-hospital deaths for these

patients [55]. The results suggest that such scores can be used as a predictor of patient outcome

(and thus as a indicator for early intervention).

2.1.2 Single Channel Alarms from Continuous Monitoring

A patient can be monitored more frequently using single channel monitors such as an ECG mon-

itor or a pulse oximeter, and in practice, clinicians on a general ward can request one of these

for patients considered to be at greater risk. In this scheme, a vital sign is continuously moni-

tored, and alert thresholds are set according to expert clinical knowledge. When the threshold

is reached, an alarm sounds to alert nursing sta�. This setup has the advantage of providing

continuous monitoring, and begins to address problems due to infrequent observations.

Single channel monitors have high sensitivity and low speci�city, however, su�ering from

the drawback of producing a large number of false alarms. In a study of 298 hours of data

collected from patient monitors on an ICU, 86% of alerts were found to be false, and another

6% were clinically irrelevant [63]. A number of other studies also con�rm that there is a low

percentage of true alarms compared to total alarms [31, 41, 30]. Because of the excessive

number of alerts, the alert thresholds are often set to make the monitoring less sensitive, thus

reducing the e�ectiveness of the system. In many instances, ward sta� take the further action

of deactivating the alarms, rendering the monitor redundant [37] and there is also evidence to

suggest that clinicians learn to ignore alarm noise [38], which may have disastrous consequences

including an increase in patient mortality. The false alarms are generated from a number of

simple causes, such as monitor probes detaching from the patient or in some cases, excessive

patient movement.

There are a number of proposals in the literature for �xing, or at least circumventing the

problem. The aim is to reduce the number of false alarms while remaining highly sensitive

to patient deterioration. Most simply, median �ltering can be applied to a signal to reduce

a monitor's sensitivity to spike artifacts. This has a large e�ect, and one study claims a

substantial reduction in false alarms for haemodynamic monitoring in intensive care [35].
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Aleks et al. [2] note that simple median �ltering fails to remove artifacts from an arterial-

line blood pressure sensor in an ICU, as many occur for a substantial (up to 45 minute) length

of time. To detect these, they propose using a Dynamic Bayesian Network, so that the observed

variables (the mean systolic and mean diastolic pressure over one minute intervals) are modelled

as a function of the previous blood pressure state, the true (and unknown) blood pressure and

the known artifact generating processes. Because the distribution of artifactual event durations

is known, the most probable explantion for the observations can then be ascertained and alerts

can be generated as necessary. Furthermore, the true blood pressure state can then be inferred

despite the presence of artifacts. Preliminary results have been very positive, with a false

positive rate of less than 10% on 300 hours of data collected at 1Hz.

Sieben and Gather [52] attempt to reduce false alarms by classifying all alerts from a com-

mercially available monitoring device into true positives and false positives. The classi�cation

procedure consists of building a 1000 decision trees, known as a Random Forest, trained on

data from an ICU at the University Hospital Regensburg. Each tree is trained on a random

subset of 200 data vectors and each vector consists of 10 vital sign measurements. The CART

recursive partitioning algorithm is used to build the classi�cation trees. When a new data

vector is presented, it is �dropped down� each of the decision trees, and the vector is deemed

alarm-relevant if a proportion of the 1000 trees have classi�ed the data as alarm-relevant. The

method was tested using clinical vital sign data, and reduces false alarms by 56% and 30%

while maintaining a sensitivity of 95% and 98% respectively.

2.2 Multiple Channel Alarms

The rest of this section describes research on means of generating alarms by integrating in-

formation from multiple channels. The work presented below has mainly been tested on ICU

patients, where continuous monitoring is standard, but the techniques can also be applied to

acute wards outside the ICU.

2.2.1 Data fusion techniques

Studies have reported that in some cases, there may be multiple antecedents to an adverse

clinical event [48]. Data fusion techniques attempt to use data from a number of di�erent sources
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in combination, rather than considering each source on its own, in order to increase the total

knowledge about a system. By doing this, correlations between parameters might be inferred,

and early warning of patient deterioration can be achieved. In the patient monitoring context,

this often involves collecting data from a multi-parameter patient monitor, and processing it to

produce an overall score of a patient's well-being. It should also be noted that a well designed

system using data fusion techniques is also likely to reduce the number of clinically insigni�cant

of false alarms [42].

Oberli et al. propose an expert systems approach to the data fusion problem [40]. An

expert, or knowledge-based system is one that uses a direct encoding of human knowledge to

help solve complex problems. In Oberli's system, the vital signs are �rst converted into a set of

quantitative classes, such as �bradycardia� or �normal heart rate�, based on training information

given by a set of clinicians. The classes overlap and are described using fuzzy logic, so it is

possible to be �somewhat bradycardic�. After this, the patient's condition can be assessed using

a set of logical rules derived from expert knowledge. For instance, if a patient was Asystole

AND extremely hypotensive AND no pulse detected, he or she would be classi�ed as having

a cardiac arrest. In this way, the system provides a diagnosis as well as an alarm of patient

deterioration.

Schoenberg et al. use expert knowledge in a slightly di�erent way for data fusion [50]. In

their scheme, a customizable �logic engine� is produced that is able to interpret information

from multiple single-channel vital sign monitors. The purpose of the system is to �lter out the

clinically insigni�cant results. The system works by analysing a set of user-de�ned features,

that can be extracted from the raw vital sign information (e.g. the change in average heart rate

between the current minute and three minutes previous). Thresholds are set for each feature,

based on expert advice, and a feature is assigned a score if it exceeds the threshold value. The

sum of the scores is then compared to a critical total, which triggers an alarm if exceeded. The

aggregate scoring system has many similarities to the MEWS system, and this technique can

be considered as an automated and generalised scoring system. During tests on 120 hours of

ICU data, the logic engine had a positive predictive value of 32% compared to 3% for standard

monitors.
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2.2.2 Data Fusion with Temporal Features

The systems described above primarily rely on the most recent observations to calculate a score

using data fusion. However, much clinical insight can be gained from previous observations, as

trends in the vital signs give a good prediction of future observations. Charbonnier and Gentil

have attempted to incorporate historical data into an alarm system by making using of trend

analysis [10]. In their system, each parameter is converted into a semi-quantitative temporal

feature. Typically, the features are {Increasing, Decreasing, Steady}, and the quantitative

information is the start and end time of the event, and the start and end value of the vital sign

parameter. In order to make best use of the data, the trend features are aggregated to form the

longest possible episode. A set of rules (such as Increasing + Increasing = Increasing) is used

to accomplish this task. The extended features can then be used in a rule-based system, that

alarms when the trend is persistent and severe. The system can also be trained to recognise

artefactual events, and tests using this scheme on an ICU resulted in a 33% reduction in false

alarms, without missing any clinically relevant alarms.

Temporal information can also be used to detect artefactual readings and reduce the number

of false alarms. Hoare and Beatty analyse the time series for a set of physiological features,

and attempt to predict the next values [23]. A new data point is then classed as artefactual

if its value is outside a predetermined range. Williams et. al. extend this work, tackling the

problem of infant monitoring immediately after birth, by using a Factorial Switching Kalman

Filter (FSKF) to model vital sign data in neonatal intensive care [64]. A Kalman �lter is a

recursive �lter that calculates the optimum estimates of process variables in the presence of

noise. The FSKF extends this by allowing the �lter to use di�erent linear dynamic models that

are selected by a switch variable, allowing `normal' and `artefactual' conditions can be modeled.

The switch variable itself is dependent on a number of individual factors, such as `Bradycardia'

and `Temperature Probe Disconnection'. Given a set of observations, the FSKF is then used to

calculate the most likely switching state. By establishing which factors activate the switching

state, the speci�c cause of the artifact and an estimate of the true value of the observed data.

The system was tested retrospectively on eight infants of 28 weeks gestation, and a total of

nine parameters were monitored. Results were then presented showing examples where the

start and end times of speci�c conditions (such as bradycardia) were accurately detected.
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2.2.3 Personalised Models

In clinical medicine, many patients behave in highly individual ways that may di�er from the

population average. It has previously been mentioned that vital signs are age-dependent, and

other factors such as lifestyle and diet may have an e�ect. In response to this, Zhang proposes

a personalised model that attempts to increase the alarm speci�city by automatically tuning

alarm thresholds on a per patient basis [66]. In his study, both neural networks and classi�cation

trees were tested, and used to generate the personalised alert thresholds. From these, neural

networks performed consistently better. Typically, the system required eight hours of data,

and the performance improved as the length of training data increased. Overall, the algorithm

outperformed a simple threshold alarm system, and showed that personalised models are a

feasible approach for alarm algorithms.
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3 Creating a Model of Normality

The data fusion system known as Visensia® (previously known as Biosign) has been proposed

to monitor and fuse four key patient vital signs in order to provide early warning of patient

deterioration. The system was developed over the last seven years using a model trained on

pilot study data acquired at the John Radcli�e (JR) Hospital, Oxford, and is already showing

promising results [26]. This chapter describes the creation of the system, how the training set

is used to build a probabilistic model, and how new vital sign data is interpreted to provide

alerts of patient deterioration. An overview of the training procedure is provided in Figure 1.

Figure 1: A �ow diagram showing the steps involved in creating a model of patient normality
and producing the Visensia Status Index (VSI)

3.1 Training Data

Pilot study data from the JR Hospital was used to train the Visensia model and also used

to train methods for data visualisation. This data set consists of 3500 hours of data, with a

set of �ve vital signs recorded for 150 patients during their stay on an acute ward. The vital

signs measured were the Heart Rate, Breathing Rate, Temperature, Arterial-Oxygen Satura-

tion (SaO2) and Systolic-Diastolic average blood pressure. These were recorded using standard
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patient monitors. Typically, the recordings were made at an appropriate rate to detect changes

in vital signs. For most of the parameters, a sampling rate in the order of 1Hz was suitable

- for instance, an abnormally high heart rate of 200bpm requires a sampling rate of approxi-

mately 6Hz. The exception to this was the blood pressure, which was recorded using a blood

pressure cu� once every 30 minutes when the patient was awake, and once very hour while

they were asleep in order to minimise patient discomfort. The monitor linearly interpolates the

measurements for each vital sign and records values at twenty second intervals.

In the work described in this report, a more recent data set from Phase I of a three-

phase clinical trial at the University of Pittsburgh Medical Centre (UPMC) is used to test the

probabilistic model of normality. The UPMC data was collected in a 24-bed Step Down Unit

(SDU), and contains measurements of the �ve vital signs mentioned previously. During Phase

I, 28,782 hours of data were collected from 332 SDU patients, and the Visensia system was

also run in the background for restrospective analysis. In the analysis, physiological data that

met the MET calling criteria described in Table 1 were labelled as C' events. Each C' events

was then reviewed by two clinicians independently, and they ascertained whether the event was

of real clinical signi�cance or not - those that were considered signi�cant were subsequently

labelled as C� events. In total, 237 C' and 112 C� events were identi�ed.

Data from Phase III of the UPMC trial is also used later in this report to test visualisation

algorithms and to validate the probabilistic model of normality. During Phase III, a further

18,692 hours of vital sign data were collected from 313 SDU patients and the Visensia system

was also used `online' to trigger patient review by nursing sta�.

3.2 Pre-Processing the Data

In the �rst instance, the data in each of the sets was transformed into a form suitable for use

in the training procedure and to enable basic statistical measures to be calculated. The vital

sign data was recorded asynchronously, and so initially, it needed to be aligned into patterns,

corresponding to 5D vectors of `simultaneous' vital sign recordings. This was achieved by

applying a zero-order hold between measurements, and collating patterns at ten-second intervals

for each patient. Overall, 2.6× 105 patterns were generated from the training data.
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Lower Bound Upper Bound PI -
record-
ings

rejected
(%)

HR (bpm) 30 300 0.13
SDA (mmHg) 20 180 0.75
SaO2 (%) 60 - 0.08
Temp. (◦C) 32 39 48.00
BR (bpm) 3 45 0.00

Table 3: Physiological upper and lower bounds for the �ve Visensia parameters

3.2.1 Removal of Spurious Data

Patterns that were assessed to be physiologically implausible were rejected according to the

lower and upper bounds given in Table 3. Furthermore, SaO2 readings below 85% saturation

were also discarded, as measurements below this are usually considered inaccurate by clinicians.

This reduced the number of available training set patterns to 2.4× 105.

3.2.2 Removal of Temperature Measurements

A large proportion of the temperature measurements recorded in the UPMC Phase I test data,

just over 48%, were outside of the physiological limits described in given in Table 3. Figure

2 displays a typical temperature time series, showing a rapid decrease in temperature towards

22◦C (ambient temperature). Most likely, this indicates an instance where the temperature

probe had become detached. The �gure also shows reattachment of the probe at 7800s. Despite

setting the lower bound at 32oC (see Table 3), the probe would record artifactual readings

between 32◦C and 36◦C during the time it warmed up to the patient's true skin temperature of

36◦C, hence the number of false temperature recordings is even higher than the �gure of 48%

already given. Although methods of �ltering the temperature data have been investigated[21],

it was decided instead to discard the temperature recordings for robustness, so that only four

parameters are used to build the model of normality.

3.2.3 Comparison of Data Sets

The variances and means for each vital sign were calculated and are shown in Table 4 for the

UPMC Phase I and the original JR data. The other columns in the table show the absolute
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Figure 2: A short time series of temperature recordings for a patient, showing the detachment
and reattachment of the temperature probe.

µg µPI
|µg−µPI |

σg

HR (bpm) 83.77 83.22 0.031
SDA (mmHg) 94.68 97.61 0.177
SaO2 (%) 95.20 95.96 0.218
Temp. (◦C) 36.05 35.87 0.094
BR (bpm) 18.30 18.61 0.061

σg σPI
|σg−σPI |

σg
(%)

HR (bpm) 17.48 16.60 5.0
SDA (mmHg) 16.54 15.06 8.9
SaO2 (%) 3.49 4.33 19.4
Temp. (◦C) 1.27 1.16 8.7
BR (bpm) 5.06 5.12 1.2

Table 4: Comparison of the mean, µg, and standard deviation, σg of the training (JR) data set
with those found in Phase I of the UPMC trial (µPI , σPI).

di�erences in means and variances between the two data sets weighted by the standard devi-

ation. Most remarkably, the absolute di�erences are very small, indicating that the vital sign

distributions are similar. This observation is con�rmed by the histograms for each of the vital

signs, which are presented in Figure 3. It is clear that the general shapes of the histograms

are similar; for instance, the heart rate and breathing rate plots are positively skewed for each

of the data sets. However, the Phase I UPMC data set contains many more measurements, so

histograms for that data set are much smoother than those for the JR training data.

3.2.4 Normalisation

The data was normalised by assuming that each vital sign was normally distributed. However,

it was noted that the heart rate distribution in Figure 3 is trimodal. This is due to the choice

of very �ne histogram bin widths, and the data appears Gaussian when plotted at a coarser

scale. Beaing this in mind, the Gaussian zero-mean unit-variance transformation was applied
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Figure 3: Histograms of the four vital signs in the JR(blue) training set and UPMC Phase
I(red) test set. The graphs for the UPMC data have been scaled by an appropriate factor so
that the distributions can be compared. Also, the temperature recordings have been removed
from the data sets, as described in Section 3.2.2
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on each measurement x.

xn =
x− µg
σg

(1)

where xn is the normalised value, µg is the training set mean, and µg is the training set

standard deviation as calculated in the previous section. The zero-mean transformation was

required to force each of the vital signs onto a similar dynamic range so that each has an equal

in�uence on the model of normality. Finally, data patterns that contained missing information

(for instance, where probes had become unattached) were discarded from the training set.

3.3 Clustering

After the initial processing stage, the JR training set consisted of 2.6×105 four-dimensonal vital

sign patterns and the UPMC test set consists of 1.2× 106 four-dimensional vital sign patterns.

In order to solve the problem with a manageable number of patterns, the data was summarised

into a smaller number of `prototype' patterns. A clustering technique, the K-means algorithm,

was used to select the prototype patterns.

The K-means clustering algorithm is outlined in Algorithm 1 and was �rst introduced by

Macqueen in 1967 [34] to cluster objects based on attributes into k partitions. Mathematically,

the algorithm aims to minimize the error function:

E =
k∑
i=1

∑
xj∈Si

|xj − µi|2 (2)

where there are k clusters, Si represents the i
th cluster, and µi is the centroid of all the points

in the set Si. k clusters are initially randomly placed in the data space, and each data point is

assigned to its nearest cluster centre. The positions of the cluster centres are then recalculated,

by moving each cluster centre to the centroid of its cluster. The data points are then reassigned

to the nearest cluster centre, and the procedure is repeated until convergence. The algorithm

is terminated when the di�erence in E between iterations falls below a user-de�ned criterion.

A modi�cation of the Netlab[39] K-means1 implementation was used on the training data

in order to avoid computer memory limitations. The data was sorted into 500 clusters, and

1Netlab K-means was originally edited by edited by Susannah Fleming, Biosignal Processing Group, Uni-

versity of Oxford
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Algorithm 1 The k-means algorithm
1. Place K initial points into the space represented by the objects that are being clustered

2. Assign each object to the group that has the closest centroid

3. When all objects have been assigned, recalculate the positions of the K centroids.

4. Repeat until convergence

then the centroid of each cluster was de�ned as a prototype pattern. The number of prototype

patterns selected was chosen empirically but will be reviewed later.

3.4 The model of normality - Parzen Windows

At this stage, we make an assumption that the vital sign data is drawn from some underlying

probability distribution function (p.d.f.). Using the 500 prototype patterns selected previously,

the training procedure aims to estimate this p.d.f. If the underlying p.d.f. is known, then the

probability of any new vital sign pattern can be ascertained. The probability can then provide

an indication of a patient's status, as improbable vital sign patterns will indicate abnormal

health.

Parzen Windows is a statistical technique developed to estimate the probability density

function of a random variable. The primary advantage of the Parzen Windows technique over

other p.d.f. estimation methods such as Gaussian Mixture Models is that it is non-parametric,

so it imposes no prior assumption on the shape of the distribution. The Argonauts reading

group2 provides an informal and succinct explanation of Parzen Windows: "Given a sample

of a random variable X for which we want to estimate its p.d.f., we put a kernel function (eg.

a Gaussian) on top of each point, and the estimated pdf is the linear combination of them,

normalized so that the integral of the pdf is 1.�

Mathematically, Parzen windows can be described as follows: if x1, x2, ..., xN ∼ f is an

independent and identically distributed sample of a random variable, then an approximation

of its p.d.f. can be written as

f̂h(x) =
1

Nh

N∑
i=1

K(
x− xi
h

) (3)

2Argonauts are part of the robotics research lab at Oxford University. Minutes of their meetings can be

found at http://www.robots.ox.ac.uk/~rcasero/wiki/index.php/Argonauts_website
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whereK is some kernel function, N is the number of centres, and h is a smoothing parameter.

In this case, the kernel is taken to be a Gaussian function with zero mean and unit variance:

K(x) =
1√
2π
e−

1
2
x2

(4)

Analysis has shown that the choice of kernel is not crucial for estimating the p.d.f. in

the case of independent identically distributed random variables. The smoothing parameter

or kernel width, h, can be chosen by calculating the mean euclidean squared distance of the

m closest members in x for each of the x1,x2...xN , and then calculating the mean of these N

local means, as �rst proposed by Bishop [7]. Applying this to the prototype centres with m=10

members, gives a value of h = 1.49.

In the training procedure, a Matlab function parzen_windows.m was created to build a

Parzen Windows estimated p.d.f. of the 4-D vital sign data for the training data set, where

values of the random variable x were described by using the 500 prototype points. As a sanity

check, a successful search in 4-D space was attempted, varying one parameter at a time to

con�rm that the p.d.f. value at the `most normal point', [0 0 0 0], is close to the maximum.

3.5 Visensia Status Index (VSI)

The Visensia Status Index, which is also known as the Patient Status Index and Novelty Index

in related literature [21, 60], is calculated from the probability density function as follows:

V SI = log[
1

p(x)
]− log[ 1

pmax(x)
] (5)

Where p(x) is the p.d.f. evaluated at the pattern x, and pmax(x) is the p.d.f. evaluated

for the pattern [0 0 0 0], which represents the maximum possible value of p(x). This term

is subtracted to adjust the scale so that the Visensia Status Index is zero when all the vital

signs are normal. The unconditional probability is transformed in this way so that the score

represents a measure of abnormality, where a high score indicates highly abnormal vital signs.

Figure 4 shows the change in the Visensia Status Index when each of the normalised vital

signs are ramped from -4 to +4 in turn, apart from SaO2, which reaches 100% saturation at a

normalised value of 1.37. The VSI values for each parameter range between zero and �ve, and
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Figure 4: Visensia Status Index for the case when each vital sign parameter is ramped from -4
s.d. to +4 s.d. in turn, while �xing the remaining three vital signs at their normalised mean
value of zero.

the VSI distributions are slightly asymmetrical for all of the vital signs. This may be expected

as the histogram plots in Section 3.2.3 show that the original distributions were also skewed.

When varying SaO2, the minimum VSI is approximately zero, which occurs at 95% blood

oxygen saturation. The VSI then increases as blood oxygen saturation reaches 100%. This is

anomalous as one would expect a patient to be healthier with higher levels of oxygen saturation,

and is a result of the normalisation stage in Section 3, which implicitly assumed the data to be

Gaussian distributed. The histograms in Section 3.2.3 shows that this is not the case. However,

in this instance, the di�erence in VSI at 100% SaO2 and at the minimum is small, and so the

assumption is acceptable. Furthermore, alternative ways of normalising the SaO2 data were

tested by Hann [21] and were found to have negligible e�ect on the overall outcome.

The VSI can be used directly as a measure of patient abnormality, and can thus be used

in an alarm system to provide early warning of patient deterioration. It can also be made an

MET calling criterion, so that an MET is called once the VSI reaches a critical value. Because

the VSI is a monotonic function of the unconditional probability p(x), a VSI upper threshold

is also equivalent to setting a lower threshold on p(x).

A candidate threshold was set at 3 VSI units. Its suitability was assessed by observing
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lower threshold upper threshold

Vital sign Deviation from mean (σ) Vital sign Deviation from mean (σ)
HR (bpm) 25.91 -3.31 141.63 3.31

SDA (mmHg) 45.89 -2.95 149.10 3.29
SaO2 (%) 83.00 -3.5 N/A N/A
BR (bpm) 1.96 -3.23 34.95 3.29

Table 5: Values of individual parameters that cause the novelty to exceed VSI = 3.0, when the
other three parameters are set to `normal' (the mean value in the training set). Both actual
values and normalised value (in units of standard deviation) are given.

the value at which the candidate threshold was reached for each individual vital sign, while

�xing the value of the other three parameters to their means (i.e. when the other parameters are

`normal'). The result of this is shown in Table 5, and demonstrates that for any single vital sign,

a VSI of 3 is reached between 3.0 and 3.5 standard deviations from its mean value. For a general

distribution, Chebyshev's inequality shows that the probability of a single vital sign causing the

threshold to be exceeded is between P [(x−µ
σ

) > 3.0] = 1
3.02 = 0.11 and P [(x−µ

σ
) > 3.5] = 1

3.52 =

0.081. However, the histograms in Figure 3 show that the data is well modelled by a Gaussian

distribution, in which case the probability is far smaller, between P [(x−µ
σ

) > 3.0] = 0.013, and

P [(x−µ
σ

) > 3.5] = 0.0023. The candidate threshold of 3.0 is thus suitable, as it will alert for

highly improbable single-channel events.

With this method, an alarm will be generated when any single parameter reaches a critical

value, OR when a combination of parameters produces a high VSI score. In order to reduce

false alarms while maintaining a high sensitivity, alarms are only generated if the VSI remains

over the critical value for a prolonged period of time. In particular, this eliminates instances

where the threshold his exceeded momentarily due to movement artifacts. Previous analysis

have shown that a high VSI for 240 out of 300 seconds is signi�cant enough to warrant hospital

sta� attention [21].
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4 High-Dimensional Data Visualisation

Interpreting results arising from the Visensia model described previously is a challenging task,

as each data vector contains four independent vital sign readings, and the data set is very

large. Any analytic tools or algorithms must deal with the data in a coherent and intuitive

manner in order to provide useful insight, but must also be usable with large volumes of data.

One important tool in high-dimensional data interpretation is visualisation. This involves

transforming the original data to a visualisation space with fewer dimensions. Typically, two

or three dimensions are chosen so that the results can be plotted for visual inspection. The

transformation is chosen in such a way as to maintain key aspects of the data distribution; for

example, topology may be preserved between the dimensions.

4.1 Sammon Maps and Neuroscale

A variety of visualisation algorithms have been proposed in the literature, including Kohonen's

Self Organising Maps (SOMs) [29] and kernel Principal Component Analysis (kPCA) [49].

SOMs use a neural network to map data onto a 2D grid such that similar data (i.e. data close

to each other in the original high-dimensional space) are grouped together on the grid. This

provides insight into the spatial relations within the data. In kernel PCA, the appropriate

choice of kernel allows the data to �rstly be mapped to a higher dimensional space so that a

standard PCA in kernel space has the e�ect of producing a non-linear mapping between the

original data space and visualisation space.

One popular alternative to these methods is the Sammon Map algorithm [47]. This produces

a mapping that attempts to keep the Euclidean distances between all pairs of data points in

the 2-D visualisation space as close as possible as they were in the high-dimensional data space.

Mathematically, this is equivalent to minimising the so-called Sammon STRESS for N data

samples:

STRESS =
1∑N

i=1

∑N
j>i d

∗
ij

N∑
i

N∑
j>i

(d∗ij − dij)2

d∗ij
(6)

where the Euclidean distances between patterns i and j in the data space are denoted by

d∗ij, and the corresponding distances in visualisation space are denoted by dij. The objective

26



Figure 5: Schematic diagram of the RBF neural network used to create the Neuroscale mapping
between vital sign data space and 2D visualisation space.

function is minimised by a gradient descent technique that adjusts the position of the points

in visualisation space.

Unfortunately, there are two major drawbacks to the method. Firstly, creating a Sammon

Map is not possible for very large data sets, as the STRESS calculation required involves order

O(N2) point comparisons. On a typical desktop PC, a few thousand data vectors is the practical

limit. This means that large data sets such as those obtained from the JR and UPMC trials

cannot currently be visualised using Sammon Maps. Secondly, the Sammon Map does not

explicitly de�ne the transformation between data space and visualisation space and so cannot

accommodate new data. The only way to map a new point is to add it to the data set and

reoptimise the STRESS.

The Neuroscale algorithm was developed by Lowe and Tipping [33] and attempts to cir-

cumvent these problems by parameterising the Sammon mapping transformation such that

y=f(x,z), where y is the vector of points in visualisation space, x is the vector of points in the

data set, and z is a parameter vector. The STRESS can then be di�erentiated with respect

to z, so that the vector y is indirectly adjusted while minimising STRESS. In this scheme, the

transformation is explicit, allowing new data points to be added to a map. A Radial Basis

Function (RBF) neural network is used to learn the transformation between data and visuali-

sation space, and a schematic diagram of the network is shown in Figure 5. In tests conducted

using Neuroscale, the number of hidden nodes was chosen to be an order of magnitude lower
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Figure 6: An example Neuroscale map showing the 50 hidden later points and the 500 K-means
patterns generated from the training data.

than the number of training patterns used. However, Lowe and Tipping note that the algorithm

is largely insensitive to model complexity.

The Neuroscale algorithm was tested using the JR training data; 50 patterns were chosen as

the locations of the RBF network hidden nodes by using K-means to cluster the 500 prototype

patterns originally selected from the JR training set. The width of each centre was then set to

be the Euclidean distance of the centre to its furthest neighbour amongst the 49 other centres.

The RBF network was trained using the Netlab [39] implementation of the Neuroscale

algorithm and then used to visualise the 4-D vital sign patterns. A sample output showing

the hidden layer centres and the 500 K-means patterns generated from the JR training data

is shown in Figure 6. The 500 centres are well distributed over the feature space, as one may

expect. The �gure also shows a small number of outlying centres, which may indicate that the

training data includes periods of vital sign abnormality.

Although Neuroscale is useful in many situations, it su�ers from some of the same draw-

backs as the Sammon map. In particular, the STRESS calculation is still required, so the

computational cost for large data sets remains very high. To some extent, this problem can be

avoided by training on a subset of prototype points selected from the whole data set as �rst

performed by Tarassenko et al. [62]. However, the quality of the transformation created by

such a procedure is highly dependent on the method used to select the prototype points, and

may be particularly poor in sparsely populated regions of the data space.
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At present, there appears to be no method described in the literature for creating a Sammon

Map for large (> 104 points) data sets in a reasonable time.

4.2 SASS - a novel visualisation tool

A novel alternative to these methods is proposed here, named the Sparse Approximated Sam-

mon STRESS (SASS). SASS reduces the problem to one of order O(n) by sub-sampling from

the complete set of inter-point distance pairs to approximate the Sammon STRESS. In prac-

tice, it has been discovered that many of the inter-point distances can be removed from the

STRESS calculation, with little e�ect on the Sammon Map visualisation. The method used to

sub-sample is critical for obtaining an accurate mapping and is discussed further in the follow-

ing section. Formally, if we de�ne S to be a sparse subset of the index pairs (i, j) for which the

Euclidean distance is calculated, then the modi�ed STRESS function to minimise is:

SASS =
1∑

i,j∈S d
∗
ij

N∑
i,j∈S

(d∗ij − dij)2

d∗ij
(7)

For very large data sets consisting of at least N = 106 points, a sparse distance matrix with

an average of 50 distance comparisons for each point has been tested and shown to work

successfully. In this case, only one distance comparison is computed using SASS for every 20,000

comparisons required to be calculated for the original STRESS. By reducing the computational

complexity in this way, the initial problem of large data sets is overcome. Furthermore, data

storage is reduced by using memory saving techniques for sparse matrices. Further increases

in speed are made by using an e�cient optimisation algorithm, scaled conjugate gradients, in

preference to gradient descent.

4.2.1 Algorithm Initialisation

In the initial tests, points in the visualisation space were initialised with random values, fol-

lowing the precedent set in Sammon's original paper. During these tests, it was clear that as

the size of the data set increases and the number of computations required to calculate SASS

increases accordingly, it becomes likely that the SASS optimisation procedure will get stuck in

a local minimum. In addition, some of the points are likely to be initialised far from their �nal

position, so the optimisation process converges slowly.

29



SASS can be initialised in a more principled manner by using a two-stage approach. Firstly,

SASS is applied to a subset of the initial data set to produce a preliminary mapping. In this

pre-mapping, the points in the visualisation space are initialised randomly. The Sammon map

generated by this process creates a sparse outline, or a skeleton, of the data and so the second

stage of the initialisation is to approximately map the remaining points into visualisation space

using the skeleton. A variety of techniques for this are recorded in the literature, and are

assessed in Section 4.3. In this case, a distance mapping technique introduced by Pekalska et.

al. was used, which creates an explicit linear transformation between the data and visualisation

spaces. This provides an approximation to the Sammon mapping transformation, which is

generally non-linear. The result of this procedure is that all vectors in the data set are initialised

to the correct region of the visualisation space. A fuller explanation of the distance map method

implemented is provided in Section 4.3.2.

In preliminary tests on the UPMC Phase III data sets, initialisation takes nine minutes

to perform for a 4800 point pre-mapping. The vast majority of this time is spent calculating

the distance matrices between the 4800 points and each point in the 106 point data set on a

desktop PC. Following this, SASS was run using the pre-mapped points to initialise points in the

visualisation space. In general, the �nal SASS error was smaller than for random initialisation

of the dij values, and the optimisation stage converged in fewer iterations.

4.2.2 Subset S Initialisation

The SASS method can fail when a subset of the data, by chance, only possesses inter-point

comparisons within the subset. A pictorial representation of this problem is presented in Figure

7. It is unsurprising that such an initialisation results in an incorrect visualisation, as the

algorithm will treat the subsets as two separate data sets.

Fortunately, the probability of such an event occurring is very small. For instance, the

probability of two subsets forming, where one of the subsets contains only one vector (which is

equivalent to one point having no connections to any other point in the data set), is given by

P (one point disconnected) = N
{
1− 2

N

}λ
2
N

(8)

where λ is the average number of connections per point such that λ
2
N is the number of
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Figure 7: The graph shows an example of the connectivity between data points for the original
Sammon Map (grey) and for the SASS algorithm (red). Each node represents a data point,
and each edge represents an inter-point distance. In this example, the data has formed two
unconnected subsets and SASS will produce an incorrect mapping.

elements in set S, and N is the number of data points as before. For a data set with over

106 points and an average of 50 connections per point, the probability of one point being

disconnected is of the order of 10−16. To prevent this problem from occurring at all, we ensure

that the connections within the data set �rst form a minimum spanning tree. The simplest way

to do this is to initially connect each data vector to its neighbours (in the Euclidean distance

sense), so the nth data vector in the set N has distance comparisons to the n− 1th and n+ 1th

vectors.

SASS can be further enhanced by considering the manner in which the subset S of inter-point

connections is chosen. In order to test the e�ectiveness of alternative choices of S, a unit-cube

synthetic data set was created. This consisted of a 3D unit-cube with normally distributed

data at each of the corners, with 20× 104 three dimensional vectors in total. Furthermore, the

[1, 1, 1] data vector was added twice to the set as two distinct data points to test whether data

are mapped consistently.

In the initial tests, elements in S were chosen by selecting two data vectors at random.

Figure 8 shows the results from SASS on the cube data set in red compared to results created

directly from Sammon's algorithm in grey. The eight clusters corresponding to the corners

of the cube are correctly mapped, and it is clear that SASS works satisfactorily. One should

note that there is more than one correct solution, including any Sammon map that possesses

re�ective or rotational symmetry with respect to the solution shown.
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Figure 8: A Sammon Map for the unit-cube data set, containing 2 × 104 points. The SASS
Sammon map is shown in red, and the output from the original method is shown in grey. In
both instances, the separate data clusters are clearly visualised.

Although the results are acceptable, it is clear that, in order to maintain accurate local

and global structure, the proportion of local and distant inter-point connections is of critical

importance. One natural way to achieve this is to force each data point to have an equal

number of comparisons to both near and far points in the data set. Local and distant points

can be de�ned for any data set as follows. Firstly, the data is clustered using a technique such

as K-means. Once the data has been grouped, half of the inter-point comparisons that form

set S are selected from data vectors from within the same cluster. These are de�ned as `local'

connections. The remaining inter-point comparisons are chosen so that the data vectors are

from di�erent clusters. Alternatively, for time series data where variation is slow compared to

the data collection rate, one would expect consecutive samples to appear locally in visualisation

space. Therefore, local connections can also be de�ned by appropriately partitioning a time

series.

The unit-cube data set was retested using this method to de�ne local and distant connec-

tions. Again, Figure 9 shows that the global structure was adequately captured. The duplicate

points (the [1 1 1] vectors) are highlighted in red, and visual inspection shows that they were

mapped consistently. To quantify the accuracy of the mapping, the data set was visualised 200

times for both the randomly initialised set, and for the alternative method described above.

In each of the 200 Sammon maps, the Euclidean distance between the duplicate points was
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Figure 9: A Sammon Map for the unit-cube data set using the initialisation described in Section
4.2.2. The SASS Sammon map is shown in grey. In the left-most cluster, the visualisation of
the duplicate points at [1,1,1] are highlighted in red. The sub-�gure shows the left-most cluster
in greater detail so that the duplicate points can be distinguished easily.

recorded and the mean of these was calculated. For the randomly initialised set, the mean dis-

tance was 0.05, while the mean distance for the K-means method was 0.02. This indicates that

it is important to ensure a su�ciently high proportion of local connections, and that selecting

S at random is sub-optimal.

4.3 SASS generalisation - interpreting new data

It has been mentioned that one of the signi�cant drawbacks of all Sammon mapping techniques,

including the SASS method, is that new data cannot easily be visualised on an existing Sammon

Map. A number of algorithms attempt to interpolate new data points onto Sammon maps.

These have proved moderately successful in practice, but often provide coarse estimates in

visualisation space, and turn out to be inelegant solutions. An outline of two such techniques

is provided below. Section 4.3.3 provides a novel adaptation of a distance mapping approach

that takes advantage of the greater data density in the problems suited to SASS by creating a

local distance-mapping that outperforms the standard method.
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Figure 10: Schematic Diagram of a triangulation scheme. Points x,y, and z are already mapped.
The distances dxc and dyc are the inter point distances in data space between points x and
c, and y and c respectively. In 2D space, this de�nes up to two candidate points for c. The
correct candidate is chosen by using z for a further distance comparison.

4.3.1 Triangulation

Triangulation techniques, �rst considered by Lee et. al.[32], are based on the idea that for any

given data point, only the inter-point distances to N other points can be preserved exactly in

an N-D visualisation space. For the 2D case, two data vectors that are local to the new data

vector in the data space are used to de�ne either zero, one or two candidate points for the new

data vector to be mapped to. If two points meet the distance criterion, then a third data vector

is used to identify the correct candidate point. A schematic diagram of the process is provided

in Figure 10.

In the Sammon Map algorithm, the mapping of a candidate point is dependent on preserving

distances to all the remaining points. However, in triangulation the mapping of the candidate

point depends on only three previously mapped points, and so the method is prone to error.

Large errors are especially likely to occur with a poor choice of triangulation vectors, such as

when the vectors are colinear.

4.3.2 Distance Mapping

Distance mapping is a technique developed by Pekalska et. al. [43] that involves using a subset

of data to create an explicit linear transformation from data space to visualisation space. This
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provides an approximation to the transformation created by Sammon's algorithm, which is

generally non-linear. In the original context, distance mapping was used to speed up the

Sammon map visualisation. In this section, we describe how the algorithm can be applied to a

large data set for incorporating previously unseen data.

Firstly, a subset, Xbase, of the training data set is chosen (for smaller data sets, the whole

training data can be used). Ideally, this subset should provide good coverage of the data space.

This can be achieved by using the process described in Chapter 3 for selecting the 500 prototype

patterns from the whole training set.

Next, we assume that there is a linear transformation, V, from the subset Xbase, to their

corresponding points in visualisation space, Ybase that can be de�ned by

DbaseV = Ybase

where Dbase is the distance matrix of all the pairs of vectors inXbase. From this, it is simple

to solve for V, and to incorporate some new data, Xnew, by �rst calculating the distance matrix

between the sets Xbase and Xnew to establish Dnew−to−base and then �nding Ynew by:

Ynew = Dnew−to−baseV

4.3.3 Local Distance Mapping

In Pekalska et. al's distance mapping algorithm, it was assumed that a linear transformation

between data space and visualisation space was adequate. Their work demonstrates that this

is true in many cases. However, it is possible to improve upon the algorithm by only selecting

points for the subset, Xbase, that are local to the data point to be mapped. This has the

advantage of making the more general assumption that a linear mapping is accurate for a local

region of space. A `local' point can be de�ned by using the K-means algorithm to cluster the

data and then selecting only points within the appropriate cluster. Compared to the standard

distance mapping technique outlined previously, the main disadvantage is that extra compu-

tation is required to calculate neighbouring data points, and that a new linear transformation

matrix, V, must be calculated for each point added. The computational cost is o�set when one

considers that the size of the local subset can be much smaller and still provide good results.
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We note that Pekalska et. al. do not consider this adaptation to their method, perhaps because

a large data set is needed to demonstrate its e�ectiveness.

4.3.4 Comparison of Methods

In order to test the e�ectiveness of the three methods, the unit cube data set was again used.

The test was conducted as follows: �rstly, the data set was mapped using SASS and one

point was removed from the visualisation space. Secondly, the data vector corresponding to the

removed point was mapped back into visualisation space using the three interpolation methods,

and the error was calculated as the distance between the SASS Sammon mapped point and

the distance mapped approximation. The test was repeated for all data vectors in the set. It

was discovered that the local distance mapping algorithm greatly outperforms the standard

distance mapping algorithm, reducing the average error from 5.0× 10−3 to 4.3× 10−4, and also

outperforms triangulation (with an average error of 5.0 × 10−2) but is much slower than the

other two methods. Despite this, we note that local distance mapping of a single point takes

hundredths of a second to compute on a desktop PC and is suitable for real-time applications.

4.4 Results

The SASS method has been used as a tool for initially exploring the extremely large vital

sign data sets. Results so far have been encouraging, and have provided insight into ways of

improving data fusion models for patient monitoring. The following results were generated

using the UPMC phase I and phase III vital sign data.

In �gure 11, a SASS map generated from Phase III data is shown, visualising approximately

106 data points. Each point in the �gure is a 2D representation of a 4D vital sign vector. Using

the Local Distance Mapping technique described previously, the Phase I data that corresponds

to readings during the 10-minute window from 5 minutes before and after a C� event (that is, a

vital sign recording during a clinically important event) are shown in red. The plot shows that

most of the data from near a C� event lies towards the edges of the data distribution, as one

would expect for abnormal vital signs. Some of the data is plotted at the centre of the Sammon

mapped cluster. By checking the original data points, it can be shown that these readings

indicate instances where a patient experienced a sudden deterioration, or else instances when
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a patient's condition stabilised quickly after the C� event.

Figure 11: A Sammon map of the UPMC Phase III data in blue. The points in red represent
vital sign data from 5 minutes before and after a C� event in the UPMC Phase I data, and
have been added to the map using the local distance mapping technique.

The same technique can be used on a per-patient basis and allows one to see deterioration

in patient health as time progresses. For the phase III data, a series of SASS maps of patient

151 were created to depict the �nal ten minutes of the patient's record (Figure 12). The vital

sign record for patient 151 is coloured in white for reference, and the entire record of vital signs

recorded during the trial are plotted in light grey. The maps clearly show how the patient

begins with relatively normal readings, which lie towards the centre-left of the population's

distribution. As time progresses, the patient's vital signs become increasingly erratic as the

blood-oxygen saturation readings become dangerously low. The bottom row of plots correspond

to the last three minutes of the patient record where it can be seen that a number of abnormal

vital signs are recorded, denoted by the points towards the edge of the grey (whole population)

cluster and far away from the white (single patient) cluster, and it can be seen that there is

a general trend away from normality and increase in vital sign variability. This was caused

by a combination of an increase in blood pressure, and a catastrophic drop in arterial oxygen

saturation. The fact that the deterioration in patient health can be detected suggests that it

is possible to use trends in time to improve the data fusion model.

A �nal SASS example is presented in �gure 13. This Sammon Map depicts the vital signs

for patient 173 and patient 182 from the Phase III data in red and blue respectively. It is
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Figure 12: A time-lapse Sammon map showing the deterioration in health of patient 151 during
the last 10 minutes of the patient's vital sign record. The points in light grey depict the vital
sign distribution from the entire data set, while the points in white show the vital signs for the
patient's entire stay on the ward. The lines in red mark the progression of the patient's vital
signs over a one minute period. The VSI is plotted at the top, and the red lines indicate minute
markers corresponding to Sammon maps.
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Figure 13: A Sammon Map for UPMC vital sign data. The whole data set, consisting of 961,031
4D vectors is visualised in grey. Points corresponding to vital signs for patient 173 and patient
182 are plotted in red (left) and blue (right) respectively.

noticeable that the vital signs for each patient are con�ned to small regions of the vital sign

distribution. For both sets of data, the medical emergency team had not been alerted, and so

the vital signs may be considered `normal'. This indicates that there is considerable patient-to-

patient variation within the bounds of vital sign normality. This is not an entirely unexpected

result, as external factors such as patient age, physical �tness and reason for admission will

have an e�ect on vital signs. Given that the patients' vital signs do not overlap on the map,

the Sammon map provides important qualitative evidence that inter-patient vital sign variation

is signi�cant enough to motivate the design of personalised data fusion models for vital sign

monitoring.
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5 Optimising the Parzen Windows Model

5.1 Optimising the Parzen Width

The training procedure outlined in Chapter 3 raises some important issues that are now ad-

dressed. We previously noted that the choices for the Parzen Windows width and the number

of kernel centres are critical for creating a good model. However, both of these parameters have

not been optimised until now. The number of cluster centres to create the model was chosen

arbitrarily at 500 centres, and the kernel width, h, was chosen on general principles outlined

by Bishop [7], rather than considered on a case-speci�c basis.

The kernel width is particularly important; if h is too small, then the Parzen windows kernels

do not �ll the data space, and artifacts in the estimated p.d.f. begin to occur. Conversely, if

h is too large, the model smooths out the p.d.f. so that its variance is larger than that of

the underlying distribution of the data. Figure 14 demonstrates this e�ect, showing results

obtained by using various values of h for a 1-D Gaussian modelled with 30 kernels.

Figure 14: Parzen windows model of a zero mean, unit variance Gaussian distribution for 30
kernel centres and for various width parameters. The original distribution is shown in dashed
lines.

During the training procedure, the Parzen windows width parameter was set at h=1.49. To

maximise the predictive power of the model, it is highly desirable to �nd the optimum value

of h. This was accomplished by conducting a thorough search, varying h over four orders of

magnitude, from two orders of magnitude smaller to three orders of magnitude larger than the

initial value, to investigate its e�ect on the resulting kernel density estimate.

The ideal Parzen Windows model trained on the training data is the one `most similar' to

the validation data set (UPMC Phase III data). This gives a natural method to assess the
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optimality of h. If we de�ne an error metric, ε, as the 4D integral:

ε =

�
(Fparzen(x1, x2, x3, x4)− Fdata(x1, x2, x3, x4))

2dx1dx2dx3dx4 (9)

where Fparzen is the p.d.f. estimated by Parzen windows, Fdata represents the underlying

distribution from which the validation data is taken, and the subscripts of x represent the four

di�erent vital signs being measured (breathing rate, heart rate etc.) The error is then the

integral of the squared di�erence between the estimated (Parzen Windows generated) p.d.f. of

the training data, and the underlying p.d.f. of the validation data.

The error integral cannot be calculated directly, as Fdata is unknown, so a computational

approach must be used instead. By sampling from the validation set, we can estimate the

integral of Fdata by creating a 4D histogram, Hdata, and calculating the hypervolume under the

histogram. A similar histogram, Hparzen, can also be produced by sampling from the Parzen

Windows model, Fparzen. Sampling is simple in this instance, as Fparzen is a sum of Gaussians

with equal weightings. Using this, an approximation to the error can be calculated as:

ε =
i∈R∑ j∈R∑ k∈R∑ l∈R∑

(Hparzen(i, j, k, l)−Hdata(i, j, k, l))
2 (10)

Data is segregated into R bins for each vital sign, and Hparzen and Hdata are the number

of samples from the Parzen model and the validation data assigned to the bin centred at the

vector (i, j, k, l). Care must be taken when sampling from the Parzen Windows model to collect

a statistically signi�cant number of points to create Hparzen. In fact, the curse of dimensionality

means that an extensive sampling in 4D is likely to be unfeasible due to memory and computing

time constraints.

The problem is avoided here by using a dimensionality reduction algorithm such as SASS

or Neuroscale. Through this, it is possible to perform a limited sampling of the 4D distribution

and then to transform it into a topologically similar 2D distribution. The error, ε, can then

be calculated using histograms in the 2D visualisation space instead. This may be particularly

useful as the method will remain tractable for higher dimensional distributions.
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Figure 15: Plot of the sum-of-squares error between the vital sign Parzen windows model of
normality and the validation set for the values of the width parameter, h, between 0 and 1

5.1.1 Results

The error between the Parzen Windows p.d.f. and the underlying p.d.f. of the validation data

was calculated for values of h between 0.01 and 1000. The results are summarised in Figure

15 showing that the error is minimised at approximately h = 0.06, and that the error increases

as h departs from this value. Between 0.1 < h < 1, the error does not increase monotonically.

This is likely to be caused by the limited size of the validation set, and the problem should

become negligible if a greater number of samples are used.

5.1.2 Discussion

Although Figure 15 appears convincing, it presents an incorrect solution. Figure 16 depicts

1D slices through the width-optimised probability distribution, showing the probability of one

vital sign, when the other three vital signs are �xed at their mean values. It is clear that the

model is under-smoothed. This result is particularly interesting, as it indicates that it is not

su�cient to minimise a global error. By visual inspection, a value of h = 0.3 eliminates the

instances of under-smoothing in the 1D slices.

In an independent study, Hann [21] attempted to optimise the Parzen Windows widths

using a di�erent error metric, and ended up with a value of h = 0.1, a very similar value to

that presented here. In his scheme, the squared di�erence between marginalised 1D models

from the Parzen windows model and from the validation data model were used to calculate the

error. A marginalised 1D model was produced by integrating out three of the four vital signs.

This has the advantage of dealing with the p.d.f. in a more direct manner but also neglects the
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Figure 16: 1D p.d.f.s for the �optimised� ParzenWindows model (h = 0.06) where the parameter
of interest is varied from -4 to +4, and all other parameters are kept at the mean value.
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Figure 17: Neuroscale plot showing the remaining 400 `most normal' centres and the 100
outlying centres for the training (JR) data set.

e�ects of under-smoothing.

To calculate a better estimate of h, one could add a regularisation term to the error function

to avoid selecting an over�tted solution. Alternatively, the model could be optimised by using

information about critical events (C�) in an error metric, so that the optimal width wass directly

related to the model's ability to detect instances of patient deterioration. So far, this has not

been possible as the validation set is currently not labelled with C� events.

5.2 Optimising the number of Parzen Windows Kernels

In Chapter 4 it was shown that the 500 prototype cluster centres included some points that

appeared outside the main group of centres after a Neuroscale transformation. It is possible

that a better model of normality can be created by removing such outliers, so that only the

400 centres closest to normality (i.e. the point [0 0 0 0]) as de�ned by Euclidean distance are

selected [61]. The output from this procedure was processed through the Neuroscale algorithm

and the result is shown in Figure 17. The 400 `most normal' centres appear to be tightly

clustered, and the 100 most outlying centres have been removed from the original 500 centres.

This suggests that the reduced set may provide a better model of normality.

To test this, the 400 `normal' prototype centres were used to generate a new Parzen Windows

model of normality for the training (JR) data. 105 points were sampled from the model and

compared to the validation data using the method described previously. The resulting error

was ε = 1.10 × 106, which is 9 × 104 less than the error for 500 centre model, indicating that

it is a slightly better model. However, we again note that alternative error metrics should be
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undertaken to con�rm this analysis.

In conclusion, the 400 point Parzen windows is an improvement on the original model.

However, the choice of 400 centres is arbitrary and a more rigorous approach to removing

outliers may yield a better model. One improvement that should be investigated is to de�ne

an outlier in terms of its local surroundings instead of using the Euclidean distance from the

mean. That is, a centre should be regarded as an outlier if its nearest neighbours are `far away'.

Such a scheme would also allow outliers to be correctly identi�ed for a multimodal distribution.

5.3 Assessment of the Model of Normality

The e�ectiveness of using a probabilistic model of normality to detect changes in patient vital

signs has so far been justi�ed primarily by clinical results. These results show that the model is

able to detect speci�c instances of patient deterioration earlier than nursing sta�. For example,

Hravnak et al. state that in their trial �All MET activation events were detected by BSI in

advance (mean, 6.3 hours)� [26]. Despite these excellent clinical results, the training method-

ology, and in particular the K-means and Parzen windows procedures that were introduced in

Chapter 3, have not been analysed critically.

In a simplistic sense, the Parzen Windows method creates a smoothed and continuous high

dimensional histogram of the training data. Therefore, to create a valid Parzen Windows

model, data must be drawn from the underlying training set distribution. However, during

the training procedure described in Chapter 3, the training set was too large to apply Parzen

windows directly and instead a downsampled `prototype' subset was generated using the K-

means algorithm. This subset was assumed to be a good representation of the training set

probability distribution. We now consider whether this was a valid assuption.

To test the assumption, 10,000 samples were selected from a 2D Gaussian distribution and

from these, 50 cluster centres were selected using the K-means algorithm. The cluster centres

were saved, and the process was then repeated 80 times, leading to the result in Figure 18.

The cluster centres are shown in red, and plotted alongside samples taken directly from the

underlying distribution in blue. The �gure shows that the K-means centres do not represent the

underlying data distribution well, �rstly appearing to produce a `annular pattern' e�ect, and

secondly and most importantly, showing a larger number of clusters centres in the distribution
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Figure 18: The result of a K-means clustering on a 2D equivariant Gaussian with k = 50,
repeated 80 times, coloured in red. The points in blue show 500 points selected at random from
the 10,000 points in the Gaussian test set.

tails than would be expected if they were selected directly from the distribution.

The reason for the `annular pattern' e�ect can be established if one considers some simple

cases where there are very few clusters. Consider an example where data is selected from

a uniform circular distribution. Applying K-means when k = 2, it is clear that the optimal

solution to the clustering problem will result in the two cluster centres being equidistant from

the centroid. When the trial is repeated many times, a set of points that lie roughly in an

annular region will be formed because of the rotational symmetry in the underlying distribution.

Similarly, when k > 2, it can also be shown that there are a limited number of optimal cluster

centre con�gurations that also give rise to annular patterns for repeated trials.

The cluster centre bias towards less populated areas of a data distribution is of greater

importance and can also be con�rmed as a genuine e�ect by considering a 1D case with many

samples centred around x = 0, and a few outlying points at x = 10. Then the K-means

representation with k = 2 gives the outlying data a large in�uence on the �nal cluster positions

(see �gure 19). It should be emphasised that this is not a problem with K-means per se (in

fact, the outlying cluster may be signi�cant), but rather shows that the K-means algorithm is

not appropriate for selecting the representative subset used for the Parzen windows model.

Because the prototype subset used for the Parzen windows method is weighted towards out-

liers, the original training method does not accurately model the underlying data distribution,

this has been partly corrected for by removing the most outlying centres (Section 5.2). However

it has already been noted the method of choosing 400 centres was not entirely rigourous, and

so an alternative solution is analysed in the following section.
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Figure 19: The result of K-means on a synthetic data set, demonstrating that outlying data can
have a strong e�ect on the �nal positions of cluster centres. The �nal positions of the cluster
centres are denoted by red stars, and the data points are in blue.

5.4 Weighted Parzen Windows

Weighted Parzen Windows (wPw) was introduced by Babich and Camps[3] to deal with the

problem of the signi�cant processing time and data storage needed to compute a kernel density

estimate as a training data set gets large. Their approach is similar to the training process

described so far, in that training data is clustered to reduce the size of the set. However, Babich

and Camps extend this idea in an intuitive way, using the population of each cluster to bias

the Parzen windows estimator.

Mathematically, the weighted Parzen Windows technique approximates Parzen Windows

using a set of m prototype patterns, and is given by:

pm(x) =
m∑
i=1

wi
h
K
(
x− xi
h

)
(11)

where wi is the i
th cluster weighting and is equal to the number of training samples in the

ith cluster, divided by the number of points in the whole training set. All other variables take

the same meanings as before. In the original paper, a hierarchical clustering algorithm was

used to generate the m points, but clustering techniques such as K-means may also be used.

The result of this is that low weightings are assigned to the kernels that lie in low density

regions of data space, reducing that kernel's in�uence on the overall shape of the estimated

p.d.f. and providing a more accurate estimate of the underlying data distribution function.

5.4.1 2D Tests

A simple 2D example was �rst constructed in order to test the suitability of the wPw method.

10,000 samples were selected from a 2D Gaussian distribution with unit equivariance and mean
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at [0,0]. They were downsampled using the K-means algorithm to a subset of 50 cluster centres.

The cluster membership was also stored and was then used to compute a kernel density esti-

mate using wPw as shown in Figure 20(c). The other plots in the �gure show the underlying

distribution (Fig. 20(d)), the result of the standard Parzen Windows on the 50 cluster centres

(Fig. 20(a)), and the result of applying Parzen Windows on 50 points selected directly from the

underlying distribution (Fig. 20(b)). The Parzen width parameter was chosen emprically at

h=0.1, the width for which the 2D p.d.f. estimate begins to fail for a standard Parzen Windows.

Figure 20: Kernel density estimates using 50 kernels for data derived from a 2D Gaussian
distribution. (a) shows the Parzen Windows result using the Visensia training procedure (b)
shows the Parzen windows result using data selected directly from the underlying distribution.
(c) shows the result using wPw, and (d) shows the original distribution

The wPw technique estimates the underlying distribution well and in particular, the vari-

ances of the wPw distribution and the underlying distribution match well. By visual inspection,

the wPw method and appears more accurate than the standard Parzen estimator. Furthermore,

with wPw, the lower weightings towards the extremes of the distribution help to reduce the

spurious pattern that can be seen in the standard technique.

In addition to this, we note that a Parzen Windows estimate produced directly by sampling

the training set (Figure 20(b)), does not estimate the underlying distribution well, as the data

space is too sparsely sampled. The error of the three Parzen windows models can be quanti�ed

by calculating the integrated squared error (from equation 10). The errors are shown in Table

6. It is interesting to see that the error from the sampled data model is smaller than for

the clustered data model, despite the overall shape of the sampled data model being inferior.

48



Method Weighted Parzen
(clustered data)

Parzen
(clustered
data)

Parzen
(sampled
data)

Error 7.56× 10−6 1.23× 10−4 1.03× 10−4

Table 6: The mean integrated squared error for a Parzen Windows model of a 2D Gaussian
with kernels generated using (a)K-means, (b) Random Sampling, and for (c) a wPw model
using K-means generated kernels.
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Figure 21: Unconditional probability for the case when each vital sign parameter is ramped
from -4 s.d. to +4 s.d. in turn, while �xing the remaining three vital signs at their normalised
mean value of zero. The weighted Parzen Windows estimate is shown in blue, and standard
Parzen Windows is shown in red.

This matches with observations from earlier in this Chapter, where the minimum error did not

correspond to the best �tting model.

5.4.2 Training Data tests

Having shown that wPw outperforms the standard Parzen windows estimator in the 2D case,

we apply the wPw technique to the 4D JR training data set. The original parameters of Parzen

width of h=1, and 500 prototype centres were chosen, so that results can be compared to

the original model. The �gure presented below shows 1D slices from the wPw model in blue,

compared to the original Parzen model in red. As before, one variable is ramped between -4

and +4 s.d. with all other variables set to the mean value of zero.
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Figure 22: Summary of novelty and vital signs for Patient 328, 16 hours before MET activation.
The 3.0 threshold is plotted in blue, and C� are highlighted in red on the PSI plots. Instances
that would have produced a Visensia alarm are marked by vertical dashed lines.

From these, one �rst notes that wPw emphasises probabilities near the centre of the dis-

tribution, as this is where the most populated clusters are situated, corresponding to `normal'

vital signs. Using the error metric established in the previous chapter, it can be con�rmed that

the wPw-generated kernel density function provides a better estimate than standard Parzen

windows, with a sum-of-squared error of 8.8 × 105 (compared to 1.1 × 106 in Figure 15). De-

spite this, the model's capability to detect patient deterioration may not improve much. This

is because critical clinical events only correspond to the low probability regions in the model,

where both the wPw and standard Parzen Windows estimates are very similar.

5.4.3 UPMC Phase I example

The wPw method was assessed using the Phase I data for a number of patient records with

clinically adverse C� events. For brevity, only one record, Patient 328, is analysed here.

Figure 22 shows vital sign recordings for Patient 328 during the last 16 hours before MET

(Medical Emergency Team) intervention. The index of patient normality was calculated using

standard Parzen Windows and wPw are also depicted, and the two C� events that occured are

highlighted in red. In the run-up to these events, long-term deterioration is readily observable.

The heart rate and breathing rate slowly increase as the blood pressure falls. This gradual

50



700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
0.5

1

1.5

2

2.5

3

seconds

P
S

I
 

 
PSI from Standard Parzen
PSI from wPw

Figure 23: PSI for 1000 seconds of data from patient 328, using the weighted and standard
Parzen windows

deterioration is re�ected in the patient normality scores generated from the original model and

the wPw model, which increase and become more erratic as time progresses.

The initial C� event was caused by a drop in diastolic blood pressure, and the event lasted

for four minutes. Prior to this, the Patient Status Index (PSI) crosses the 3.0 alert threshold

numerous times. However, in many of these cases the peaks in PSI are transitory and in this

instance the original novelty detection system does not alarm. The wPw model would fare

slightly better, alerting a clinician two hours prior to the initial event.

Following this, the blood pressure stabilises and the second C� event does not occur for

another three hours. During this time, the breathing rate continues to increase, causing an

elevation in PSI such that in the �nal hour of the patient record, the PSI for both models

remains greater than the alert threshold for a signi�cant proportion of time. In this case, both

models would raise an alarm over an hour before the second C� event was recognised.

Both the original and wPw models give very similar results, and a more detailed inspection

is required to reveal the di�erences between the two models. Figure 23 shows a much shorter

section (1000 seconds) of PSI for Patient 328. The output from both models are plotted on

the same axis. When the vital signs are `normal', the wPw model generally gives a lower PSI

than the original model, and gives a higher PSI than the original model when vital signs are

unusual. In most cases this is unlikely to a�ect the generation of alerts. However, it has been

shown that a borderline case (the �rst C� event in Figure 22) may bene�t from the wPw model.

It is still not clear whether using the wPw will improve the system's overall performance, and

thorough testing using ROC analysis may provide a clearer assessment.
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6 Conclusion and Future Work

The work described in this report provides much of the background required for future investi-

gations. Firstly, the Visensia model of normality has been trained using the JR data. Methods

to help visualise the vital sign data in 2D were then studied in Chapter 4, and a novel technique

based on Sammon Maps has been proposed that allows visualisation of very large data sets. In

Chapter 5 possible improvements to the probabilistic model of normality were highlighted and

in response, the width and variance parameters in the Parzen Windows model were optimized

using a validation data set from Phase III of the UPMC trial according to a least squares error

calculated in a 2D visualization space.

Finally, an alternative method for modelling the vital sign data, weighted Parzen Windows,

was implemented and was visually assessed for synthetic 2D data. The method was also applied

to the JR training data, where distinct changes in the shape of the 4D vital sign p.d.f were

apparent. The e�ectiveness of each modi�cation to the original Visensia system was brie�y

tested using an example from Phase I of the UPMC trial.

In the future, three important extensions to the current system will be pursued. Firstly, the

feasibility of patient-speci�c vital sign models will be investigated. Secondly, the continuous

monitoring of a patient's state of consciousness will be developed, with a view to adding an

extra variable to the current model of normality to improve its e�ectiveness as an early warning

device. Finally, the system will be directly compared to current MET (including MEWS based)

calling criteria.

As well as the work on probabilistic models of normality, the SASS visualisation technique

will be extended by improving the method for visualising outlying data, and this will be tested

on even larger data sets. A fuller description of these projects is provided below.

6.1 Patient-speci�c models of normality

Despite the means and variances of the UPMC Phase III vital signs matching very closely

to the corresponding results in the JR data set, it is not unusual to observe large patient-to-

patient variation. This was discussed in Chapter 4, and Figure 13 provided compelling evidence

to support this notion. Furthermore, clinical trials have shown that the most e�ective Early

Warning scores for detecting patient deterioration incorporated patient-speci�c information
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such as age [55]. Because of this, it is highly desirable to create a personalised model where the

alert threshold is not �xed, but is dependent on an individual's condition and medical history

upon admission to hospital.

Initially, this will involve re�ning the model of normality and extending the work introduced

in Chapter 5.3. In particular, a number of alternative probabilistic models will be considered,

including Gaussian Mixture Models (GMM) and Support Vector Machines (SVM). GMMs are

a density estimation tool that use a sum of Gaussians to estimate the underlying p.d.f from

which the data has been drawn. Parzen Windows are in fact a particular form of GMM where

each data point is modelled as an individual Gaussian. SVMs are a supervised learning method

originally used to create an optimum classi�cation boundary between the two data sets, but they

have since been adapted for outlier detection. The method o�ers a di�erent modelling paradigm

that does not require a density estimate, considering only data at the edges of normality.

Numerous approaches of training a patient-speci�c model in real time will also be inves-

tigated, including neural networks as proposed by Zhang [66]. Another possible option is to

use Bayesian Extreme Value Theory, which would allow the alert threshold on the model of

normality to be set automatically, and was �rst introduced by Clifton et al. for monijet engines

[11]. In such schemes, there are a number of obvious di�culties that must be considered. For

instance, one must ensure that any patient-speci�c model does not adapt to long term trends

that may indicate slow deterioration. The e�ectiveness of such a model will thus be highly

dependent on the length of the training period. Zhang suggests a span of 8 hours is su�cient,

but our investigations will consider whether a shorter training period is acceptable.

6.2 Investigating the relationship between EEG and GCS

In the Modi�ed Early Warning Score described in Chapter 2, the scores are based on six vital

signs, including a score of mental state such as the Glasgow Coma Scale (GCS). The GCS is a

scale that ranges from a score of 3 to 15 and qualitatively describes the level of consciousness

of a patient by testing the patient's visual, verbal and motor responses (see table 7). However,

the score can only be assessed when a healthcare professional is present to conduct the tests.

The importance of the GCS was highlighted during the UPMC Phase I trials, where all ten

critical events were correctly assessed by the early warning system, apart from one instance
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1 2 3 4 5 6

Eyes Does not
open eyes

Opens eyes
in response
to painful
stimuli

Opens eyes
in response
to voice

Opens eyes
sponta-
neously

N/A N/A

Verbal Makes no
sounds

Incompre-
hensible
sounds

Utter inap-
propriate
words

Confused,
disorien-
tated

Oriented,
converses
normally

N/A

Motor Makes no
movements

Extension
to painful
stimuli

Abnormal
�exion to
painful
stimuli

Flexion /
withdrawal
to painful
stimuli

Localizes
painful
stimuli

Obeys
commands

Table 7: Criteria for assessing the Glasgow Coma Score of a patient

of patient self diagnosis, and two instances where an MET was called due to abnormalities in

patient mental function. In light of this, it is highly desirable to �nd a method of automatically

assessing patient consciousness.

The electroencephalogram (EEG) may provide a possible solution. The EEG is the mea-

surement of electrical activity produced by the brain as recorded from electrodes placed on the

scalp. It is well known that EEG signals are correlated with the states of consciousness. In

particular, the frequency content of an EEG changes during the di�erent phases of sleep [59].

A trial is currently being conducted at the John Radcli�e hospital, Oxford, that will collect

continuous measurements of vital signs and EEG as well as occasional GCS scores. The study

will enrol 1000 patients in Majors, Minors, Resuscitation, and the Clinical Decision Unit areas

of the JR Emergency Department (ED). Electroencephalogram (EEG) data for each patient

will be recorded continuously between the left and right mastoid, while the �ve other vital signs

will be automatically collected using an industry-standard Philips bedside monitor.

During the trial, patients will continue to receive standard care. As part of this, the values

of the vital signs (including GCS) will be recorded on paper at regular intervals by the nursing

sta�. The physical records will then be converted into an electronic format for comparing with

the automatically collected data. By doing this, it is hoped that the relationship between GCS

and EEG can be discovered explicitly,to determine whether segment-based analysis of the EEG

data can be used as a proxy for GCS.

Work in a similar �eld has been undertaken by Gill et al. [19], who attempt to �nd a cor-

relation between the Bispectral index (BIS) and GCS. The BIS is a proprietary algorithm that
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uses the bispectrum of the EEG to assess the depth of consciousness (DOC) under anaesthesia

on a scale of 0 to 100. The bispectrum is used to highlight phase relations between a signal's

frequency components and is typically calculated on a time series split into L epochs as:

B(f1, f2) =

∥∥∥∥∥
L∑
i=1

Xi(f1)Xi(f2)X
∗
i (f1 + f2)

∥∥∥∥∥ (12)

where ∗ indicates the conjugate operator, and Xi(f) is the Fourier transform of the ith

epoch. The work suggested here di�ers because the EEG data will be processed directly. In

doing this, we do not assume that DOC due to anaesthesia has the same e�ect on EEG as DOC

due to other causes (such as head trauma). Furthermore, we are mainly interested in the change

in DOC and whether deterioration can be detected (rather than creating an abolute scale of

DOC.) We will investigate whether changes in the EEG in the frequency, time-frequency, or

bi-spectral domain can allow changes in consciousness to be automatically assessed.

Providing that there is a positive outcome to the EEG investigation, the EEG will then

be included as an extra parameter in the model of normality with the aim of increasing the

sensitivity and speci�city of the vital sign early warning system in predicting care escalation

(i.e. prompting clinical review, referral to the Intensive Therapy Unit, cardiac arrest, or death,

etc.) of ED patients with head trauma.

6.3 Timeline for Completion of Research

The projects listed above will incorporated into a structured scheme of research. Firstly, the

model of normality will be retrained using the vital sign data (excluding EEG and GCS) from

the 1000 patients taking part in the new ED study. This will allow us to compare results with

the current model trained on the original JR training set. In particular, we will investigate

whether the temperature records are suitably robust for re-inclusion to the model. The method

used to create the probabilistic model will also be reconsidered as described in Section 6.1.

During the retraining process, the SASS algorithm will be used for visualising the new

vital sign data set, which is likely to be over three times as large as the UPMC Phase I data

set. In Chapter 4, we noted that the selection of the SASS subset is critically important for

good visualisation, and a successful method to select the subset was described. However, other

methods may be useful in speci�c instances. For instance, one may hypothesise that by biasing
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the subset so that outliers are highly connected, outlying data will be visualised more accurately

at the expense of slightly poorer visualisation for `normal' data. Furthermore, it may also be

possible to extend SASS to arbitrarily large data sets. An idea that will be investigated is to

use a set of `skeleton' points that are �xed in the 2D visualisation space. The `skeleton' points

contribute towards the SASS error metric, so it is hoped that a large data set can be split into

a number of smaller batches that can be visualised with respect to the �xed `skeleton'.

Once the model has been retrained, we will investigate how the alarm threshold is set.

Currently, an alarm is sounded when the novelty score exceeds a threshold of 3.0 for 240

out of 300 seconds. This procedure was discovered heuristically, and has been shown to be

adequate in practice. However, we believe that a more rigourous approach to this problem may

improve detection of critical clinical events. One promising technique we shall investigate is

called Extreme Value Theory (EVT)[14]. EVT is a branch of statistics dealing with extreme

deviations from the median of a probability distribution, and is commonly used to predict the

probability of unlikely events.

The natural extension of this is to use Bayesian EVT for personalised vital sign models, as

described in Section 6.1. During this stage, a sixth parameter based on EEG will be introduced,

that will have been derived using data from the the ED project as described in Section 6.2.

It is appropriate to include EEG information at this stage in the project, as the EEG signal

varies between patients depending on factors such as age, and previous medical conditions.

Finally, the new novelty detection system will be evaluated. In related work, the Visensia

novelty system was assessed using ROC analysis [21]. A true positive was recorded when a criti-

cal clinical (C�) event was correctly detected within a 5 minute window, and a true negative was

recorded when a patient did not su�er a C� event AND no Visensia alerts were generated during

the patient's entire stay on the ward. The inconsistency between how positives are recorded

(on an event-basis), and how negatives are recorded (on a per-patient basis) undermines the

true e�ectiveness of the system, and will be reconsidered when the new model is evaluated.

Successful completeion of these tasks will allow comparison to current systems (Visensia), and

data from the current JR trial will also provide opportunities to compare probabilistic mod-

els against current Critical Care Outreach (CCO) calling criteria. The proposed research is

summarised in the Gantt chart in Figure 24.
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Figure 24: 24-month timeline for completion of research and write-up

A Glossary

Randomised Control Trial : A Randomised Control Trial is a methodology commonly used
it testing the e�cacy of health technologies and is considered a reliable way of eliminating
spurious causality and bias. During the trial, di�erent interventions are randomly administered
so that known and unknown extraneous variables are distributed between the groups. Typically,
one group will be the control, who do not receive the treatment under study and give researchers
a useful comparison.

Sensitivity and Speci�city : Sensitivity and speci�city are statistical measures of the per-
formance of a binary classi�cation test. The sensitivity measures the proportion of actual
positives which are correctly identi�ed (i.e. the percentage of patient alarms that correspond
to real critical events); and the speci�city measures the proportion of negatives which are
correctly identi�ed (i.e. the percentage of well people who are identi�ed as not having the
condition). Formally, they are de�ned by:

sensitivity =
number of true positives

number of true positives+ number of false negatives

specificity =
number of true negatives

number of true negatives+ number of false positives

The positive predictive value is the proportion of patients with positive test results who actually
su�er from the condition being tested for. However, one must be aware that it is proportional
to the prevalence of the condition.

PPV =
number of true positives

number of true positives+ number of false positives

B Conferences Attended

NCAF Summer Meeting (18-19 June 2008, University of Oxford) Theme: Signal Pro-
cessing and Biomedical Applications. NCAF stands for Natural Computing Algorithms Forum
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ICML Workshop on Machine Learning in Healthcare Applications (July 9 2008,
Helsinki, Finland). ICML stands for International Conference of machine learning. The article
`High Dimensional Visualisation for Very Large Data Sets' that demonstrated the SASS algo-
rithm was accepted for a poster presentation
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