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A Large-Scale Clinical Validation of an Integrated
Monitoring System in the Emergency Department
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Abstract—We consider an integrated patient monitoring system,
combining electronic patient records with high-rate acquisition of
patient physiological data. There remain many challenges in in-
creasing the robustness of “e-health” applications to a level at
which they are clinically useful, particularly in the use of auto-
mated algorithms used to detect and cope with artifact in data
contained within the electronic patient record, and in analyzing
and communicating the resultant data for reporting to clinicians.
There is a consequential “plague of pilots,” in which engineering
prototype systems do not enter into clinical use. This paper de-
scribes an approach in which, for the first time, the Emergency
Department (ED) of a major research hospital has adopted such
systems for use during a large clinical trial. We describe the disad-
vantages of existing evaluation metrics when applied to such large
trials, and propose a solution suitable for large-scale validation. We
demonstrate that machine learning technologies embedded within
healthcare information systems can provide clinical benefit, with
the potential to improve patient outcomes in the busy environment
of a major ED and other high-dependence areas of patient care.

Index Terms—Biomedical informatics, biomedical signal pro-
cessing, machine learning.

I. INTRODUCTION

THE rapid pace of development in “e-health” technologies
within integrated healthcare systems (such as electronic

patient records) has far outpaced their uptake in clinical prac-
tice. There is a perceived “plague of pilots” [1], in which pro-
totype systems do not penetrate into clinical use, and there is a
consequence lack of evidence required for adoption at scale [2].

We address this problem by describing a large clinical trial
in which the care of 10 000 patients in the Emergency Depart-
ment of a major research hospital1 switches over to the use
of integrated healthcare systems that we have designed around
best-practice principles in machine learning.

Adopting new healthcare systems at scale in a clinical en-
vironment is a time-consuming and resource-intensive process,
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particularly in building the large bodies of evidence required to
support adoption. This paper describes the trial needed to pro-
vide this evidence, in which algorithms for detecting physiolog-
ical deterioration are embedded within an integrated healthcare
system and are compared with the existing standard of hospital
care (where the latter is introduced in Section II). The infras-
tructure of the system is described in Section III; Section IV
investigates the shortcomings of existing methods of using that
infrastructure for patient care, and proposes techniques to over-
come these shortcomings. We describe how methodologies for
evaluating the success of electronic systems in clinical studies
are inadequate: Section V describes the dangers involved with
using traditional evaluation methods, and proposes a methodol-
ogy that avoids these problems. Results, obtained from compar-
ing existing and proposed methods, are presented and discussed
in Section VI. Conclusions are drawn, and future work is con-
sidered, in Section VII.

II. EXISTING STANDARD OF CARE

Before the introduction of novel “e-health” systems at scale
becomes possible, considerable evidence must be acquired con-
cerning the existing standards of care, which may be obtained,
for example, from clinical trials. For systems that monitor pa-
tient physiology, we must determine the efficacy of existing
methods of patient observation.

Adverse events occur when the physiological condition of
patients is not recognized or acted upon [3]. This has resulted
in clinical guidance being provided for the U.K. in which the
monitoring of certain vital signs2 was recommended, followed
by the suggestion that manual “early warning score” (EWS)
systems are used [4]. The latter involve the clinician making a
manual observation of a patient’s vital signs, applying univariate
scoring criteria to each vital sign in turn (e.g., “score 3 if heart
rate exceeds 140 beats per minute”), and then escalating care to a
higher level if any of the scores assigned to individual vital signs,
or the sum of all such scores, exceeds some threshold. There are
several disadvantages of this existing standard of care, against
which novel methods must be evaluated:

1) The scores assigned to each vital sign, and the thresh-
olds against which the scores are compared, are mostly
determined heuristically, according to clinical opin-
ion. This leads to significant differences between EWS

2Heart rate (HR) measured in beats per minute, respiration rate (RR) measured
in breaths per minute, peripheral blood-oxygen saturation (SpO2 ) measured
as a percentage, systolic blood pressure (BP) measured in mmHg, and body
temperature.
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TABLE I
EWS SYSTEM USED IN THE ED DURING INITIAL DATA ACQUISITION

Score: 3 2 1 0 1 2 3
HR: ≤ 40 41 - 50 51 - 100 101 - 110 111 - 129 ≥ 130
RR: ≤ 92-5242-9181-98 ≥ 30

SpO2: ≤ 91 ≥ 92
BP: ≤ 90 91 - 99 100 - 179 ≥ 180

Temp: ≤ 35.0 35.1 - 37.9 ≥ 38.0

systems used in different hospitals, or even between wards
in the same hospital [5]. An attempt has recently been
made to define these quantities using a large evidence
base of vital-sign data [6]. We argue that standardization
of the approach, using an evidence-based procedure, can
overcome the disadvantages of heuristic methods.

2) EWS systems are used only after routine observation of pa-
tient vital signs, which may be performed as infrequently
as once every 4 h in some wards. Patients may deteri-
orate significantly between observations. It may be that
automated systems can operate continuously; however,
existing bed-side monitoring systems suffer from a false-
alarm rate of up to 86% [7]. This motivates an integrated
approach, based on machine learning methods, which can
drive down the false-positive alarm rate to clinically useful
levels, as we will describe later in this paper.

3) Many hospitals use EWS systems manually, where the
clinician assigns scores using a lookup table, adds the
scores, and then compares the resulting totals to predefined
thresholds. There is a significant error-rate associated with
this manual arithmetic [8]–[10], suggesting that automated
methods can avoid such errors.

4) Scores in EWS systems are univariate (so that they may be
used easily by the ward staff), and, therefore, do not take
into account the covariance between vital signs. When
comparing the sum of scores from individual vital signs
to a threshold, an assumption is implicitly made that the
vital signs are independent, which is unlikely to be true in
practice. Automated methods, such as those proposed in
Section III, can learn the dependence between vital signs,
and thereby better assess patient physiology than basic
EWS systems.

5) The evidence base for evaluation of EWS systems is poor,
with most hospitals using scores that have been derived
heuristically, rather than implementation being based on
clinical data [5]. The clinical trial described in this paper
aims to address this need for evidence.

6) EWS systems are population dependent, by necessity.
Some systems exist for pediatric patients or other spe-
cific populations. Automated systems offer the possibility
of patient-specific alerting, which is discussed later.

Two EWS systems are considered by the work described in
this paper: an older system in use in the ED of the John Radcliffe
Hospital at the time of initial data collection, and the evidence-
based method described in [6] that has since been implemented
in the ED. These two EWS systems are shown in Tables I and
II, respectively.

III. INFRASTRUCTURE

This paper considers an integrated system that interfaces to
a peer-to-peer network of bed-side monitors, hand-held PDAs,
and wall-mounted touch screens, being introduced into the ED
of the John Radcliffe Hospital as part of a 10 000-patient clinical
trial, approved by the local medical ethics committee. Bed-side
monitors acquire vital-sign data from patients in real time using
ECG electrodes, pulse oximeters, and sphygmomanometers, at
sampling intervals of approximately Ts = 20 s (and where BP
is measured approximately every 30–60 min). A secure wireless
network communicates vital-sign data to a central server, where
algorithms process the data, identify periods of communication
and sensor failure, and then analyze the data with respect to
models of patient physiology (as described in Section IV).

As with the manual EWS systems described in Section II,
the goal is to identify periods of patient deterioration, and so
each patient is assigned a patient status index (PSI), which takes
low values when patient physiology is stable, and which takes
higher values when patient physiology is deemed to be indicative
of patient deterioration. The PSI and other results of analysis
are then displayed at the patient bedside, and can be further
summarized on the wall-mounted touch screens (for providing
an overview of the health status of all patients in a ward), and
to clinicians’ hand-held PDAs.

It is important to note that fully automated patient monitoring
systems cannot entirely replace the process of manual patient
observation, because the ward staff are required to perform pa-
tient reviews; in many wards, nurses are encouraged to make
physical contact with the patient to estimate pulse rate and to
determine respiration rate. However, rather than relying on the
traditional paper-based methods of recording and scoring patient
physiology, our trial includes the facility for clinicians to input
vital-sign data from manual patient reviews into their hand-held
PDAs. These data are then automatically scored using an EWS
(as shown in Table II), and transmitted to the central server for
more detailed multivariate analysis combined with the continu-
ous data acquired from bed-side monitors, as described in Sec-
tion IV. This effectively provides benefit through, as described
in Section II, performing continuous, automated assessment of
patient condition, and taking a multivariate approach that does
not treat the vital signs as if they were independent random
variables.

During the initial phase of the trial, over 105 GB of patient
data were acquired, totaling approximately 2170 h of patient
data. The data completeness for each vital sign is shown in
Table III. Such data loss is typically caused by disconnection
of sensors from the patient, either by accident (such as a pulse
oximeter falling from its place on the earlobe or finger) or by
intention of the clinician.

We note that the inclusion of continuous temperature mea-
surement into the electronic patient record, and its use in both
manual and automated analyses, is problematic. Continuous
temperature measurement using sensors is difficult; our trial ini-
tially attempted to collect data using a skin-mounted thermistor,
to collect skin temperature as a proxy for the core tempera-
ture typically used by clinicians in the diagnosis of patients.
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TABLE II
EVIDENCE-BASED EWS SYSTEM SUBSEQUENTLY ADOPTED IN THE ED

Score: 3 2 1 0 1 2 3
HR: ≤ 42 43 - 49 50 - 53 54 - 104 105 - 112 113 - 127 ≥ 128
RR: ≤ 7 8 - 10 11 - 13 14 - 25 26 - 28 29 - 33 ≥ 34

SpO2: ≤ 84 85 - 90 91 - 93 ≥ 94
BP: ≤ 85 86 - 96 97 - 101 102 - 154 155 - 164 165 - 184 ≥ 185

Temp: ≤ 35.4 35.5 - 35.9 36.0 - 37.3 37.4 - 38.3 ≥ 38.4

TABLE III
DATA QUANTITY AND DATA LOSS DURING INITIAL DATA ACQUISITION

HR RR SpO2 SBP
Time (hours) 1,645 1,629 1,664 1,776
Data loss (%) 24.2 24.9 23.3 18.2

However, the drop-out rate for this channel exceeded 75%, the
standard deviation of the resulting temperature signal exceeded
2 ◦C, and the mean varied significantly between patients (some-
times exceeding a mean shift of 5 ◦C between patients). These
poor signal statistics made identification of patient deterioration
using continuous temperature data impossible, where changes
of 1–2 ◦C can be significant indicators of physiological distress.

We therefore used manual measurements of temperature.
While manual methods of tympanic measurement (measured
using an in-ear probe) exhibit low variance, are close to core
temperature, and are the “gold standard” for the existing stan-
dard of care, the resultant data are often inappropriate for use
due to device configurations that can cause significant mean
shifts that could make “healthy” patients seem “abnormal” in
their temperature, and “unhealthy” patients seem “normal.” For
example, a time series of tympanic measurements from de-
vices at the Oxford University Hospitals NHS Trust is shown
in Fig. 1(a). The measurement devices were known to have had
settings switched, causing a small offset to be applied to the N
temperature data X = {xm}, m = 1 . . . N at some point during
the period shown in the figure. A Bayesian change-point detec-
tor [11] can be used to find a posterior distribution p(m|X) over
the indices m of the data

p(m|X) =
∫ ∞
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where Sl =
∑m

i=1 xi and Sr =
∑N

i=m+1 xi are the sums of the
data up to and after change-point m, respectively, and where
constant B = m(N − m). Here, we have assumed that the data
up to and after the change-point have distributions N(μ1 , σ

2)
and N(μ2 , σ

2), respectively, and we have used (1) to integrate
out the nuisance parameters μ1 , μ2 , σ, leaving us with the pos-
terior change-point distribution over m. The result shown in
Fig. 1(b) shows that a step-change occurring after 15 months
has been detected. We note that the formulation has constrained
p(m|X) to a single change-point, and hence short-term devia-
tions, such as a temporary decrease at around 12–13 months,
do not affect detection of the change-point. Accurate detection
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Fig. 1. (a) Time series of tympanic temperature measurements, X = {xm },
m = 1 . . . N . (b) Corresponding change-point distribution p(m|X).

of regime changes, such as the simple reconfiguration of tem-
perature probes, allows us to cope with such step-changes in
input in a principled manner. We note here that the time series
of temperatures was taken over a long period, and over many pa-
tients, such that the variability between individual patients can
be assumed to be a constant effect over the whole time series,
and thus not affect change-point detection of a mean shift.

IV. NOVELTY DETECTION

The aim of clinical practice, in its use of integrated EWS
systems, can be framed in machine learning terms as a novelty
detection task, in which deviations away from normality are
identified. The EWS performs this task by assigning scores to
vital signs as they depart from normality. However, novelty de-
tection may also be performed using principled machine learn-
ing techniques, appropriate for use in the automatic analysis of
large quantities of physiological data.

This paper takes a novelty detection approach, in which a
model of “normal” patient physiology is constructed. Test data
are then compared to this model, and deemed “abnormal” if they
differ significantly from it, where abnormality is defined dif-
ferently according to the various novelty detection approaches
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Fig. 2. Dataset {x} and its distribution y = p(x) are shown in the upper plot.
K = 2 kernel means {y} and the resulting kernel estimate p(y) are shown in
the lower plot.

described later. Novelty detection is typically performed in pref-
erence to a multiclass approach to classification when there is an
insufficient quantity of data to model abnormal states accurately.
This may occur when the abnormal states are so numerous that
each cannot be fully specified (as in the case of high-dimensional
datasets acquired from complex systems, such as human pa-
tients), or when examples of failure are rare (as in the case of
some physiological conditions).

This section describes several approaches to novelty detec-
tion, which will be compared for use with the data obtained at
the central server described in Section III.

A. Inference With Kernel Estimates

Previous work [12] has modeled the joint distribution p(x) of
vital signs x ∈ R5 , for the vital signs3 shown previously. Each
vital sign was standardized with respect to its own mean and
variance, x′ = (x − μ)/σ. The joint distribution of the (normal-
ized) training data was estimated using a mixture of Gaussian
distributions: a kernel estimate [13] with 500 components. The
procedure used to estimate this distribution involved first sum-
marizing (using the k-means clustering algorithm [13]) a set of
approximately 2.3 × 106 data, corresponding to over 3000 h of
vital-sign data acquired from acute patients. This summarization
process is necessary due to the large size of the dataset.

The likelihood p(x|θ) of previously unseen test data x is then
evaluated with respect to the kernel estimate (parameterized by
θ) and used to generate a corresponding novelty score, z(x) =
− log p(x|θ). This novelty score takes high values when the
test data are “abnormal” with respect to the model of normality.
Thus, the novelty score may be seen as a probabilistic version
of the manual EWS, with the advantages that the vital signs are
not treated independently (because the joint density of all vital
signs is estimated), and that it is not heuristic.

A threshold κ is defined on z such that test data x are deemed
“abnormal” with respect to the joint pdf if z(x) > κ. Commu-
nication failures, network and sensor noise, and other transients
can cause temporary, artifactual spikes in continuous novelty
scores. To avoid false-positive alerts caused by these transients,
our method only communicates a novelty alert to the clinician

3These are vital signs where the systolic blood pressure was replaced by the
mean of systolic and diastolic blood pressure (the systolic–diastolic average, or
SDA) in order to take into account changes in both blood pressure measurements
that are typically acquired, rather than just the systolic.

(thus calling them back to the patient’s bedside) when z(x) > κ
for 4 minutes out of any 5-minute window of data.4 The value
of κ was similarly selected using cross-validation with an inde-
pendent validation set, selected from over 18 000 h of vital-sign
data acquired from acute patients [12].

B. Modified Kernels

The summarization process described previously, in which an
integrated dataset of physiological data is reduced to a smaller
set of distribution means {yi}, i = 1 · · · K, can adversely affect
the quality of the resulting estimate of the joint distribution,
p(x|θ). Fig. 2 illustrates this disadvantage with an exemplar
set of univariate data (shown as crosses on the x-axes of the
plots in the figure). The required distribution p(x) is shown
in the upper plot; however, summarizing the dataset using a
smaller number of distribution centers {yi}, and then forming
a kernel estimate of the distribution of those centers p(y), is a
poor approximation of p(x). This is shown in the lower plot
in the figure, where the k-means algorithm has placed k = 2
distribution centers that describe each of the two clusters of data,
even though one has a significantly smaller mode than the other
in the desired distribution p(x). This problem is caused by the k-
means algorithm, which minimizes squared distances between
the dataset {xi}, i = 1 · · · N and the centers {yj}, j = 1 · · ·K,
and by the kernel estimate from Section IV-A which assigns
equal prior probabilities πj = K−1 to each of the kernels.

The appropriate weighting of the kernels in the density esti-
mate may be obtained using a modified kernel estimate [14]

p(x|yi) =
K∑

i=1

πi

σ
Φi

(
‖x − yi‖

σ

)
(3)

which is the kernel estimate from Section IV-A to which has
been added priors πi , and where

∑K
i=1 πi = 1. In the above,

the ith kernel Φi is a Gaussian distribution, characterized by
mean yi and isotropic covariance Σ with diagonal elements σ.
The priors are determined from the proportion of data xi that
fall within the ith cluster, πi = N−1 ∑

j∈y i
1, where 1 is the

indicator function.
Fig. 3 shows 2-D visualizations of the results of applying

the modified kernel estimate to the 4-D training set of 3000 h
of patient data described previously, where the visualization has
been performed using the SASS [15] projection, which attempts
to preserve distances between data before and after projection.
Noting that the training set comprises both “normal” and “ab-
normal” patients, we follow [12] in discarding those 20% of the
resulting kernels (i.e., 100 of the K = 500 kernels) deemed to
be “outlying.” We will consider two definitions of “outlying”:
one where the 100 kernels with the lowest associated priors πi

have been discarded (and so which have the lowest population),
and one where the 100 kernels furthest from the centroid of the
data have been discarded. These are shown in the left and right
plots, respectively, in Fig. 3. We will refer to these modified

4We note in passing that this is statistically equivalent to generating a novelty
alert if r20 > κ, where rn is the nth order statistic, taken from the order statistics
of a window of scores z(x) of test data x.
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Fig. 3. Two-dimensional visualizations of 4-D kernel means {yi}. Those
kernel means with the 100 smallest populations and 100 greatest distances to
the centroid of the data are shown by × in the left and right plots, respectively.

kernel methods as Kw1 and Kw2 , respectively, and to the origi-
nal (unmodified) kernel estimate from Section IV-A as K0 .

C. One-Class Support Vector Machines

We also consider the use of a one-class support vector ma-
chine (SVM), trained using the same data as that from which the
kernel estimate described previously was obtained. We used the
method proposed by Schölkopf et al. [16], in which the objec-
tive function is defined by separating the training data from the
origin in the feature space defined by the SVM kernel, where
we have used the squared-exponential kernel.5

The degree to which the SVM objective function is penalized
by misclassifications (and thus the curvature of the decision
boundary) is controlled by the “C” parameter in the conven-
tional nomenclature, the value of which, along with the width
parameter σ shared by all of the isotropic kernels in the model,
was selected using tenfold cross validation.

A quantity N of d-dimensional data {x1 , . . . ,xN } ∈ Rd are
mapped into a (potentially infinite-dimensional) feature space F
by some nonlinear transformation φ:Rd → F . A kernel function
Φ provides the dot product between pairs of transformed data
in F , such that Φ(xi ,xj ) = φ(xi) · φ(xj ). A Gaussian kernel
allows a point to be separated from the origin in F [16], hence is
chosen for us in the work described by this paper: k(xi ,xj ) =
exp (−‖xi − xj‖2/2σ2).

The decision boundary between “normal” and “abnormal”
subspaces in F is z(x) = wo · φ(x) − ρ0 , with parameters

wo =
Ns∑
i=1

αiφ(si) (4)

ρo =
1

Ns

Ns∑
j=1

Ns∑
i=1

αiΦ(si , sj ) (5)

where si are the support vectors, of which there are Ns , and
where k is the Gaussian kernel. Here, wo ∈ F , ρo ∈ R, and the
αi are Lagrangian multipliers used to solve the dual formula-
tion, more details of which may be found in [16] and which
are not reproduced here. Test data x arriving in the electronic

5This method typically performs similarly to the other popular one-class
SVM formulation, the support vector data description, as proposed by Tax and
Duin [17].

patient record are classified as being “abnormal” if z(x) > 0,
and “normal” otherwise. In order to allow a fair comparison
with the probabilistic methods K0 , Kw1 , and Kw2 described in
Sections IV-A and IV-B, an alert was generated if test data were
classified “abnormal” for 4 minutes in any 5-minute window of
test data, in order to avoid false-positive alerts due to transients
arising from sensor artifact.

V. EVALUATING MONITORING SYSTEMS

The evaluation of automated patient monitoring systems is not
straightforward and remains an area of contention. This section
describes the challenges involved, and proposes an evaluation
strategy appropriate for the complex evaluation of an automated
system running in real time.

A. Clinical Labels

In order to evaluate system performance, we would ideally
have accurate labels of “normal” and “abnormal” episodes of
data. The “gold standard” in classification problems is often a
set of labels provided by domain experts—in the case described
by this paper, such experts are clinical specialists. However,
exhaustive labeling is typically not possible in practice due to
the size of the datasets and the difficulty in determining patient
abnormality from inspection of the vital signs alone. Further-
more, intra- and interexpert variability is such that the subjec-
tive nature of the labeling process becomes significant. This is
a fundamental obstacle to the evaluation of automated systems,
which are based on the communication and analysis of very
large quantities of data.

Therefore, a one-sided approach is sometimes taken to eval-
uating large-scale systems, in which clinical experts are asked
to review data in the electronic patient record corresponding to
periods of suspected patient abnormality. These could be taken
from, for example, “hard outcomes” such as death, unforeseen
admission to intensive care, etc. However, the number of pa-
tients with these outcomes is typically small unless data are
acquired from large numbers of patients, which may take many
years. Therefore, this study takes the approach in which clinical
escalations were taken as being possible indications of patient
abnormality. These escalations are events that took place dur-
ing the patient’s stay, where the patient’s clinical notes indicate
that care was escalated to a high level due to some perceived
abnormality.

There are many reasons for which a patient’s care may be es-
calated in practice, only some of which are likely to correspond
to derangement of the vital signs, and which could, therefore,
be expected to be identified by an automatic method. Two ex-
perts in emergency medicine independently reviewed patient
records (but not the continuous vital-sign data acquired from
sensors and bed-side monitors) and identified those periods that
corresponded to escalations that should be expected to have a
corresponding change in the vital signs. Any differences in opin-
ion between the two experts were resolved by the independent
assessment of a third clinical expert. This labeling of data in
the electronic patient record by experts is extremely time con-
suming, and is a primary reason why such large clinical trials
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are not undertaken for the principled evaluation of automated
monitoring systems.

B. Evaluation Methodology

Communications theory originated the received-operating
characteristic (ROC) curve, which has since become the pri-
mary means of evaluating the decision outputs of medical de-
vices. However, the evaluation of performance with respect to
events occurring within time-series data is not straightforward.

1) Independence: The classical method for evaluating clas-
sifier performance is to construct a confusion matrix, which
quantifies the number of true and false, positive and negative
classifications (TP, FP, TN, and FN) made by the classifier, with
respect to some “ideal” classification. The sensitivity and speci-
ficity of the classifier may then be plotted as a function of some
variable of its operation (typically a parameter that controls its
decision threshold), to give the ROC curve. Indeed, some EWS
systems [18] were evaluated by maximizing the area under the
ROC curve (AUROC), which corresponds to maximizing the
accuracy6 of the classifier.

Such approaches can be appropriate when evaluating the
classification of independent entities, such as mammograms or
blood samples taken from different patients, but are problematic
when used to analyze time-series data, such as that considered in
this study within the electronic patient record, which are not in-
dependent. The results could be biased, for example, by a small
number of “abnormal” patients with long hospitals stays (which
often occurs, because length-of-stay is correlated with physio-
logical abnormality); these patients contribute a large proportion
of data to the set of “abnormal events,”, but where those events
are largely dependent. Thus, the performance of the classifier
would be skewed toward how well it performed for this small
subset of patients.

We suggest that there is no “right” answer to the problem of
how to evaluate a time-series classifier, and that, ultimately, it is
probably inappropriate to reduce the performance of a system
down to a single metric (e.g., accuracy/AUROC).

2) Patient-Based Analysis: If we wish to use ROC-based
performance metrics in an evaluation (without reducing them to
a single statistic), we must select a basic unit of analysis other
than individual samples of vital-sign data within the electronic
patient record. The assumption of independence between basic
units can avoid being broken by performing the analysis on a per-
patient basis. In this study, we adopt the following convention:

“Event” patients: This group comprises all patients contain-
ing one or more “events,” defined to be those with escalations
in their vital signs that occurred during their stay in the ED.
Section VI will provide results from phase I of our study, which
comprised 476 patients, 52% of which were male. The mean
age was 61 years (range 18–108, IQR 43–79). There were 34
escalations in this population, indicating the scarcity of labeled
event data.

6Accuracy is defined to be (TP + TN)/(TP + TN + FP + FN).

“Normal” patients: This group comprises all patients who
had no clinical escalation of any kind, and corresponds to 217
(46%) of the 476 patients in phase I of our study.

We note that there is a set of patients that belongs to neither of
the two sets described previously, being those who had no esca-
lations due to their vital signs, but who were also not “definitely
normal”; for example, they may have had escalations for reasons
other than those related to vital signs, and which an automated
monitoring system could, therefore, not be expected to detect.
Similarly, some patients had no vital-sign data transmitted by
our system, and could, therefore, not be used in either of the sets
described previously.

We define a TP classification to be an “event patient” for
which the first event was successfully detected; conversely, we
define an FN classification to be an “event patient” for which
the first event was not successfully detected.

A confounding factor in the evaluation of monitoring systems
is determining which machine alerts count as “early warning”
of a forthcoming event, and which alerts are merely false posi-
tive. This definition must depend on the dynamics of the system
being monitored; in the assessment of patient vital signs, for
example, if an alert was generated by a machine within 1 h of a
clinical escalation, we might deem that the alert was predictive
of the escalation; however, if the alert occurred 10 h before the
escalation, we might deem it to be a false alert. Clinicians have
no standard definition of “early warning,” and so we define an
event to have been successfully detected if an alert within some
time τ prior to that event. We will consider the performance of
each system as τ is varied in the interval τ = [0 60] min, repre-
senting the range of times that could constitute “early warning”
of an event in the context of patient vital-signs monitoring. We
argue that this approach allows the comparison of various in-
tegrated systems without dependence on this window length,
τ .

We define a TN classification to be a “normal patient” for
which there were no alerts generated; conversely, we define an
FP classification to be a “normal patient” for which one or more
alerts were generated; i.e., the “normal” set of patients should
have had no alerts generated for them, because they were deemed
to be physiologically stable throughout their connection to the
monitoring system.

VI. RESULTS

Fig. 4 shows the TP and FP results for the various anal-
ysis methods described previously, when evaluated using the
large-scale methodology described in Section V. We compare
the kernel estimate K0 from Section IV-A, the two modified
kernel estimates Kw1 and Kw2 from Section IV-B, the SVM
from Section IV-C, the heuristic EWS system that was used in
the hospital at the time of the study (termed EWSa ), and the
“evidenced-based” EWS system proposed in [6] since adopted
throughout the Oxford University Hospitals NHS Trust (termed
EWSb ).

EWSa and EWSb , which would be applied manually, in prac-
tice, were evaluated when applied to continuous data at fre-
quencies of 30 min and 2 h. We refer to the 2-h EWS systems as
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Fig. 4. TP numbers for manual and automatic patient systems, with a maxi-
mum TP = 29 event patients: (a) automatic methods SVM, Kw 2 , Kw 1 , and K0
are shown from uppermost to lowermost, respectively (i.e., in green, blue, red,
and black, respectively); and (b) SVM, and manual methods EWSa2 , EWSb2 ,
EWSa1 , and EWSb1 are shown from uppermost to lowermost, respectively (i.e.,
by green, blue solid, red solid, blue dashed, and red dashed lines, respectively).

EWSa1 and EWSb1 for the old and new EWS systems, respec-
tively. Similarly, we refer to the 30-min EWS systems as EWSa2
and EWSb2 for the old and new EWS systems, respectively.

The SVM and kernel-based methods were both trained using
data obtained from a previous clinical study, as described in
Section IV. These training data were acquired from patients
deemed representative of those encountered in the ED, and
where studies indicate that “stable” patient physiology across
high-dependence departments in the U.S. and U.K. is generally
similar [6].

Examination of the results shown in Fig. 4 demonstrates that
the SVM is the superior classifier in terms of identifying patient
deterioration. In order of decreasing sensitivity to patient deteri-
oration, the automatic methods Kw2 , Kw1 , and K0 suggest that
the discriminative power of the SVM is closely matched by the
modified kernel estimate Kw2 when those kernels furthest from
the centroid of the training data are discarded. Of the automated
methods, the basic kernel estimate is the least sensitive to patient
deterioration in the results from the phase I data obtained from
the clinical trial [19], [20].

The figure also shows a comparison of the manual methods,
where it may be seen that the EWS used during the period of
data acquisition applied at 30-min intervals (EWSa2) is more
sensitive to patient deterioration than the new EWS proposed in
[6] applied at 30-min intervals (EWSb2). Unsurprisingly, when
these two methods are applied less frequently, at 2-h intervals
(EWSa1 and EWSb1), the sensitivity for both EWS systems
decreases significantly. While these EWS systems can reach the

TABLE IV
SUMMARY OF FALSE POSITIVES FOR ALL 217 “NORMAL” PATIENTS

K0 Kw1 Kw2 SV M

34 36 46 58

EWSa1 EWSa2 EWSb1 EWSb2

49 86 29 54
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Fig. 5. Vital signs (SpO2 , HR, BP, RR from upper to lower, first plot, in blue,
green, red, and black, respectively) acquired via e-health system for an example
ED patient, who deteriorated and for whom care was escalated at the time
shown by the vertical red dashed line. Underneath, the outputs of the automatic
methods, where shaded regions indicate intervals during which an alert was
raised.

sensitivity of automated methods, they must be performed at
unrealistically frequent intervals, which could not be supported
by the typical resources available in emergency care.

Table IV shows the number of FPs for each method, obtained
from examining their performance with the set of entirely “nor-
mal” patients, as described in Section V, for whom we would
not expect physiological deterioration to be detected. The table
shows that, while manual EWS methods can approach the sensi-
tivity of integrated automatic methods (if performed sufficiently
frequently), they generate large numbers of FP alerts. The results
also demonstrate that the evidence-based EWS system EWSb

of [6] has a lower FP rate than all methods considered; this is a
particular advantage for an EWS, which probably has to err on
the side of being insensitive, because every alert generated by
the system greatly increases the workload of the ward staff. We
note that these values of FP are significantly lower than the false-
positive rates from conventional bed-side monitors [7], making
them attractive for use in a busy clinical environment, such as
an ED.

A case study of a patient that deteriorated during phase I of
the clinical trial is shown in Fig. 5, along with corresponding
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outputs from the various automatic methods under considera-
tion. We note that this patient had no temperature data available.
An escalation of care occurred at the end of the period shown,
following periods of erratic SpO2 (including many desaturations
to low oxygen levels), a shift in baseline HR by approximately
20 bpm, and transient hypertension (where the systolic-diastolic
average BP exceeds 130 mmHg in this example). Note that the
RR signal drops out in the first half of the interval shown, due to
poor signal quality obtained from the measurement probes. The
outputs of the automated methods demonstrate that this deteri-
oration was detected sufficiently early to be useful to clinicians.

VII. CONCLUSION

This paper has described a large clinical trial, undertaken
in order to 1) evaluate automatic methods for assessment of
patients, based on an electronic patient record augmented with
machine learning algorithms and 2) address the perceived lack
of evidence in e-health research, that has been suggested as one
of the primary reasons that such methods have not yet been
adopted at scale. The trial that we have described is the first of
its kind, and brings with it many challenges that we have had to
address, and which have been described in this paper.

Integrated, automatic systems require some sort of supervised
training in order to perform useful analyses, and so that result-
ing systems can be evaluated. While semisupervised techniques
have been demonstrated to be effective in some areas [21], this
is still an active research area within e-health, and remains fu-
ture work. Therefore, there is a dependence on the labeling of
patient data such that periods of instability can be learned. This
requires teams of expert clinicians to review data from the elec-
tronic patient record, which is extremely time consuming and
costly. We have described methods of reducing this workload,
by requiring clinical labeling of those events that are deemed to
have been “escalations” in practice; while this is not an exhaus-
tive labeling of the data (which is impractical, for a 105-GB
dataset, exceeding 2170 h of data), it has allowed us to train
and evaluate machine learning techniques within the integrated
healthcare system deployed in the ED.

We have framed the existing standard of care (EWS systems)
as a novelty detection task, in which periods of “abnormal”
physiology are scored; this allows a direct comparison with our
integrated, automatic methods. Such approaches are, by nature,
population-based; patient-specific algorithms that learn from
individual test patients in real-time remain an area of on-going
research. However, the population-based approach is already
accepted as being clinically acceptable, because the EWS sys-
tems in widespread use in hospitals adopt such methods. Hence,
our proposed system may be seen as a continuous, automatic
version of the existing clinical standard of care, with the advan-
tage that vital signs can be treated in a multivariate sense, using
models that take into account dependence between vital signs;
this is a considerable advantage over the existing standard of
care, in which vital signs are treated as being independent.

Future work will involve improving the algorithms used to
perform data communication and analysis, and in further build-
ing the body of evidence required before integrated patient mon-

itoring systems can be adopted at scale. Related clinical trials
in the physiological monitoring of other cohorts of patients
are underway between the Institute of Biomedical Engineering,
Oxford and the Oxford University Hospitals NHS Trust; these
trials will adopt the methodologies developed within this paper
for assessment and evaluation of evidence.
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