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Abstract

This paper proposes a modification on the
Sammon map algorithm for data visualisa-
tion. The modification, known as the Sparse
Approximated Sammon Stress(SASS), allows
mappings to be produced for very large data
sets of the order of 106 points. While the
technique may be useful in a variety of ap-
plications, the results presented here will
demonstrate its usefulness for visualising pa-
tient deterioration in vital sign data collected
from step-down unit hospital patients. A fi-
nal result demonstrates an application of the
SASS visualisation for drug safety analysis.

1. Background

In the field of patient monitoring in critical care, re-
searchers are often overwhelmed with large quantities
of high-dimensional data. The data typically consist of
simultaneous readings of vital signs such as breathing
rate, blood pressure, temperature and arterial-oxygen
saturation. The new generation of automatic patient
monitors and hospital IT systems enable data to be
collected quickly and efficiently, so it is no longer un-
usual for researchers to deal with data sets containing
millions of data points.

Initial exploration and analysis of such high-
dimensional data is a difficult task. Any analytic tools
or algorithms must deal with the data in a coherent
and intuitive manner in order to provide useful insight,
but must also be usable with large volumes of data.
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One important aspect of high-dimensional data anal-
ysis is visualisation. This involves transforming the
original data to a visualisation space with fewer dimen-
sions. Typically, two or three dimensions are chosen
so that the results can be plotted for visual inspection.
The transformation is chosen in such a way as to main-
tain key aspects of the data distribution; for example,
topology may be preserved between the dimensions.

A variety of visualisation algorithms have been pro-
posed, including Kohonen’s (1997) Self Organising
Maps (SOMs) and kernel Principal Component Analy-
sis (PCA) (Schoelkopf et al., 1997). SOMs use a neural
network to map data onto a 2D grid such that similar
data (i.e. data close to each other in the original high-
dimensional space) are grouped together on the grid.
This provides insight into the spatial relations within
the data. In kernel PCA, the appropriate choice of
kernel allows the data to firstly be mapped to a higher
dimensional space so that a standard PCA in kernel
space has the effect of producing a non-linear map-
ping between the original data space and visualisation
space.

One popular alternative to these methods is the Sam-
mon Map algorithm (Sammon, 1969). This produces
a mapping which attempts to keep the Euclidean dis-
tances between all pairs of data points in the 2-D visu-
alisation space as close as possible to those in the high-
dimensional data space. Mathematically, this is equiv-
alent to minimising the so-called Sammon STRESS
objective function for N data samples:

STRESS =
1∑N

i=1

∑N
j>i d∗ij

N∑

i=1

N∑

j>i

(dij − d∗ij)
2

d∗ij

where the Euclidean distances between patterns i and
j in the data space are denoted by d∗ij , and the corre-
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sponding distances in visualisation space are denoted
by dij . The objective function is minimised by a gradi-
ent descent technique that adjusts the position of the
points in visualisation space.

Unfortunately, there are two major drawbacks to the
method. Firstly, the process of creating a Sammon
Map is intractable for large data sets, as the STRESS
calculation involves order O(N2) point comparisons.
On a typical desktop PC, a few thousand data vec-
tors is the practical limit. Secondly, the Sammon Map
cannot accommodate new data, and must be retrained
each time.

A number of authors have attempted to circumvent
these problems. For instance, the Neuroscale algo-
rithm developed by Lowe and Tipping (1997) uses a
neural network trained on the data to derive an explicit
non-linear transformation between data space and vi-
sualisation space that allows new points to be visu-
alised using the interpolation properties of the trained
neural network. However, this method also suffers
from the same drawback of being unsuitable for large
data sets, necessitating either a sub-sampling of the
data used for training, or pre-clustering to a smaller
set of exemplar vectors using a clustering algorithm
such as k-means. At present, the authors are unaware
of any method described in the literature that creates
a true Sammon map for large (> 104 point) data sets
in reasonable time.

2. Method

We propose a novel alternative to the original Sammon
Map algorithm which we have named the Sparse Ap-
proximated Sammon STRESS(SASS). SASS reduces
the problem to one of order O(N) by sub-sampling
from the complete set of inter-point distance pairs to
approximate the Sammon STRESS. In practice, it has
been discovered that many of the inter-point distances
can be removed from the STRESS calculation, with
little effect on the Sammon Map output. The method
used to sub-sample is critical for obtaining an accu-
rate mapping and is discussed further in the following
section. Formally, if we define S to be a sparse sub-
set of the index pairs (i, j) for which the Euclidean
distance is calculated, then the modified STRESS ob-
jective function to minimise is:

SASS =
1∑

i,j∈S d∗ij

∑

i,j∈S

(dij − d∗ij)
2

d∗ij

For very large data sets consisting of at least N = 106

points, a sparse distance matrix with an average of 50

distance comparisons for each point has been tested
and shown to work successfully. In this case, only
one distance comparison is computed using SASS for
every 20,000 comparisons calculated for the original
STRESS. By reducing the computational complexity
in this way, the initial problem of large data sets is
overcome. Furthermore, data storage is reduced by
using memory saving techniques for sparse matrices.
Further increases in speed are made by using an effi-
cient optimisation algorithm, scaled conjugate gradi-
ents, in preference to gradient descent.

2.1. Initialisation of dij in Visualisation Space

In the preliminary tests, points in the visualisation
space, dij , were initialised with random values, follow-
ing the precedent set in Sammon’s original paper. Dur-
ing these tests, it was clear that as the size of the data
set increases and the STRESS calculation increases ac-
cordingly, it becomes likely that the STRESS optimi-
sation procedure will get stuck in a local minimum.

SASS can be initialised in a more principled manner
by using a two-stage approach. Firstly, SASS is ap-
plied to a subset of the data to produce a preliminary
mapping. In this pre-mapping, the points in the visu-
alisation space are initialised randomly. The Sammon
map generated by this process creates a sparse outline,
or a skeleton, of the data and so the second stage of the
initialisation is to approximately map the remaining
points into visualisation space using the skeleton. In
this case, the distance mapping technique introduced
by Pekalska et. al. (1999) was used, which creates an
explicit linear transformation between the data and vi-
sualisation spaces. This provides an approximation to
the transformation created by the Sammon mapping,
which is generally non-linear. The result of this pro-
cess is that all vectors in the data set are initialised to
the correct region of the visualisation space.

In preliminary tests on a data set with with 106 points,
a 4800 point skeleton was created to initialise dij . The
SASS algorithm was then run using the new initial-
isation values for dij . In general, it was found that
the final SASS error was smaller than for random ini-
tialisation of the dij values, and that the optimisation
stage converged in fewer iterations.

2.2. Initialisation of Subset S

The SASS method can fail when a subset of the
data, by chance, only possesses inter-point compar-
isons within the subset. A pictorial representation of
this problem is presented in Figure 1. It is unsurpris-
ing that such an initialisation results in an incorrect
visualisation, as the algorithm will treat the subsets as
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Figure 1. The graph shows an example of the connectivity
between data points for the original Sammon algorithm
(grey) and for the SASS algorithm (red). Each node repre-
sents a data point, and each edge represents an inter-point
distance. In this example, the data has formed two un-
connected subsets and SASS will fail to produce a correct
mapping.

two separate data sets.

Fortunately, the probability of such an event occurring
is very small. For instance, the probability of two sub-
sets forming, where one of the subsets contains only
one vector (which is equivalent to one point having
no connections to any other point in the data set), is
given by:

P (one point disconnected) = N(1− 2
N

)
λ
2 N

where λ is the average number of connections per point
such that λ

2 N is the number of elements in set S, and
N is the number of data points in the whole data set,
as before. For a data set with over 106 points and and
average of 50 connections per point, the probability of
one point being disconnected is of the order of 10−16.
To prevent this problem from occurring at all, we en-
sure that the connections within the data set form a
minimum spanning tree. The simplest way to do this
is to initially connect each data vector to its neigh-
bours, so that the nth data vector in the set of N data
vectors has distance comparisons to the n − 1th and
n + 1th vectors.

SASS can be further enhanced by considering the man-
ner in which the subset S of inter-point connections is
chosen. In order to test the effectiveness of alternative
choices of S, a unit-cube synthetic data set was cre-

ated. This consisted of a 3D unit-cube with normally
distributed data at each of the corners, so that there
were 20 × 104 3D vectors in total. Furthermore, the
(1, 1, 1) data vector was added twice to the set as two
distinct data points to test whether data are mapped
consistently.
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Figure 2. A Sammon Map for the unit-cube data set, con-
taining 2 × 104 points. The SASS Sammon map is shown
in red, and the output from the original method is shown
in grey. In both instances, the separate data clusters are
clearly visualised

In the initial tests, elements in S were chosen by select-
ing two data vectors at random. Figure 2 shows the
result from SASS on the cube data set in red compared
to results created directly from Sammon’s algorithm in
grey. The eight clusters corresponding to the corners
of the cube are correctly mapped, and it is clear that
SASS works satisfactorily. Although the results are
acceptable, in order to maintain accurate local and
global structure, the proportion of local and distant
inter-point connections is of critical importance.

One natural way to do this is to force each data point
to have an equal number of connections to both near
and far points in the data set. Local and distant points
can be defined for any data set as follows. Firstly,
the data set is clustered using a technique such as K-
means. Once the points have been grouped, half of
the total inter-point connections that form set S are
selected such that the two connected points are within
the same cluster. These are defined as ‘local’ connec-
tions. The remaining inter-point connections are cho-
sen so that any two connected points are from different
clusters. Alternatively, for time series data where vari-
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ation is slow compared to the data collection rate, one
would expect consecutive samples to appear locally in
visualisation space. Therefore, local connections can
also be defined by appropriately partitioning a time
series data set.

The unit-cube data set was retested using this method
to define local and distant connections. Again, Figure
3 shows that the global structure was adequately cap-
tured. The duplicate points are highlighted in red, and
visual inspection shows that they were mapped con-
sistently. To quantify the accuracy of the mapping,
the dataset was visualised 200 times for both a ran-
domly initialised set S, and for the alternative method
described above. In each of the 200 Sammon maps,
the Euclidean distance between the mapped duplicate
points was recorded, and the mean of these was cal-
culated. For the randomly initialised set, the mean
distance was 0.05, while the mean distance in the al-
ternative method was 0.02. This indicates that it is
important to ensure a sufficiently high proportion of
local connections, and that selecting S at random is
sub-optimal.

Figure 3. A Sammon Map for the unit-cube data set, con-
taining 2 × 104 points. The SASS Sammon map is shown
in grey. In the left-most cluster, the visualisation of the
duplicate points at [1,1,1] are highlighted in red. The sub-
figure shows the left-most cluster in greater detail so that
the duplicate points can be distinguished easily.

3. Results

We have used the SASS method as a tool for ini-
tially exploring extremely large data sets. Results so
far have been encouraging, and have provided insight
into ways of improving data fusion models for patient
monitoring. The data set used to generate Figures
4 and 5 is taken from a clinical trial on a hospital
step-down unit at the University of Pittsburgh Med-
ical Centre(UPMC), and contains vital sign record-
ings taken over an eight week period for a total of 300
patients (Hravnak et al., 2008b). For each patient,
four vital signs, the heart rate, breathing rate, arterial-
oxygen saturation and blood pressure, were recorded
simultaneously in a 4D data vector. In total, 961,031
vital sign vectors were recorded which corresponds to
28,782 hours of data collection.

Figure 4. A time-lapse Sammon map showing the deteri-
oration in health of patient C during the last 10 minutes
of the patient’s vital sign record. The points in light grey
depict the vital sign distribution from the entire data set,
while the points in white show the vital signs for the pa-
tient’s entire stay on the ward. The lines in red mark the
progression of the patient’s vital signs over a one minute
period.
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One application of SASS allows one to see deterio-
ration in patient health as time progresses. For the
UPMC data, a time-lapse SASS map of patient C was
created to depict the final ten minutes of the patient’s
record (Figure 4). The vital sign record for patient C
is coloured in white for reference, and the entire record
of vital signs recorded during the trial are plotted in
light grey. Each point in the figure is a 2D represen-
tation of a 4D vital sign vector, and the vital signs
recorded over one minute intervals are highlighted in
red. The maps clearly show how the patient begins
with relatively normal readings, which lie towards the
centre-left of the population’s distribution. As time
progresses, the patient’s vital signs become increas-
ingly erratic as the blood-oxygen saturation readings
become dangerously low. The bottom row of plots cor-
respond to the last three minutes of the patient record
where it can be seen that a number of abnormal vital
signs are recorded, denoted by the points towards the
edge of the grey (whole population) vital sign cluster
and far away from the white (single patient) cluster,
and it can be seen that there is a general trend away
from normality. The fact that deterioration in patient
health can be detected so clearly suggests that it is
possible to use trends in time to improve patient mon-
itoring devices.

Another SASS example is given in Figure 5. This Sam-
mon Map depicts the vital signs for patient A and
patient B from the same study in red and blue respec-
tively. It is noticeable that the vital signs for each
patient are confined to small regions of the whole dis-
tribution, indicating that there is considerable patient-
to-patient variation within the bounds of vital sign
normality. This is not an entirely unexpected result,
as external factors such as patient age, physical fitness
and reason for admission will have an effect on vital
signs. However, given that in the Figure the patients’
recordings do not overlap, the Sammon map provides
important qualitative evidence that vital sign variation
is significant enough to motivate the design of person-
alised data fusion models for vital sign monitoring.

A final result is presented in Figure 6, and shows the
application of the SASS visualisation technique to an
application in safety analysis of new drug compounds.
This requires 12-lead electrocardiograms (ECGs) to be
recorded from human volunteers, from which the ef-
fect of the drug on the timing of intra-beat intervals
of waveform morphology are assessed. Each point on
the plot represents the visualisation of the wavelet co-
efficients from single-beat ECG waveforms (Strachan
et al., 2008; Hravnak et al., 2008a), sampled from the
first eight hours of a 24 hour recording during a clinical
study of the drug D-sotalol (Sarapa et al., 2004).The

Figure 5. A Sammon Map for UPMC vital sign data. The
whole data set, consisting of 961,031 4D vectors is vi-
sualised in grey. Points corresponding to vital signs for
Patient A and patient B are plotted in red(left) and
blue(right) respectively

blue points represent the ‘baseline day’ where no drug
was administered, and the red points represent the
drug dosage day for the same subject.

The SASS visualisation was constructed from a set of
8867 beats, roughly half of which were from each day.
The distance calculation for the effective Euclidean
distance between two beats is more time consuming
for this application because the heart rate varies, so
the beats are of different lengths. Hence, before a dis-
tance calculation can be made, the beats are stretched
using Dynamic Time Warping, so they lie on a com-
mon axis that minimises the Euclidean distance of the
two time sequences.

The visualisation clearly shows a big effect from the
drug. It is known that D-sotalol produces large
changes in the morphology of the ECG wave, par-
ticular in the region of Ventricular repolarisation (T-
wave). This would give rise to large differences in the
Dynamic Time Warping distance measure. As can be
seen, the blue (baseline) cluster is relatively compact,
whereas the red (drug) points show two distinct clus-
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Figure 6. A Sammon map showing the effect of the drug D-
sotalol on ECG waveform morphology. The ‘baseline’ day
when no drug was taken is mapped in blue, and the red
points represent readings recorded following the adminis-
tration of the drug.

ters; one which is similarly compact to the baseline,
and the other which is widely spread out, indicating a
morphology change effect some time after administra-
tion of the dose has taken place.

The two more compact clusters are slightly displaced
from each other. This is to be expected, as placements
of the ECG leads can vary slightly from day to day,
and this would be reflected in a small change to mor-
phology.

4. Conclusions and Future Work

The SASS visualisation technique successfully deals
with the problem of large data sets. Results in the
preceding section show that sets with up to 106 points
can be accommodated on a standard desktop PC, com-
pared to around 104 points that can be mapped using
standard Sammon mapping.

Visualisation of the unit-cube data set also confirms
that for a medium sized data set, the SASS metric ap-
pears to be as accurate as the standard Sammon Map.

The similarity between the plots in Figure 2 is encour-
aging, and one would expect the SASS mapping to also
be accurate for larger data sets. This is not directly
testable due to the Sammon algorithm limitations dis-
cussed previously.

While SASS overcomes the issue of large datasets, it
continues to possess some of the other drawbacks of
Sammon Maps. In particular, incorporating new data
remains a problem. This is an area of current research,
and we are investigating the effectiveness of methods in
the literature including triangulation (Lee et al., 1977)
and the distance mapping technique used previously
(Pekalska et al., 1999). One promising idea is a modi-
fication to distance mapping which only assumes that
local regions in data space can be accurately mapped
by a linear transformation. In this way, each new data
to point to be incorporated can be mapped according
to its own unique, local distance map.

In the patient monitoring context, the results using the
SASS technique have been especially useful for facili-
tating the design of ‘smart’ patient monitors by allow-
ing us to compare a single patient’s vital sign data to
vital signs from a whole population (in a trial). Pre-
viously, such a large visualisation was computation-
ally infeasible. Two examples have been presented.
Firstly, Figure 4 showed that in some cases, deterio-
ration of patient health through time can be clearly
seen with respect to the vital sign readings of the
trial population. This confirms that effective moni-
toring, such as the methods developed by Tarassenko
et. al.(2006), can be used to provide early warning for
certain adverse events and motivates the use of tem-
poral information to improve the monitoring scheme.
The second result (Figure 5), highlights the fact that,
under certain circumstances, patient-specific models of
vital sign data may be more appropriate than a global
model of normality.
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