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Abstract. This paper presents the preliminary results of an observa-
tional study into the use of novelty detection techniques for detecting
physiological deterioration in vital-sign data acquired from Emergency
Department (ED) patients. Such patients are typically in an acute condi-
tion with a significant chance of deteriorating during their stay in hospi-
tal. Existing methods for monitoring ED patients involve manual “early
warning score” (EWS) systems based on heuristics in which clinicians
calculate a score based on the patient vital signs. We investigate auto-
mated novelty detection methods to perform “intelligent” monitoring of
the patient between manual observations, to provide early warning of pa-
tient deterioration. Analysis of the performance of classification systems
for on-line novelty detection is not straightforward. We discuss the ob-
stacles that must be considered when determining the efficacy of on-line
classification systems, and propose metrics for evaluating such systems.
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1 Introduction

1.1 Early Warning Scores

Adverse events in acutely ill hospital patients occur when their physiological
condition is not recognised or acted upon early enough [1]. Clinical guidance
in the UK [2] recommends the regular observational recording of certain vital
signs1, combined with the use of EWS systems. The latter involve the clinician
applying univariate scoring criteria to each vital sign in turn (e.g., “score 3 if
heart rate exceeds 140 beats per minute”), and then escalating care to a higher
level if any of the scores assigned to individual vital signs, or the sum of all such
scores, exceed some threshold.
1 heart rate (HR) measured in beats per minute, respiration rate (RR) measured

in breaths per minute, blood oxygen saturation (SpO2) measured as a percentage,
systolic blood pressure (SysBP) measured in mmHg, etc.
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EWS systems have a number of disadvantages. (i) The scores assigned to each
vital sign, and the thresholds against which the scores are compared, are mostly
determined heuristically. However, a large evidence base of vital-sign data was
used to construct the EWS proposed in [3]. (ii) EWS systems are used with
periodic observation of vital signs, which may be made as infrequently as once
every few hours in some wards. Patients may deterioriate significantly between
observations. (iii) There is a significant error-rate associated with manual scor-
ing, especially in the high-workload setting of the ED. (iv) Each vital sign is
treated independently and correlations between vital signs are not taken into
account.

2 Novelty Detection

This paper takes a novelty detection approach, in which a model of “normal”
patient physiology (for adult in-hospital patients) is constructed. Novelty detec-
tion is typically performed in preference to a multi-class approach to classification
when there are insufficient data to model abnormal states with any accuracy.

2.1 Manual Clinical Methods

For the purposes of this study, we will consider the performance of the heuristic
EWS system that was in place in the ED at the time of data acquisition, which is
summarised in table 1. We will also consider the “evidence-based” EWS system
described in [3], which is summarised in table 2.

Table 1. EWS system used in the ED at the time of data acquisition

Score: 3 2 1 0 1 2 3

HR ≤ 40 41 - 50 51 - 100 101 - 110 111 - 129 ≥ 130
BR ≤ 8 9 - 18 19 - 24 25 - 29 ≥ 30

SpO2 ≤ 92 ≥ 93
SysBP ≤ 90 91 - 99 100 - 179 ≥ 180

Table 2. Evidence-based EWS system proposed in [3]

Score: 3 2 1 0 1 2 3

HR ≤ 42 43 - 49 50 - 53 54 - 104 105 - 112 113 - 127 ≥ 128
BR ≤ 7 8 - 10 11 - 13 14 - 25 26 - 28 29 - 33 ≥ 34

SpO2 ≤ 84 85 - 90 91 - 93 ≥ 94
SysBP ≤ 85 86 - 96 97 - 101 102 - 154 155 - 164 165 - 184 ≥ 185

2.2 Automated Methods - Estimation of the Joint Density

Previous work [6] has modelled the joint pdf f(x) of vital signs x ∈ R
4, for the

vital signs shown in table 1. Each vital sign was standardised with respect to



222 D.A. Clifton et al.

its own mean and variance, x′ = (x − μ)/σ. The joint distribution of the (nor-
malised) training data was estimated using a mixture of Gaussian distributions,
obtained as a Parzen window estimate with 400 components. The process used
to estimate this distribution involved first summarising (using the k-means clus-
tering algorithm) a set of approximately 2.3 × 106 data, corresponding to over
3,000 hours of vital-sign data acquired from acutely-ill hospital patients. The
width parameter σ shared by all of the isotropic Gaussian distributions was set
using an independent validation set [6].

The likelihood f(x|θ) of previously-unseen test data x is then evaluated with
respect to the Parzen window estimate (parameterised by θ) and used to generate
a corresponding novelty score, z(x) = − ln f(x|θ). This novelty score takes high
values when the test data are “abnormal” with respect to f , and which thus
take low probability densities as f → 0.

A threshold κ is defined on z such that test data x are deemed “abnormal”
with respect to the joint pdf if z(x) > κ. In order to avoid false-positive alerts
caused by transient noise and other artefact of short duration, this method only
generates a novelty alert when z(x) > κ for four minutes out of any five-minute
window of data. The value of κ was similarly selected using an independent
validation set, selected from over 18,000 hours of vital-sign data acquired from
acute patients [6].

2.3 Automated Methods - One-Class Support Vector Machine

We also consider the use of a one-class support vector machine (SVM), trained
using the same data as that from which the density estimate described above was
obtained. We used the method proposed by [7], in which the objective function
is defined by separating the training data from the origin in the feature space
defined by the SVM kernel, for which we use the Gaussian distribution2.

The degree to which the SVM objective function is penalised by misclassifi-
cations (and thus the flatness of the decision boundary) is controlled by the C
parameter, the value of which, along with the width parameter σ shared by all of
the isotropic Gaussian kernels in the model, was selected using cross-validation,
and was performed using the same independent validation set as was used for
the density estimate described above [6].

The SVM produces a novelty score z(x), which represents the distance be-
tween test data x and its decision boundary in the feature space defined by the
Gaussian kernel3. One-class classification is performed according to the sign of z;
i.e., test data x are classified “abnormal” if z(x) < 0, and “normal” otherwise. To
avoid false-positive alerts due to transient noise and artefact, as with the prob-
abilistic method, an alert was generated if test data were classified “abnormal”
for four minutes in any five-minute window of test data.

2 This method typically performs similarly to the other popular one-class SVM for-
mulation, the support vector data description, as proposed by [8].

3 where that distance is normalised by the distance of the support vectors to the
boundary [9].
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3 Clinical Study

3.1 Overview

Vital-sign data were acquired from 472 adult patients during their stay in the ED
of the John Radcliffe hospital, Oxford, using existing hospital bed-side monitors.
These monitors provide measurements of HR, RR, and SpO2 at a sampling in-
terval of approximately 20 secs, and measurements of BP whenever the patient’s
blood-pressure cuff is inflated. Following [6], it was assumed that a blood-pressure
measurement was valid for a period of 30 minutes after acquisition.

The total amount of data acquired from the 472 patients was approximately
1,708 hours. Patients were admitted to study (on a random basis) between Jan-
uary, 2009 and January, 2010, and patient consent was gained in accordance
with approval from the Medical Research Ethics Committee (MREC).

3.2 Clinical Labels

To evaluate the performance of novelty detection, we would ideally have accurate
labels of “normal” and “abnormal” episodes of data. The “gold standard” in
classification problems is often a set of labels provided by domain experts - here,
ED clinicians. However, such exhaustive labelling is typically not possible in
practice due to the size of the datasets and the difficulty in determining patient
abnormality from retrospective review of the vital signs. Furthermore, intra- and
inter-expert variability makes the labelling process inaccurate.

An approach in which clinical experts are asked to review only vital signs
from periods of suspected patient abnormality is often adopted. Here, clinical
escalations have been taken as being indications of patient abnormality. These
escalations are events that took place during the patient’s stay in the ED, and
they were identified retrospectively from the patient’s written clinical notes.

There are many reasons for which a patient’s care may be escalated in practice,
only some of which will be associated with abnormal vital signs, and which could
therefore be expected to be identified by an automatic method. Two clinical
experts independently reviewed the patient notes and identified those periods
during the patient’s stay in the ED that corresponded to escalations that would
be expected to be associated with abnormal vital signs. Any differences in opinion
between the two experts were resolved by a third clinical expert, independently.

4 Methodology and Results

4.1 Obstacles to Evaluating Classifier Performance

The evaluation of the performance of classifiers with respect to discrete events
within a time-series is a complex topic, which is reviewed in this section.
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Independence. The classical method for evaluating classifier performance is
to construct a confusion matrix, which quantifies the number of true and false,
positive and negative classifications (TP, FP, TN, and FN) made by the classi-
fier, with respect to the “ideal” classification. The sensitivity and specificity of
the classifier may then be plotted as a function of some variable of its operation
(typically a parameter that controls the decision threshold), to give the receiver
operating characteristic (ROC) curve. Some EWS systems [10] have been con-
structed by maximising the area under this curve (AUROC). A loss function
may be defined to assign different weights to false-positive and -negative errors
if one is deemed more costly than the other. However, such weights are typically
difficult to assign in practice.

The equivalent Bayesian methodology for evaluating performance in this man-
ner is to integrate over the loss function, and select the classification parameters
that minimise the expected loss (“risk”) for each decision.

This approach is appropriate in the diagnostic context, as in mammography or
blood chemical analysis, but are problematic when the classifier is used to analyse
time-series data, as samples and events are not independent, but correlated. The
results could be biased, for example, by a small number of “abnormal” patients
with long hospitals stays (which is a common example, given that length-of-stay
often correlates with abnormality), which contribute a large proportion of data
to the set of “positives”, but which are largely dependent. The performance
of the classifier would be skewed towards how well it performed on this small
number of patients.

We suggest that there is no simple answer to this problem, and that it is
inappropriate to reduce the evaluation of classifier performance to a single metric
(such as accuracy / AUROC).

Patient-Based Analysis. To use ROC-based performance metrics in time-
series analysis, we must select a basic unit of analysis other than individual
samples. To avoid breaking the independence assumption between basic units,
we perform the analysis on a per-patient basis. In this study, we adopt the
following convention:

“Event” patients: This group comprises all patients with one or more “events”,
the latter defined according to the criteria given in section 3 (i.e., those events
with associated changes in vital signs). This corresponds to 34 (7%) of the 472
patients in our study4.

“Normal” patients: This group comprises all patients who had no clinical es-
calation of any kind, and corresponds to 217 (46%) of the 472 patients in our
study.

We define a TP classification to be an “event patient” for whom the first event
was successfully detected; conversely, we define a FN classification to be an
“event patient” for whom the first event was not successfully detected. The first
event is used because the number of events from “event” patients varies between
4 75 (16%) of the 472 patients had no corresponding vital-sign data.
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1 and 4 in our dataset. We define an event to have been detected if the method
under evaluation generates an alert within some time w ahead of that event. We
will consider the performance of our novelty detection systems as w is varied
from [0 60] minutes, representing “early warning” up to an hour ahead of the
event in the context of patient vital-sign monitoring in the ED.

We define a TN classification to be a “normal patient” for whom there were no
alerts generated; conversely, we define a FP classification to be a “normal patient”
for whom one or more alerts are generated by the classification system under test.

4.2 Results

Figure 1 shows the TP and FP results for candidate novelty detection methods,
when evaluated on the per-patient basis described above. We compare (i) the
density-based estimation method, (ii) the SVM, (iii) the heuristic EWS system
that was used in the hospital at the time of the study, and (iv) the “evidenced-
based” EWS system proposed in [3].

The two EWS systems (used with paper charts, in practice) were evaluated
when applied to continuous data at frequencies of 30 minutes and 2 hours. The
SVM and density-based methods were both trained on data obtained from a pre-
vious clinical study, as described in section 2. These training data were acquired
from another set of acutely ill hospital patients. The density-based method al-
lows the possibility of adapting its normalisation parameters (μ, σ for each vital
sign) to those observed in the ED population, while still retaining the parame-
terisation θ obtained from the original training set.

The results shown in the figure indicate that this “localisation” of the density-
based method (whereby local population normalisation coefficients are used with
an existing model) causes the performance of the model to improve (TPs in-
creasing from 20 to 33). This increase in sensitivity is, however, matched by
an increase in FPs from 34 to 66 for the original and “localised” density-based
methods, respectively.
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Fig. 1. TP numbers for each novelty detection method, shown as a function of w, the
window-length used for determining if a physiological event was “detected”. Numbers
in square brackets (in the legend) indicate the number of FP classifications for each
method when applied to 217 “normal” patients.
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By comparison, the one-class SVM method outperforms the original density
estimate, and approaches the performance of the “localised” density estimate,
while having a lower FP rate, even without “localisation”.

It may be seen from the figure that the manual EWS systems perform poorly
in comparison with the more principled techniques described above. To match
the number of TPs obtained with the density-based method, the hospital EWS
system must be applied very frequently (every 30 minutes) - not a practical
proposition in the clinical environment, due to the workload of clinical staff.
Furthermore, at this level of TP classification, the number of FPs is particularly
high (86). The FP number may be decreased by taking vital-sign observations
less frequently: increasing the hospital EWS observation interval from 30 minutes
to 2 hours reduces the FP number to 49, but this results in a very low sensitivity.

The effect of the “evidence-based” EWS system proposed in [3] is to signif-
icantly reduce the number of FPs in comparison to the hospital EWS system,
with a small decrease in sensitivity as a result.

5 Conclusions

Analysing the performance of classifiers operating on time-series data in which
discrete “abnormal events” occur is difficult. We have proposed a method to
provide evaluation of classifier performance on a per-patient basis, and presented
preliminary results in the context of a clinical study described in the ED.

We have demonstrated that paper-based EWS systems can be improved upon
significantly by using automated methods when patients are continuously mon-
itored with bed-side monitors (as in the high-acuity areas of the ED). We have
examined the performance of density-based and one-class SVM approaches, and
have shown that both provide an increase in sensitivity and specificity over ex-
isting EWS systems. Based on a training set acquired from a previous study, the
SVM method outperforms the density-based method, although the latter can
be improved by “localising” its normalisation coefficients to the ED population
(whereas the SVM method must retain the existing normalisation coefficients of
the input data, in order to retain the validity of its decision boundary in the
high-dimensional feature space associated with the kernel).

It is possible that an on-line approach, which adapts to the new training data
observed in the ED, would outperform both methods. Moving from a population-
based to a patient-based modelling approach may also improve sensitivity to
abnormalities. However, smaller quantities of training data would be available
if patient-specific models were constructed, introducing significant model uncer-
tainty, in which case a Bayesian approach is likely to be more appropriate.
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