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Abstract— Parkinson’s disease is diagnosed base on expert
clinical observation of movements. One important clinical fea-
ture is decrement, whereby the range of finger motion decreases
over the course of the observation. This decrement has been
assumed to be linear but has not been examined closely.

We previously developed a method to extract a time series
representation of a finger-tapping clinical test from 137 smart-
phone video recordings. Here, we show how the signal can be
processed to visualize archetypal progression of decrement. We
use k-means with features derived from dynamic time warping
to compare similarity of time series. To generate the archetypal
time series corresponding to each cluster, we apply both a
simple arithmetic mean, and dynamic time warping barycenter
averaging to the time series belonging to each cluster.

Visual inspection of the cluster-average time series showed
two main trends. These corresponded well with participants
with no bradykinesia and participants with severe bradykinesia.
The visualizations support the concept that decrement tends to
present as a linear decrease in range of motion over time.

Clinical relevance— Our work visually presents the archety-
pal types of bradykinesia amplitude decrement, as seen in the
Parkinson’s finger-tapping test. We found two main patterns,
one corresponding to no bradykinesia, and the other showing
linear decrement over time.

I. INTRODUCTION

Bradykinesia is a pathological slowness of movement
and is the core clinical feature of Parkinson’s disease [1].
Clinically, it is assessed by a specialist clinician observing
the patient repetitively tapping index finger and thumb to-
gether as ‘wide and fast as possible’ over ten taps. Key
indicators of bradykinesia are reduction in tapping amplitude
and/or impairment of rhythm (interruptions or hesitations).
A characteristic decrement is frequently seen, whereby the
amplitude reduces over the duration of the finger-tapping test.

Decrement is currently described within two clinically
validated scales. In the Universal Parkinson’s Disease Rating
Scale (UPDRS), decrement is categorised how soon in the
test the reduction in amplitude begins, but no minimum
reduction is defined [2]. In the Modified Bradykinesia Rating
Scale (MBRS), amplitude (which includes decrement) is
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defined on a scale of 0 (normal) to 4 (severe). For example,
a score of 1 occurs when ‘Mild reduction in amplitude in
later performance, most movements close to normal’[3].

Previous attempts to quantify decrement more precisely
in the clinical literature have primarily assumed linear de-
crease in amplitude over time. For instance, both Bank et
al. and Martinez-Manzanera et al quantified decrement by
computing a linear regression of the frequency amplitude
and velocity over the course of a finger tapping task [4], [5].
However, our clinical experience has been that finger-tapping
amplitude in Parkinson’s is sometimes observed to increase
after an initial decrease.

We hypothesize that there may be archetypal trends in
decrement that are both non-linear, and inadequately de-
scribed by the current clinical scales. In this work, we use
a time-series clustering approach to identify whether such
archetypal trends exist and to visualize the results.

II. METHODS

A. Data Collection

Video data recordings of 137 finger-tapping examina-
tion were recorded from 69 participants at Leeds Teaching
Hospitals Trust using an iPhone smartphone at 60 fps. 39
participants had previously diagnosed idiopathic Parkinson’s
disease; the remaining 30 were health controls. All par-
ticipants had recording of both left and right hands, but
one video was rejected for quality reasons. In our case,
the primary unit of analysis was the number of finger-
tapping examinations, as we are not concerned here with
per-participant outcomes.

The study cohort described here is an expanded sample
of those recorded previously by Wong et al. [6], who report
additional details of the data collection method. Videos were
then processed to output pixel coordinates of the participant’s
thumb and index fingertips at each frame. We achieved this
using the Deeplabcut software package [7], [8]. A neurologist

Fig. 1. Example frames from the smartphone video capture showing the
hand and forearm in frame in an open (left) and closed (right) finger-tapping
test position



Fig. 2. One example of the original signal and the SG filtered signal

(SW) manually labelled 20 frames from each 660 frame
videos. The salient points were automatically extracted for
the remaining 97% of frames by the algorithm. Visual
inspection of the salient points aligned to the original video
were used to confirm the accuracy of the algorithm output.

Each video was independently assessed for bradykinesia
by a random selection of 22 Parkinson’s specialists, using
the MBRS scale to provide a score between 0 and 4. Each
neurologist assessed 30 videos. Videos were labelled using
the modal score.

During the examination, participants rested their elbow on
a chair arm, and the video camera was adjusted such that
the hand and forearm were in frame (see Fig. 1). The lateral
surface of the hand faced the camera. Participants were told
to tap their thumb and index finger together as wide and
as fast as possible. Each video sample was restricted to 11
seconds.

B. Preprocessing

Using the output pixel coordinates of the thumb and index
fingertips, we generated time series data of the finger to
thumb tip distance of each participant. One example is shown
in Fig. 2, where one may observe outliers (large, sudden
transient label ‘jumps’) in the original signal due to mistakes
in labelling the index and middle fingers by deeplabcut. To
remedy this, we applied a Savitsky-Golay (SG) filter with
polynomial order 3 and frame length 11 to all the time series.
Fig. 2 also shows the output of the filtered time series.

C. Envelope Extraction

After performing the SG filter of each original signal,
we extracted the upper envelopes of the filtered signals.
This represents the maximum distance between thumb and
index finger tip over time. The designed envelope analysis
mainly consists of two steps: finding the peak values and
interpolating the envelope with those peak values.

Peak detection was undertaken using MATLAB’s find-
peaks function [9]. We restricted acceptable peak-to-peak
intervals to be greater than 0.3 seconds to avoid false peaks
which are very close to each other. The threshold was
determined by visual inspection, using the average interval
of adjacent finger taps as a guide. To ease the undulation
and maintain the wave shape, we performed shape-preserving

Fig. 3. One example of the envelope extraction output

piecewise cubic interpolation of values at neighboring peak
points.

Fig. 3 shows one example of the envelope analysis in
which the extracted envelope accurately reflects the variance
of peak values. Finally, we normalized all the extracted
envelopes through Z-score normalization using the mean and
standard deviation of each envelope.

D. Clustering and Visualization of Decrement

Clustering is an unsupervised learning approach for find-
ing intrinsic patterns in data. Typically, similarity of dataset
features are compared using a distance metric, and similar
features are assigned to the same cluster. Multiple approaches
have been considered for time series clustering, including
Gaussian process clustering [10] and Hidden Markov models
[11]. Here, we implement two related methods for time series
clustering based on K-means clustering.

The first approach was to apply K-means clustering di-
rectly to the time series. K-means involves iteratively as-
signing a time series to the cluster centre with the lowest
Euclidean distance and updating the cluster centre according
to the centroid of its members. The Euclidean distance, d,
between two time series, A and B, of equal length, n, is
computed as:

d(A,B) =

√√√√ n∑
t=1

(At −Bt)

We used a predetermined K = 5 to match the number
of distinct classifications within the MBRS clinical rating
score. From these clusters, we sought to find the archetypal
time series by extracting the arithmetic mean of the within-
cluster time series. The arithmetic mean is the standard
approach used to calculate an average sequence when all
the sequences are consistent with each other. However, this
approach risks losing shape information in instances where
similar sequences are shifted in time. Fig. 4 shows one
example, in which the shape of the signals in Fig. 4(a) are
not preserved by the arithmetic mean in 4(b).

The second approach used an alternative distance measure
named dynamic time warping (DTW). DTW has been a
standard metric for a large range of time series analysis
applications, such as speech recognition [12], gene expres-
sion [13] and biomedical signals [14]. DTW aims to align



Fig. 4. One example of time series averaging. (a) the set of time series data
(the first class in the Trace dataset) and (b) the average signals extracted by
arithmetic mean and DBA.

different time sequences to find the optimal alignments. It
allows for both time shifts and non-linear distortions, and it
does not require that the length of two sequences should be
equal. The DTW metric approaches zero as two sequences
become more similar.

Multiple related studies have attempted to address the
problem of approximating an average time series [15], [16].
Among them, dynamic time warping barycenter averaging
(DBA) proposed by Petitjean et al. is one relatively robust
approach [17].

The DBA algorithm is an iterative procedure which con-
sists of the following two steps: (1) Calculate the DTW
metric between the temporary average sequence and each
sequence in the predefined set and find the relationships
(similarities) between elements of each sequence in the pre-
defined set and elements of the temporary average sequence;
(2) Update each element of the average sequence using the
barycenter of elements which are related to it corresponding
to the DTW metric in the above step. The convergence
property, and demonstration of how DBA can be applied
alongside existing clustering methods like K-means has been
proven empirically and theoretically [18].

Fig. 4(b) shows that, compared with a simple arithmetic
mean, DBA can preserve the local structure of a time series.
We denote the clustering method used in this paper as K-
DBA, signifying the use of K-means with DTW as the
distance measure alongside DBA as the averaging approach.

III. RESULTS

For K-DBA, the number of centroid seeds is 10 and the
number of iterations for the DBA computation is 20. The
results of traditional K-means and K-DBA, in which we
show the average time series (in bold red) alongside the
individual time series belonging to the cluster (grey), are
shown in Fig. 5 and Fig. 6, respectively. The membership
of each archetypal cluster, grouped by clinically assessed

MBRS decrement score, is presented in Tables I and II for
K-DBA and K-means respectively.

The figures show two main time series trajectories.
Fig. 5(c) and 6(a) mainly represent the participants with
no bradykinesia decrement; the amplitude throughout the
archetypal time series is relatively stable. As expected, the K-
DBA derived signal contains greater local structure, but the
two approaches provide a similar overall shape. The tables
show that these clusters correspond well with those with an
MBRS decrement score of 0. For 5(c) and 6(a), 37/58 and
27/38 time series were rated with an MBRS = 0, respectively.

Figs. 5(d) and 6(c) represent clusters in which decrement
is clearly visible. For these clusters, the amplitude enve-
lope appears to decrease linearly over time. Both clusters
were associated with participants assessed with more severe
bradykinesia. The remaining representative clusters show
large and rapid changes in amplitude at the start and end
of the time series. These changes are visible in the original
envelope signals but were not usually present in the raw
periodic finger-tapping signal. Therefore, the pattern is most
likely due to artefact introduced at the piecewise interpolation
step.

TABLE I
K-MEANS CLUSTER MEMBERSHIP GROUPED BY MBRS AMPLITUDE

(DECREMENT) SCORE

Cluster MBRS Amplitude (Decrement Score
0 (normal) 1 2 3 4 (severe)

(a) 8 3 3 1 1
(b) 5 2 1 4 0
(c) 37 10 8 3 0
(d) 9 9 5 7 2
(e) 4 2 4 4 1

TABLE II
K-DBA CLUSTER MEMBERSHIP GROUPED BY MBRS AMPLITUDE

(DECREMENT) SCORE

Cluster MBRS Amplitude (Decrement Score
0 (normal) 1 2 3 4 (severe)

(a) 27 6 4 1 0
(b) 6 5 2 5 1
(c) 8 7 5 9 1
(d) 19 7 9 1 3
(e) 3 1 1 0 2

IV. DISCUSSION

We have developed a method to visualize bradykinesia
decrement directly from smartphone video recordings of
a finger-tapping clinical assessment. We have also used a
shape-preserving time series clustering approach to extract
common archetypal decrement trends in a cohort of 133
videos.

Although we selected five cluster centres a priori based on
the gradation of the MBRS decrement scale, only two clearly
distinct time series patterns were observed - the remaining



Fig. 5. The visualization results of Traditional K-means (red lines are average sequences of five class centers).

Fig. 6. The visualisation results of K-DBA (red lines are average sequences of five class centers).

three clusters appear to have similar characteristics. These
two distinct archetypes corresponded well with participants
with no bradykinesia and with high bradykinesia.

Mild grades of bradykinesia (MBRS=1-2) were not clearly
associated with any cluster. It is unclear why this is the case.
Perhaps mild grades of decrement are indistinguishable from
low levels (or no) decrement. However, it is more likely
that the decrement patterns do not constitute an independent
cluster because the data set contains relatively few examples
of medium decrement. Future work should therefore include
repetition on a larger, balanced data set.

With respect to our initial hypothesis, that there may
exist non-linear decrement trajectories, our analysis found no
evidence to lend support. This means that current quantitative
metrics using linear regression are likely to be sufficient in
clinical practice. The method shown here is flexible and
extensible to clinical time series data more generally. It
allows grouping of similar time series trajectories to identify
common trend patterns.
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