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The Emergency Department (ED) provides the �rst line of care for anyone seeking

treatment for an urgent problem caused by an accident or illness. Physiological observa-

tions in the ED are a required part of patient care, and are used to monitor a patient's

condition. Manual observations are recorded regularly by nursing sta�, using a �Track and

Trigger� (T&T) system, in which higher scores indicate greater physiological abnormality.

An observational study at the John Radcli�e Hospital, Oxford, was conducted to assess

the e�ectiveness of T&T in the ED. Retrospective analysis showed that the e�ectiveness

of T&T was limited by poor completion, and incorrect calculation of T&T scores. In

response, we computed a retrospective, fully completed, scoring system which showed

very clear improvements in both sensitivity and speci�city.

In addition to nurse observations, higher acuity ED patients have their vital signs con-

tinuously monitored by bedside monitors. However, the alerts generated by the monitors

are routinely ignored due to their high false alert rate. We investigated whether a baseline

data fusion model and two alternative techniques, weighted Parzen windows and Support

Vector Machines, could identify events relating to vital sign abnormality while keeping

the number of false alerts to a minimum. The performance of each model was assessed by

calculating its sensitivity and speci�city. However, it was not possible to select an optimal

model, due to the di�culty in assessing the relative importance of maximising true alerts

and minimising false alerts.

In the �nal part of this thesis, two limitations of the data fusion models are highlighted.

Firstly, missing data is not handled coherently within the current models, and secondly

the models do not make use of temporal information. One method of addressing both of

these issues, Gaussian processes, was considered. Using this method, a novel framework

was derived that allowed for alerts to be generated even when there is uncertainty in the

vital sign values.
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1. Review of Vital Sign Monitoring

Systems in the Hospital

Emergency Department

1.1. Introduction

The Emergency Department (ED), which is often known as �Accident and Emergency�

or �Casualty� in the UK, is a hospital department that provides the �rst line of care for

anyone seeking treatment for an urgent problem caused by an accident or illness. Its

primary goals are to diagnose the illness, provide initial treatment, and to escalate the

patient to other hospital wards as necessary.

These goals are especially di�cult to achieve for three main reasons. Firstly, ED pa-

tients have diverse reasons for presentation and the severity of a patient's condition is

unlikely to be known prior to arrival at the ED. Unlike other hospital wards, where care

can be focussed towards speci�c types of injury, the ED must have the capability to di-

agnose and treat many types of ailments. The wider range of decisions that are made in

the ED means that there is a greater opportunity for mistakes to be made.

Secondly, the ED is extremely busy in comparison to other wards in the hospital, and

often su�ers from overcrowding [2]. The overcrowding is exacerbated when other wards

are close to full capacity, as patients may be held in the ED until beds become available

[51]. Furthermore, unlike with other wards, all of the patients who arrive at the ED are

unscheduled, and may arrive at any hour of the day or night with little prior warning. In

terms of patient throughput, a typical medium-sized hospital such as the John Radcli�e
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Hospital, Oxford, may expect approximately 14,000 adult patients to be admitted to the

the 28 acute care beds in the ED over a period of 6 months, in addition to those seen

for minor injuries. The high workload may be the reason for a relatively high number of

mistakes in patient care, as shown by Fordyce et al. [33] who identi�ed 18 errors for every

100 patients in a busy ED.

The �nal reason why it is di�cult to care for an ED patient is that there is substantial

pressure to diagnose a patient as quickly as possible. From a medical viewpoint, a fast

diagnosis is highly desirable as it is strongly correlated with improved patient outcome.

For instance, it has been demonstrated that adverse outcomes in patients with conditions

such as severe head trauma [7], cardiac arrests [16], or gangrene [72] can be reduced by

earlier detection and intervention.

In addition, a prompt and e�cient diagnosis reduces the patient's length of stay in the

ward, thereby allowing a greater number of patients to be treated per day. Maximising

a ward's e�ciency has the added e�ect of reducing the �nancial cost of treatment per

patient. A bed-day on a typical ward costs ¿225 for standard beds [32], and up to ¿1800

for an Intensive Care Unit-style bed equipped for acute patients [10], so an increased

patient throughput may have a substantial �nancial bene�t.

In light of these pressures, the UK Department of Health has imposed targets on acute

hospitals in England, aiming for at least 98% of patients presenting to an ED to be seen,

treated, and either admitted or discharged in less than four hours. While the bene�ts

of making a fast diagnosis have been noted, it has been shown that time pressure often

decreases an individual's ability to make accurate decisions [108] and in this context, may

mean that there is an increased chance of making an incorrect diagnosis.

Despite the di�culties of providing a high standard of care in the ED, successful de-

partments possess clinical expertise and systems that are well-suited to the ED's unique

demands. This has led to a largely positive perception of the ED by patients [42], and a

universal recognition of the importance of the ED in the patient's care pathway.

2
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Figure 1.2.1.: Flow Chart showing the typical progression of a patient through the ED

1.2. Current Standards for Patient Care

We will now consider how an ED attempts to achieve its goals in practice, by highlighting

the typical procedures that are currently in use. We will do this by �rst providing an

overview of the care given to a typical patient using the �owchart in Figure 1.2.1, which

depicts some of the most common stages of care for a patient in the ED. After this, we will

examine one of the aspects of care, vital sign observations, in more detail using evidence

from the literature.

When a patient �rst arrives in the ED, they will usually be triaged, so that patients

are categorised by the severity of their condition (Figure 1.2.1(a)). This ensures that

treatment is based on the order of clinical urgency, and that patients are sent to the

correct treatment area within the ED. The triage involves combining information about

the presenting problem as described by the patient, the patient's general appearance, and

the recording of the values of the following physiological vital signs: heart rate (HR), res-

piratory rate (RR), peripheral oxygen saturation (SpO2) levels, blood pressure (BP), core

temperature, and some measure of consciousness. These are collectively known as vital
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sign observations. The combined information is then presented in an easy-to-understand

manner. For instance, one popular system, the Manchester Triage System, grades the pa-

tient on a �ve-level scale from red, for the most urgent conditions, to blue, which indicates

the lowest severity. Triage is a very quick process, taking between two and �ve minutes.

In some instances, it may not be appropriate to triage a patient. Most commonly, this

will occur when the severity of a patient's condition has been assessed prior to arrival at

the hospital by information provided by a paramedic team and immediate treatment is

deemed necessary.

According to the result of the triage, the patient will be sent into one of three areas of

the ED, which is physically divided in order to manage the patient population as e�ec-

tively as possible (Figure 1.2.1(b)). The �rst of the ED areas is known as Minors, which

admits patients who do not require immediate treatment and often includes patients with

super�cial injuries such as sprained ankles and wrists. The Majors area accommodates

adult patients with a wide variety of illnesses and injuries that have a high likelihood of

needing admission to hospital. The problems that are typically encountered are predom-

inantly assigned a yellow triage category (the third highest acuity). The Resuscitation

Room (Resus) is a clinical area in which patients with actual or potentially life-threatening

illnesses or injury are assessed and treated. Resus patients attend the ED with the same

types of problems as those in Majors, but are classi�ed as more urgently in need of medical

intervention. In addition to this, there may also be a Clinical Decision Unit (CDU) which

is under the jurisdiction of the ED, and is used when a patient needs to be observed over

a long period of time, or for patients who have taken an overdose of drugs or alcohol and

do not need immediate assessment and treatment, but require regular observation.

Once assigned to an ED area, the patient receives a level of care speci�c to their needs.

However, in all cases, vital sign observations will be made and recorded in order to monitor

the patient's condition. The frequency of these observations is dependent on both the ED

area and the condition of the patient, so Resuscitation Room patients may be observed

at 5 minute intervals, while a patient in Majors may only be observed once per hour. The

rate of observations may also increase if deterioration in the patient is identi�ed. Patients

in the Majors or Resus areas will also be continuously monitored using bedside monitors.

4
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In addition to the vital sign observations, other physiological markers, such as pupil

dilation and urine output, may also be recorded. How these observations can best be used

to monitor a patient's condition is an open problem that we will consider in more detail

in this thesis.

At some stage during the patient's stay, they will be attended to by a doctor who will

attempt to diagnose the ailment. If this is not possible, the patient may be observed

for longer and further tests may be conducted. During this stage, the patient may be

moved to CDU, particularly if further observations are required beyond the 4-hour ED

target (Figure 1.2.1(c)). If a diagnosis is made, the patient will be treated and discharged

if appropriate, or else admitted to one of the other hospital wards for further treatment

(Figure 1.2.1(d)). The decision to admit or discharge a patient may also be made for cases

when a diagnosis has not yet been established, particularly in cases for which even the

extended observations have been unable to provide enough information to form a detailed

judgement.

1.3. Track-and-Trigger

The procedures whereby vital sign observations are used to assess patient status vary from

hospital to hospital. However, the National Institute for Health and Clinical Excellence

(NICE) has recommended implementing a standard method for analysing vital sign obser-

vations, known as the �Track-and-Trigger� system, for assessing all adult patients in acute

hospital settings. This system is being increasingly adopted across the UK [31]. Track-

and-Trigger is a methodology that was developed to facilitate clinical decision-making.

The �rst step is the recording of a patient's vital signs at regular intervals (�tracking�).

Nursing sta� can then request the patient to be reviewed by a senior clinician if the

patient's vital signs meet certain criteria or if they are concerned about a patient's condi-

tion (�triggering�)[48]. The use of Track-and-Trigger is based on the premise that adverse

events are often preceded by physiological derangement. For instance, cardiac arrests in

hospital are often preceded by vital sign abnormalities up to 24 hours before the event

[57, 94].

The introduction of the Track-and-Trigger system was designed to eliminate two prob-
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lems with ward-based vital sign observations. Firstly, it had been noticed that poor

communication between medical sta�, and in particular, between nurses and doctors,

could lead to mistakes in care. Hillman et al. discovered that, in many instances, nursing

sta� noted vital sign deterioration and would request further assistance by calling a junior

doctor. However, in many instances, this was ine�ective as the doctor did not possess the

experience to deal appropriately with the situation [46]. Secondly, subtle deterioration

in vital signs which includes long-term trends may not have previously been identi�ed by

nursing sta�, an e�ect that may be exacerbated when information is miscommunicated

during patient handover from one nursing shift to the next (see for example Patterson et

al. [83]). Goldhill gives an example of such miscommunication, highlighting an instance

when both doctors and nurses had been made aware of a patient who had abnormal

physiology but had taken no action to prevent further deterioration for over 5 days [39].

The Track-and-Trigger system deals with these problems by providing clear guidelines for

when assistance should be sought, thus empowering sta� to call for help when vital signs

are deteriorating.

In theory, Track-and-Trigger provides a way for nursing sta� to identify changes in

physiology and escalate the level of care if necessary, so that any unexpected deterioration

can be dealt with at the earliest possible opportunity. The e�ect of this should be to help

to reduce the number of preventable adverse events such as cardiac arrests or unplanned

ICU admissions.

1.3.1. Trigger - Escalation of Care

The medical interventions that are triggered as a result of using a Track-and-Trigger

system in the ED depend on the severity of the patient's deterioration. For moderate de-

terioration, the ED coordinator will be informed, and a doctor's review will be requested.

In many cases, this will result in no immediate action, except that vital sign observa-

tions will then be made more frequently. If the patient continues to deteriorate, a senior

consultant's review may be requested.

In more severe cases of deterioration, the patient may be immediately moved to the

Resus area to be stabilised. In conjunction with this, the Critical Care Outreach (CCO)
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or Intensive Care Unit (ICU) Outreach team may be called. The full intervention chart

for the ED at the John Radcli�e Hospital from 2008 to 2011 is shown in Figure 1.3.1.

The CCO and ICU Outreach teams are specialised teams who are trained to deal with

patients at immediate risk of cardiopulmonary arrest or other adverse events such as

unplanned admission to the ICU or emergency surgical procedures, and aid ED sta� in

providing immediate care to the patients. They may also prepare patients to be transferred

to other high-dependency areas of the hospital. These multidisciplinary teams typically

include both a physician and a nurse. Outside of the UK, a very similar concept is often

used, for example in the US, where the outreach team is known as the Medical Emergency

Team (MET).

A number of studies have reported on the bene�ts of having such a team within the

hospital. The bene�ts include marked reductions in mortality and morbidity associated

with the seriously ill and those at risk from cardiac arrest. For instance, Bellomo et al.

conducted a before-and-after trial that investigated the e�ect of introducing a MET at a

tertiary referral hospital. Their results showed a 65% reduction in cardiac arrests and a

26% reduction in overall in-hospital mortality, while the survivors of cardiac arrest in the

�after� period of the trial had a reduced hospital length-of-stay [9].

O�ner et al. [79] also report that the MET equivalent in their hospital, a Rapid Re-

sponse Team, was deployed successfully in a trauma center, resulting in early interventions

that were believed to have been a factor in preventing patients from progressing to cardiac

arrest, with a 50% reduction in the number of cardiac arrests that occurred.

1.3.2. Tracking - Single Parameter Early Warning Scores

Deviations from normal vital signs are tracked using Early Warning Score (EWS) criteria.

In the earliest and most simple instance of an EWS, the criteria shown in Table 1.1 were

adopted, and a response was triggered when any one of the criteria was met [48]. In this

case, no numerical score is calculated; triggering only occurs when there are gross changes

in a single vital sign parameter. While such a methodology has the advantage of being

easy for a nursing team to follow, the criteria may be criticised as being over-simplistic, as

they do not account for the fact that deterioration in patient condition may occasionally

7
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Figure 1.3.1.: Escalation �owchart chart for the ED at the John Radcli�e Hospital Oxford
(2009). The chart describes actions that should be taken when the Track-
and-Trigger criteria have been met.

8
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ACUTE CHANGES IN VITAL SIGNS

AIRWAY
BREATHING All Respiratory Arrests,

Respiratory rate < 5 breaths/min,
Respiratory rate > 36 breaths/min

CIRCULATION All Cardiac arrests
Pulse rate < 40 beats/min
Pulse rate > 140 beats/min

Systolic blood pressure < 90mmHg
NEUROLOGY Sudden fall in level of

consciousness
Repeated or prolonged seizures

Other Any patient who does not �t the
criteria above whom you are
seriously worried about.

Table 1.1.: Early Warning criteria for the Track and Trigger system used at Liverpool
Hospital, Sydney, Australia [48]

be heralded by moderate changes in several vital signs.

1.3.3. Multi-Parameter Early Warning Scores

In recent practice, it has become more common to use multi-parameter criteria, which

attempt to assess a patient's condition based on the combination of all the vital sign

measurements to produce an aggregated score. The simplest way to do this is to convert

each vital sign into a sub-score according to a chart such as that in Table 1.2, which was

used at the John Radcli�e Hospital, Oxford from 2008 to 2011. The EWS includes the

Glasgow Coma Score as a measure of consciousness, in which a higher score indicates a

greater degree of alertness. Vital sign observations that are outside the normal range for

a typical adult are converted into higher sub-scores. The sum of the individual vital sign

sub-scores then provides a total score, which is often known as the modi�ed early warning

score (MEWS). In this scheme, a response is triggered when the total score exceeds a

given threshold.

For instance, the triggering threshold is 3 for a single vital sign, or 4 for multiple vital

signs, using the criteria in Table 1.2. This means that a patient with a respiratory rate

of 8 respirations/min or below would score a 3, causing a trigger regardless of the other

vital signs. Similarly, a respiratory rate of 30 respirations/min or above would also cause

9
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Score 3 2 1 0 1 2 3

Resp
Rate

8 or
below

9-18 19-24 25-29 30 or
above

Heart
Rate

40 or
below

41-50 51-100 101-
110

111-
129

130 or
above

O2

Sats
91% or
below
on air

92% or
below
on 60%
or more
oxygen

Systolic
BP

90 or
below

91-99 100-179 180 or
above

GCS 12 or
below

13 14 15

Urine
Out-
put

less
than

10mls/hr

less
than

20mls/hr

less than
0.5ml/kg/hr

more than
0.5ml/kg/hr

Temp 35.0 or
below

38.0 or
above

Table 1.2.: The Track-and-Trigger scores for physiological variables as used in the ED at
the John Radcli�e Hospital, Oxford between 2008 and 2011. A total score of
4 or more, or a subscore of 3 in any category, was de�ned as a `critical' score
that warranted a Trigger.

a trigger. A respiratory rate of 25-29 corresponds to a MEWS score of 2, which is not

enough to cause a trigger, unless another vital sign also contributes a score of 2. For

instance, this would occur if the heart rate was also between 111 and 129 beats/min.

Although such an aggregate scoring system was �rst described by Morgan [75], the

concept of combining information from di�erent parameters to evaluate a patient's con-

dition was already prevalent in intensive care scoring systems, for example the APACHE

III and SAPS II scores which are used to calculate the probability of in-ICU mortality

for populations of adult ICU patients. The APACHE III score [59] divides the range of

20 physiological variables, including the six vital sign observations, into sub-ranges using

�clinical judgement�. Each sub-range is then treated as a separate variable for the pur-

poses of logistic regression, which assigns a weight to each sub-range for each variable.

The SAPS II score [65], uses similar methods in an attempt to predict mortality in surgical

and medical patients.

The main advantage of the MEWS system is its ability to detect deterioration before

any single vital sign may be considered abnormal. This advantage was demonstrated by

10
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Systolic BP HR RR

JR, Oxford - ED (2011) [120] 180 130 30
ViEWS (2010) [90] 250 131 25

Hourihan [48] - 140 36
O�ner [79] - 131 25

Table 1.3.: A comparison of T&T criteria at di�erent hospitals, showing the maximum
values that Systolic Blood Pressure, Heart Rate, and Respiratory Rate are
allowed to take before a single-parameter Trigger is generated.

Goldhill [39], who showed that a MEWS system would have highlighted deterioration in

an example patient up to three days before an intervention took place. The patient was

admitted to ICU and died a short time after.

One of the weaknesses of the MEWS systems, as highlighted by Cuthbertson [25], is

that the thresholds used to convert the vital sign observations into sub-scores are solely

based on expert opinion. Table 1.3 shows the upper threshold required to generate a

critical score (score of 3) for Systolic BP, HR, and RR for various MEWS schemes.

1.3.4. Methods for Evaluating Early Warning Scores

Retrospective Analysis

Early Warning Scores can be evaluated retrospectively by relating a clinical outcome to

the EWS score. This can be achieved by recognising that the goal of the EWS system

is twofold: �rstly, it must alert nursing sta� to the need for clinical intervention, that

is, it should correctly identify all events when patients are in a serious condition. Such

events in this context are labelled as �true positives�. Conversely, the EWS system must

also correctly recognise when a patient's condition does not give rise to concern, and the

number of �true negatives� should be maximised.

On the other hand, the number of �false positives�, instances when the system detects

patient deterioration, but the independent test shows this not to be the case, must be

minimised. These false alerts will waste clinicians' time and can leave nursing sta� de-

sensitised to the occurrence of real deterioration. Similarly, instances when a patient is

falsely classi�ed as having no physiological problem could lead to delayed intervention,

allowing more serious deterioration to occur, and should therefore also be minimised.

The classi�cation information can be summarised in a 2x2 confusion matrix (Figure
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actual value = positive actual value = negative

predicted value = positive true positive false positive
predicted value = negative false negative true negative

Table 1.4.: Confusion matrix for ROC analysis

1.4) [58]. We can determine the sensitivity, which is the ratio:

sensitivity =
true positives

true positives+ false negatives
(1.3.1)

and represents how good the system is at detecting deteriorating patients, irrespective

of the number of false positives; and the speci�city, which is the ratio:

specificity =
true negatives

true negatives+ false positives
(1.3.2)

For a system with high speci�city, we can have high con�dence that any event labelled

positive will be a true event.

We can also determine other statistics such as the positive predictive value (PPV) which

is the probability that a positive test result will be correct, and the negative predictive

value (NPV), which is the probability that a negative test is correct.

The calculated sensitivity and speci�city can only be understood with respect to the

outcome markers for the test, that is, the criterion for a �true� event. In a clinical setting,

collecting event markers may be di�cult when the aim is to identify an outcome as broad

and di�use as �deterioration�. For this reason, many authors may use a clearly de�ned

measure such as mortality at 30 days after admission to the hospital. One drawback of

this approach is that di�erent choices of outcome markers may lead to vastly di�erent

sensitivities and speci�cities. Furthermore, the di�erent outcome measures mean that it

is often not possible to compare the sensitivities and speci�cities from di�erent studies.

Receiver-Operator Characteristic (ROC) analysis [73] allows us to investigate the e�ect

of changing the value of one or more of the parameter thresholds; for example, we may

wish to investigate the e�ect of varying the threshold value for the calling criterion for

heart rate on the frequency of escalation of care and the eventual patient outcome. This

is known as a change in operating point in ROC analysis, and will cause a change in the

sensitivity and speci�city. The e�ect of changing the operating point can be shown on an

12



1. Review of Vital Sign Monitoring Systems in the Hospital Emergency Department

ROC curve, which plots sensitivity against (1-speci�city) as the operating point is varied.

The overall performance of a system is typically measured as the area under the ROC

curve (AUROC), where an AUROC of 1 is optimal, and an AUROC of 0.5 is no better

than a random guess. The optimal operating point, if false positives and false negatives

are both valued equally, can be found by minimising the cost function:

C = (1− sensitivity) + (specificity)

This is equivalent to �nding the point on the ROC curve that is tangential to the line

with a gradient of one closest to the point [0,1], as shown in Figure 1.3.2. If the relative

importance of false positives and false negatives is known a priori, then the optimal

operating point is found by minimising the more general cost function:

C = ν(1− sensitivity) + (1− ν)(specificity)

where ν is the cost of a false negative. Alternatively, an optimal operating point may

be de�ned by setting a minimum allowable sensitivity or speci�city. These are also shown

in Figure 1.3.2.

Before-and-After Study

The e�ectiveness of the Early Warning Scores may be evaluated prospectively by docu-

menting improvements in patient outcomes in a before-and-after study. Typical outcome

markers include hospital length of stay, in-hospital mortality rate, and hospital readmis-

sion rates. These give a broad indication of whether the introduction of the EWS system

has a positive e�ect on the management of the patient within the hospital. In the, �before�,

phase, standard care is administered, and the data collected were used as the baseline.

During the second phase, the new EWS system is implemented and results are compared

to the �before� data. The major disadvantage of this type of trial is that it is very di�cult

to ensure that no other factors contribute to the observed changes. For instance, mor-

tality rate shows clear seasonal variations. In addition, before-and-after trials are prone

to the Hawthorne e�ect, whereby the improvements can be attributed to changes in sta�

behaviour (such as increased alertness) as a result of their awareness that they are part
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tangential to black dashed line,

which has a gradient of 1.

Figure 1.3.2.: An example of an ROC curve, showing how the operating point can be
selected according to a minimum sensitivity, minimum speci�city, or user-
de�ned cost function.

of a trial.

Randomised Controlled Trials

The shortcomings of the before-and-after methodology are addressed by a Randomised

Controlled Trial (RCT) design, which is a prospective study design that is commonly

considered to be the most reliable form of scienti�c evidence. In a randomised controlled

trial, patients are randomly allocated into one of two groups. In the �intervention� group

the patients are managed using the EWS system, whilst the �control� group patients are

given standard care. In some situations, such as drug testing, it may be appropriate to

provide a placebo to the control group. Every e�ort is made to ensure that all other

treatment of the two groups is as similar as possible.

1.3.5. Evidence-Based Early Warning Scores

To deal with Cuthbertson's criticism that EWS systems are generated heuristically, Pry-

therch et al. [90] have produced an evidence-based MEWS score called ViEWS. Their
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Figure 1.3.3.: Acutely ill patients can broadly be split into three classes: Class A - those
who cannot be saved regardless of intervention, Class B - those who may
be saved with appropriate intervention. Class C - those who require no
intervention. We can consider both Class A and Class B as those contain-
ing the �abnormal� physiology, which we would like to detect. However, the
division between Classes A-C is unknown at the time of the vital sign obser-
vation. In conventional supervised methods, some proxy, such as mortality
at interval T is used to estimate the �abnormal� physiology. Such a system
would detect all of those in class A, and the proportion β from Class B,
but would misclassify the proportion γ, who had been �abnormal�, but had
later been redeemed by clinical intervention.

scoring system was assessed on vital sign observations collected from a hospital over a

two-year period, and the best scoring system was chosen through �an iterative, pragmatic

`trial and error' process�, in which each potential system was ranked using the AUROC

based on patient mortality at 24 hours. The number of graduations for each vital sign

was selected empirically, in keeping with current practice of assigning an integer score for

each parameter between zero and three.

A hard outcome such as the 24-hour mortality was chosen due to the di�culty in

de�ning �deterioration�. However, there are also problems with this approach.

In practice, we may consider there to be three classes of acutely-ill patient on a ward:

A.) those who have �abnormal physiology� and will die within 24 hours regardless of

intervention, B.) those who have �abnormal physiology� but whose outcome is dependent

on intervention, C.) those who have �normal physiology� and will be alive after 24 hours

regardless of intervention (Figure 1.3.3). The critical objective of clinical care is to identify

and provide clinical treatment for patients in class B so that their eventual outcome is

improved. The ideal vital sign monitoring system will therefore detect patients from class

B as well as class A. However, at the time of observation, the division of patients between

the three classes is not known, so no ideal threshold can be determined easily.

The key problem of using the proxy of �alive at N days� to represent all patients with
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�normal physiology� (and similarly, �dead at N days� as those with �abnormal physiology�),

is that there is a signi�cant time delay between the time of the vital sign observations and

the time of the outcome. During this period, patients are cared for by the nursing sta�,

so that a patient who initially was deteriorating is �alive at N days� as a result of clinical

intervention. The delayed outcome approach wrongly implies that clinical intervention

during the 24 hours after vital sign observation makes no di�erence to the �nal outcome.

The consequence of this is that all patients who had abnormal physiology at the time of

the observations, but did not die, will be incorrectly classi�ed.

We can demonstrate this more clearly using the criterion of 30-day mortality. Consider

a patient that arrives at hospital with seriously abnormal physiology such that, without

timely clinical intervention, we assume that the patient will continue to deteriorate which

will lead to death. However, in this instance, the abnormal physiology is detected by

clinical sta�, and the patient leaves the hospital in a �t state and alive at 30 days from

admission. In this highly plausible scenario, the abnormal physiology of the patient on

arrival would be incorrectly associated with �normal physiology� as a result of the positive

patient outcome (group labelled γ in Figure 1.3.3).

In response to this, Tarassenko et al. [109] have developed an alternative evidence-based

MEWS scoring system using the vital sign data previously recorded by clinical trials of

monitoring adult high-risk in-hospital patients. The distributions of each vital sign are

�rst plotted, and Track and Trigger subscores are then assigned according to the 10th

(90th), 5th (95th), or 1st (99th) centiles of the cumulative distribution functions of the

corresponding vital signs. The system has since been introduced throughout the John

Radcli�e hospital, Oxford.

1.3.6. Evaluation of Single Parameter EWS Systems

Retrospective Analysis

A number of studies use an ROC analysis approach to link the use of the EWS score

system to patient outcome. Cretikos et al. [23] conducted a study in seven Australian

public hospitals, which used 11 modi�ed sets of EWS criteria, and unexpected deaths,

unplanned ICU admissions and unexpected cardiac arrests as the outcomes. The di�erent
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EWS criteria had sensitivities between 49.1 and 71%, and speci�cities between 86.0 and

96.0%. Sensitivity decreased as the threshold for individual vital signs were set to more

extreme values. Using this analysis, Cretikos et al. selected an �optimal EWS system�,

with a PPV of 15.7%, at a sensitivity of 53.6%, which indicates that an extremely high

proportion, 84%, of patients who would trigger using this system would nevertheless not

go on to have an adverse event.

Jacques et al. [53] assessed the association of 26 �early signs� and 21 �late signs� of

severe adverse events (death, cardiac arrest, severe respiratory problem and transfer to

critical care area) for 4617 patients. The �late signs� included 8 vital sign thresholds that

comprise the single-parameter EWS system shown in Table 1.1, whereas the �early signs�

included the same vital signs at less-acute values. The results showed that only 0.5% of

patients had late signs alone, indicating that the EWS thresholds may not be sensitive

enough for detecting early signs of deterioration [53]. Instead, they recommend using

broader thresholds in their �early signs� so that extra attention is given to less severe

derangements of physiology.

Before and After Studies

Bell describes a study at a Scandinavian teaching hospital in which the early-warning

scores were calculated by a team of researchers and reported to the senior nurse if a

trigger criterion was met [8]. In the study, three scores were used, a locally-standard

score, an extended score that triggered at less extreme values, and a restricted score,

which triggered at more extreme values. The study assessed these scores using patient

mortality at 30 days, and it was discovered that the restricted score reduced the sensitivity

signi�cantly, thereby missing some of the deteriorating patients. This suggests that the

locally-standard EWS thresholds were set at approximately the correct values.

Ball [6] reports on the e�ect of introducing an EWS and corresponding CCO team

at the Royal Free Hampstead NHS trust, which led to a signi�cant increase in patient

survival rates and a decrease in hospital readmission rates from 7.4% to 4.8% for patients

who had been admitted to the critical care �oor. The author notes that some of the

improvement in this before-and-after study may be attributed to the introduction of other

17



1. Review of Vital Sign Monitoring Systems in the Hospital Emergency Department

initiatives during the study period, including improving follow-up services after patients

were discharged from hospital. An increase in survival rate was also demonstrated by

Jones et al., who conducted a study that showed a 5% decrease in patient mortality at

1500 days, even after confounding factors had been taken into account [55].

Positive results are also reported by Rothschild et al. [93] and Buist et al. [16].

Rothschild et al. used a single-parameter based EWS system to detect deterioration in

medical patients at an academic medical centre. In their study, the alerting threshold was

exceeded in 60.8% of cases for patients who were later transferred to ICU, and triggers

caused by high respiratory rates (tachypnoea) were strongly associated with future adverse

events. Buist et al. reported a decrease in the incidence of unexpected cardiac arrest at a

tertiary referral teaching hospital from 3.77 to 2.05 per 1000 admissions during a before-

and-after study with two 12-month phases.

1.3.7. Evaluation of Multi-Parameter Early Warning Scores

Retrospective Analysis

In clinical practice there have been mixed results when Track-and-Trigger systems have

been implemented, as reported in a 2007 Cochrane Review [71].

Gardner-Thorpe et al. [37] conducted an observational study to test the value of MEWS

in identifying deterioration in surgical unit in-patients by observing how many patients

were transferred to a critical care facility. The speci�city and sensitivity at the optimum

MEWS threshold were 83% and 75% respectively, and the researchers concluded that the

MEWS system should be implemented for all surgical in-patients.

The EWS system proposed by Duckitt [27], known as the Worthing physiological scoring

system (WPSS), used multivariate logistic regression to identify the strength of association

between each vital sign and an increase in mortality rate, and then designed the system

using the most important vital signs. In testing, the WPSS had a sensitivity and speci�city

of 0.63 and 0.72 respectively, compared to 0.60 and 0.67 for the original MEWS.
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Before and After Studies

A number of studies reported a marked reduction in mortality and morbidity associated

with the seriously ill and those at risk from cardiac arrest when using MEWS systems.

For example, Garcea et al. [35] conducted a retrospective review of discharge data before

and after the introduction of a Track and Trigger system with MEWS criteria. In the

post-outreach period, in-hospital mortality and 30-day mortality were reduced for patients

who had been readmitted to critical care, allowing them to conclude that the system had

a positive overall impact. Priestley et al. have also shown, for 16 adult wards in a

ward-randomised trial, that there was a statistically signi�cant reduction of in-hospital

mortality in wards for which a Track-and-Trigger was in use, when compared with those

for which there was no such system in use [88]. Pittard assesses the use of MEWS in

practice, and showed a reduction in unexpected ICU admissions, with a better outcome

for the emergency patients [86].

Furthermore, Stenhouse et al. conclude that the introduction of a Track-and-Trigger

system with MEWS scores in normal wards appears to lead to earlier detection of dete-

rioration, as determined by the lower APACHE score of patients subsequently entering

ICU [103].

Subbe [106] assesses the ability of MEWS to identify catastrophic deterioration during

a patient's stay in an acute Medical Admissions Unit by calculating the maximum score

during the stay, and showing that scores of 5 or more are associated with increased risk

of death and Intensive Care Unit (ICU) admission. A second before-and-after study by

Subbe [104] showed no discernible di�erence in outcome when using a MEWS system,

and in particular that there were no changes in clinical outcomes for patients who had

MEWS scores greater than four. Similarly, Leary et al. examined readmissions to critical

care before and after the introduction of a Track-and-trigger system [66]. They did not

detect any signi�cant changes in the number of readmissions or the cause of readmissions

between the two phases of the study.
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Randomised Controlled Trials

The design of the previous trials has been questioned by Smith and Nolan [99], who

noted that they were all before-and-after studies in which sta� education may explain

the observed improvement in care. In the largest example of a multi-centre study, a ran-

domised control trial conducted by the Medical Early Response Intervention and Therapy

(MERIT) investigators showed no improvement when tracking using MEWS was used in

conjunction with the triggering of specialist Medical Emergency Teams in a standard ward

setting [45].

ED studies

Very few Track-and-Trigger system evaluation studies have been conducted in the ED.

It appears only one study has been conducted that analyses its use in monitoring and

detecting deteriorating patients. In a study by Lam et al. [61], the researchers demon-

strated that a MEWS scoring system was able to identify patients at risk of deterioration.

They showed that high EWS scores were associated with increased risk of death, ICU

admission and hospital admission on a 16-bed emergency department observation ward.

Burch et al. [17] also used the MEWS criteria in an ED setting, but instead used the

scoring system as a proxy for the Manchester Triage score, showing that the proportion of

patients admitted to hospital increased signi�cantly as the MEWS score increased. They

conclude that MEWS may be used as a rapid, simple triage method which agrees with

similar work by Vorwerk et al. [116].

1.3.8. Overall Review

A recent evaluation of single-parameter EWS systems was conducted by Smith et al. to

accurately compare the di�erent types of EWS in the literature [101]. In their study,

they used a data set of 10,051 vital sign observations recorded from May to December

2006 on adult patients at the time of patient admission to a hospital medical assessment

unit (MAU). Using the data, they tried to determine how e�ective each EWS would be

in predicting patient mortality at discharge by calculating the sensitivity and speci�city

of each EWS score. The results showed that all single-parameter EWS systems had low
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sensitivities and positive predictive values, which indicates that the scores were unable

to identify patients at risk of imminent in-hospital death using a single set of vital signs

observations recorded on admission to a ward.

De Pennington et al. compared two multi-parameter EWS systems to a single parame-

ter EWS system, using vital sign data from a Medical Admissions Unit, and assessed each

scoring system's ability to classify patient death or admission to ICU [84]. They showed

that both of the multi-parameter MEWS had better sensitivity than the single parameter

EWS system, concluding that multi-parameter systems should be used to identify dete-

riorating patients. Subbe et al. [107] also conclude that multi-parameter EWS systems

are more e�ective than single-parameter systems at detecting ED patients who are later

transferred to ICU. Of the 100 patients admitted to the ICU, the single parameter crite-

ria was found to have no additional value in comparison to the Manchester Triage Score

preliminary assessment, while the Modi�ed Early Warning Score identi�ed an additional

seven patients.

Many of the di�erent MEWS systems were reviewed by Smith et al. [100], who evaluated

33 such systems on the Portsmouth data set, comparing their ability to discriminate

between survivors and non-survivors of hospital admission. The most e�ective systems at

predicting mortality at discharge, as determined by the AUROC curve, were found to be

those that included the patient's age and temperature.

A systematic review of early warning scores conducted by Gao et al. [34] concluded

that all the di�erent MEWS criteria had �little evidence of reliability, validity and utility�.

The sensitivity of the systems was poor, and it was suggested that this might be due to

the recording of the incorrect physiological parameters, or else due to a poor choice of

trigger threshold.

The reason for such contrasting results may be explained by how well the Track-and-

Trigger systems are implemented in practice. The MERIT study hinted at this by con-

cluding that �monitoring, documentation and response to changes in vital sign were not

adequate� and Buist [15] explicitly notes that retrospective inspections of the MERIT

data highlighted many instances where the MEWS criteria had been ful�lled, but a re-

sponse had not been triggered. This suggestion is given further credence by the results of
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a study by Prytherch et al. [89], who suggest that the MEWS score is often being calcu-

lated inaccurately by ward sta�. In a classroom exercise, MEWS scores were calculated

for a data set of 2607 vital sign observations recorded at the Medical Assessment Unit

of Queen Alexandra Hospital, Portsmouth. Of these, 2.5% contained scores that should

have triggered an alert, but had been miscalculated.

Smith and Oakey [98] have also shown that in a clinical ward setting in a medium-sized

general hospital, MEWS scores were incorrectly calculated 21.9% of the time. Of these,

patients with abnormal vital signs were most likely to be mis-scored, and the scores were

commonly underestimated, so a large number of patients who should have exceeded the

alerting threshold did not. Edwards et al's [29] recent four ward prospective study concurs

with this assessment, showing again that MEWS scores are often underestimated and that

paper-based MEWS systems are unreliable for triggering timely medical reviews. The

reason for the incorrect scoring may simply be due to insu�cient training, as suggested

by Lawson et al. [64], and various authors [16, 55, 97] have noted the importance of

e�ective training prior to introducing a track and trigger system. Alternatively, Subbe

and Gao [105] hint at the possibility that the complexity of the MEWS scoring chart

itself causes errors, showing that inter- and intra-rater reliability was lower for multiple

parameter scores than for single parameter warning scores.

Overall, the weight of evidence in the literature suggests that Track-and-Trigger systems

that use MEWS criteria are a useful tool when implemented correctly. However, the vastly

varying results reported in di�erent studies suggest either that Track-and-Trigger systems

have varying e�ectiveness depending on the type of patients being monitored, or that the

systems are being applied inconsistently. This second reason is considered to be very likely,

and in many of the studies where no improvement was found, the researchers hinted at

possible problems with the practical implementation of Track-and-Trigger, rather than

problems with the system per se.

1.4. Continuous Monitoring

Patients in the Majors or Resus sections of the ED commonly have their vital signs

monitored continuously through the use of integrated bedside monitors. We now discuss
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Figure 1.4.1.: An ideal ECG waveform. The diagram indicates the period between con-
secutive R-peaks in the signal, and the HR can be derived from the average
of tRR over several heart beat cycles.

how each of the vital sign parameters can be monitored electronically, and then how the

information from each of the vital sign channels can be used within intelligent monitoring

systems.

Heart Rate and Respiratory Rate

Heart rate is typically measured by using three or more Electrocardiogram (ECG) chest

electrodes to record the ECG waveform from one or two leads. The heart rate can then

be derived from the waveform by calculating the time between consecutive R-peaks (see

Figure 1.4.1) [114]. The Respiratory rate is derived using impedance pneumography [82],

which measures the electrical impedance between two of the ECG electrodes at a frequency

between 10kHz and 100kHz. The impedance increases as the patient inhales due mainly

to the increased resistivity of the air-�lled lungs but also because of changes in the volume

of the chest cavity.
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Blood Pressure

Blood pressure varies with the contractions of the heart muscles. Blood pressure is

recorded using two parameters, the Systolic (SBP) and Diastolic (DBP) blood pressure.

The systolic blood pressure is the highest value, corresponding to the time at which

the heart's ventricles contract, whereas the diastolic blood pressure is the lowest value,

recorded during the lull between contractions. Manual observations of the blood pressure

are made by in�ating a blood pressure cu� around the upper arm in order to occlude

blood �ow. The cu� is gradually de�ated, and the SBP and DBP can be derived by

listening for the presence of so-called Korotko� sounds [85].

Automatic measurement of the blood pressure is typically measured using oscillometry

[85]. The blood pressure cu� is automatically in�ated to occlude blood �ow in the upper

arm, and slowly de�ated. This time, however, oscillations in the cu� pressure caused by

oscillations in the blood �ow are used to determine the Mean Arterial Pressure (MAP).

The blood pressure is equal to the MAP when the cu� pressure oscillations are at a

maximum. The SBP and DBP values are then derived heuristically from the MAP when

the amplitudes of the oscillations reach a set fraction of the oscillation amplitude of the

MAP.

Oxygen Saturation

Oxygen saturation is a measure of the oxyhaemoglobin (that is, oxygenated haemoglobin)

in the bloodstream, and is reported as a percentage of the total haemoglobin. Typically,

a range of 95% to 100% oxygen saturation is considered to be normal . Peripheral arterial

oxygen saturation is measured using a pulse oximeter attached to the patient's �nger. The

oximeter contains two LEDs, usually at wavelengths of 660nm (red light), and 910nm (in-

frared light), and a photo-diode. The absorption of light at these wavelengths di�ers for

oxygenated and deoxygenated blood due to the di�erent absorption coe�cients for oxy-

haemoglobin and reduced haemoglobin, hence the oxygen saturation can be determined

[60].
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Temperature

In clinical practice, core body temperature is measured using a tympanic, rectal, or oral

thermometer. It is not possible to obtain continuous measurements of core body temper-

ature with these techniques. Instead, the studies described in this thesis initially used

thermistors applied to the skin as a proxy for core temperature. In order to minimise the

e�ect of the ambient conditions, the thermistors are secured with an adhesive under the

blood pressure cu�. This precaution both shields the sensor and helps to maintain �rm

contact with the skin.

1.4.1. Continuous Monitoring Systems

Bedside monitors are designed to generate an audible alert when a patient is deemed to

su�er from physiological deterioration. In the simplest case, single-channel alerts can be

set for each vital sign, so that the bedside monitor will alert when any one of the vital

signs is outside of a set range. These single-channel systems are particularly prone to

producing false alerts, and Tsien and Fackler [115] showed that approximately 86% of

alerts from a bedside monitor in an ICU setting were false alerts.

Intelligent monitoring can be achieved by combining information from multiple vital

sign channels - this process is known as data fusion. The output from a data fusion

algorithm can then be used to generate alerts that may provide a truer indication of

the overall patient's condition, and may also be less prone to false alerts. Most of the

data fusion techniques described in the literature have been designed for the ICU where

continuous monitoring is standard, but the techniques may also be applied to acute wards

outside the ICU.

Oberli et al. propose an expert systems approach to the data fusion problem [78]. An

expert, or knowledge-based system is one that uses a direct encoding of human knowledge

to help solve complex problems. In Oberli's system, the vital signs are �rst converted into

a set of quantitative classes which describe a physiological condition, such as �bradycardia�

or �normal heart rate�, based on training information given by a set of clinicians. The

classes overlap and are described using fuzzy logic, so it is possible to be �somewhat

bradycardic�. After this, a patient diagnosis can be arrived at by following a set of logical
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rules derived from expert knowledge. For instance, if asystole AND extreme hypotension

were present AND no pulse detected, the patient would be classi�ed as having a cardiac

arrest. In this way, the system provides both an alert for patient deterioration and a

preliminary diagnosis. For 70.5 hours of continuous vital sign data, alerts triggered by

the system were classi�ed as true-positive, false-positive or false-negative by two observers,

from which they calculated a false alert rate of less than 1%, and a sensitivity of 92%.

Schoenberg et al. use expert knowledge di�erently [96]. In their scheme, a customisable

�logic engine� is designed, which is able to interpret information from multiple single-

channel vital sign monitors. The purpose of the system is to �lter out clinically insignif-

icant results. The system works by analysing a set of user-de�ned features that can be

extracted from the raw vital signs. For instance, this may include the change in average

heart rate between the current minute and the three previous minutes. Thresholds are set

for each feature, based on expert advice, and a feature is assigned a score if it exceeds the

threshold value. The sum of the scores is then compared to a critical total, which triggers

an alert if exceeded. The aggregate scoring system has many similarities to MEWS sys-

tems, and this technique can be considered as an automated generalised scoring system.

During tests on 120 hours of ICU data, the logic engine had a positive predictive value of

32% compared to 3% for standard monitors.

Data fusion techniques can also be used to analyse trends in continuous data. Char-

bonnier and Gentil have attempted to incorporate historical data into an alert system by

making use of trend analysis [20]. In their system, each parameter is converted into a

semi-quantitative temporal feature. Typically, the features are {Increasing, Decreasing,

Steady}, and the quantitative data are the start and end time of the event, as well as the

start and end value of the vital sign parameter. In order to make best use of the data,

the trend features are aggregated to form the longest possible episode. A set of rules is

used to accomplish this task. The extended features can then be used in a rule-based

system that triggers alerts when the trend is persistent and severe. The system can also

be trained to recognise artefactual events, and tests using this scheme in an ICU resulted

in a 33% reduction in false alerts, without missing any clinically relevant events.

Temporal information can also be used to detect artefactual readings and reduce the
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number of false alerts. Hoare and Beatty analyse the time series for a set of physiological

features, and attempt to predict the next values [47]. A new data point can then be

classed as artefactual if its value is outside a predetermined range. Williams et al. extend

this work, tackling the problem of infant monitoring immediately after birth by using a

Factorial Switching Kalman Filter (FSKF) to model vital sign data in neonatal intensive

care [118] . A Kalman �lter is a recursive �lter that calculates the optimum estimates of

process variables in the presence of noise. The FSKF extends this by allowing the �lter

to use di�erent linear dynamic models that are selected by a switch variable, allowing

�normal� and �artefactual� conditions to be modelled.

The switch variable itself changes depending on a number of individual factors such

as the presence of bradycardia, or recognition of a probe disconnection. Given a set of

observations, the FSKF is then used to calculate the most likely switching state. By

establishing which factors activate the switch, the speci�c cause of the artefact and an

estimate of the true value of the observed data can be computed. In testing on eight

28-week old infants, a total of nine parameters were monitored. Results were presented

showing examples in which the start and end times of speci�c physiological conditions

were accurately detected.

Few attempts have been made to create personalised models that cater for di�erences in

physiology caused by factors such as age, lifestyle or diet. Zhang proposed a personalised

model that attempts to increase the alert speci�city by automatically tuning alert thresh-

olds on a per-patient basis [121]. In his study, both neural networks and classi�cation

trees were tested and used to generate personalised alert thresholds. From these, neural

networks performed consistently better. Typically, the system required eight hours of

data, and the performance improved as the length of training data increased. Overall, the

algorithm had a sensitivity of 0.96 and a speci�city of 0.99. Although the performance of

the model appears to be excellent, we note that the metrics are particularly sensitive to

the way in which positive and negative events were de�ned.
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1.5. Thesis Overview

In response to the NICE guidance [31], the Oxford Radcli�e Hospitals Trust carried out

a review of the available scoring systems and after development work formally adopted

in 2008 a hospital-wide Track-and-Trigger (T&T) system. The system makes use of a

MEWS score that will be referred to as a T&T score. This was introduced into the John

Radcli�e (JR) Hospital ED for all adult patients with the aim of providing a standardised

system to detect patient deterioration and to provide continuity from the ED through to

the wards.

The e�ectiveness of the T&T system at the John Radcli�e Hospital ED has not pre-

viously been tested. More generally, very little information has been gathered about the

e�ectiveness of T&T in the ED context. In response, a single centre observational cohort

study was conducted in the emergency department. The study was conducted with the

approval of the UK National Research Ethics Service, reference number 08/H1307/56.

During the study, the vital signs and T&T scores were collected, as recorded on nurses'

observation charts. In addition to this, continuous vital sign data were acquired from

bedside monitors. In order to achieve clinically relevant conclusions, demographic data

were recorded for each patient, including their age, gender, diagnosis, whether they were

admitted to the hospital. Any important clinical events during their stay on the ward

were also noted.

In the following chapters, we describe in greater detail how the vital sign data were

collected in the ED, and then how the T&T chart was analysed in such a way as to

minimise the number of transcription errors. We then investigate the e�ectiveness of

the T&T system within an ED setting, by examining whether the practical problems in

recording observations that result in incorrect T&T scores are exacerbated in the fast-

paced ED environment in comparison to other hospital wards. After establishing the

limitations of the current system, a further analysis will be performed to quantify the

extent of errors made when calculating a T&T score.

To relate the T&T errors to clinical outcomes, we will use information about the impor-

tant clinical events that occurred during each patient's stay. This will allow us to quantify

the e�ect of incorrect score calculations on patient outcome. In conjunction with this, we
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will retrospectively calculate a computer-generated T&T score directly from the patient

observations, a process which will eliminate some of the T&T errors. Using a novel analy-

sis framework described in Chapter 2.5, it will then be possible to work out the sensitivity

and speci�city of both the manual and computer-aided systems. By selecting the more

accurate system, we will then consider how improvements in vital sign monitoring can be

made in the ED.

In addition to improving the way T&T is used on the ward, a major aspect of this thesis

is an investigation of how continuous data may be used to detect patient deterioration

in the Majors and Resus areas of the ED. By using continuous vital sign data collected

during the same study, it will also be shown how the T&T score criteria could be applied

continuously in order to detect patient deterioration in real-time, between nurse observa-

tions. The advantages of the continuous system will then be quanti�ed by comparing it

to the manually-scored system.

In order to create more robust measures of patient deterioration, we investigate alterna-

tive methods to the existing T&T systems using continuous vital sign data. An existing

baseline data fusion model [111] will be introduced and applied to the ED study data set.

A number of alternative methods will also be investigated, and the e�ectiveness of each

system will be compared to the continuous and manual T&T systems. The system with

the best performance will then be optimised for use within the ED.

The �nal part of this thesis is concerned with further improving data fusion models by

taking into account time dependencies within the data. A time series analysis method

known as Gaussian processes will be used to infer missing data and to predict a patient's

physiological status in the short-term, with the aim of allowing earlier detection of dete-

rioration. Finally, there will be a discussion on future directions that this research may

take. This will include an overview of how an electronic T&T system may be implemented

alongside an intelligent continuous monitoring system within the ED.
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Emergency Department

In Chapter 1, we highlighted how a typical Emergency Department (ED) was organised.

In particular, we described how management of patients in the more acute areas of the ED

included intermittent observations of the vital signs, which were then assessed with the

bene�t of a Modi�ed Early Warning Score within a so-called �Track and Trigger� (T&T)

system. Observations are �Tracked�, and an appropriate intervention can be immedi-

ately �Triggered� when certain criteria are met. In addition to intermittent observations,

patients in the Majors, Resus and CDU areas also had their vital signs continuously mon-

itored using a bedside monitor. Typically, an audible alert is generated when any of the

vital signs crosses a pre-set threshold.

This chapter describes a single-centre prospective study in which both intermittent ob-

servations and continuously monitored vital sign data were acquired from an ED at a local

hospital. Initially, we describe how the data were collected, and then proceed to explain

how the data from three disparate sources were processed to provide an error-checked

database containing continuous vital signs, nurse observations, and patient demographics

for each of the patients.

The analysis that follows focuses on the manual observations and T&T scores; analysis

of the continuous vital signs will be addressed in future chapters. In this chapter, we �rstly

examine how well the observations and scores are recorded on the observation chart. We

expect these manually recorded observations to be imperfect as they are recorded by

nursing sta� in a high pressure environment, and our analysis will quantify the number

of errors and attempt to determine the cause of the errors.

To count the number of errors, some measure of �ground truth� is required. �Ground
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truth� was generated by calculating a retrospective error-free version of the T&T score by

directly computing the score using the ED T&T scoring chart previously shown in Table

1.2. By using this chart, T&T scores were also generated for sets of observations that

had not been assigned a T&T score while the patient was in the ED. In this case, if one

of the observation parameters was missing from a set of observations, no T&T score was

assigned for that parameter, but a total score was still calculated.

In the second half of the analysis, which is presented in Section 2.6, we investigate

whether T&T scores can identify or predict deterioration within the ED. As we have

already discussed, deterioration of a patient is di�cult to assess, and the most obvious

metrics, such as mortality at 30 days, are inadequate as the patient only stays in the ED,

on average, for four hours. Instead, we chose escalation of care as our outcome marker,

which we de�ne as any documented event requiring intervention from clinical sta� and

include all the actions that may be triggered when the T&T alert threshold is exceeded.

Each patient can therefore have multiple escalations.

The escalations of care are classi�ed as one of six types: A1, A2, B1, B2, C1, and C2.

Type 1 escalations are those that are caused by events that occur at presentation to, or

prior to arrival in, the ED, whereas Type 2 escalations are those due to patient deterio-

ration during their time in the ED. Type A escalations are due to abnormalities in the

vital signs; type B relate to neurological dysfunction as determined by the Glasgow Coma

Scale (GCS) score and by other factors recorded in the clinical record (e.g., epilepsy),

and escalations that are neither type A or B are classi�ed as type C. For example, a

type C escalation is deemed to have occurred if a patient complains to sta� of chest pain,

a possible indication of myocardial infarction, which warrants some type of intervention

despite the lack of any physiological signs at the time. The T&T criteria include the

physiological vital signs, and a measure of neurological function, and should therefore be

able to identify type A and type B escalation events.

The e�ectiveness of the retrospective T&T scores at identifying escalation events will

also be assessed, and the results will be compared to the manual T&T scores.
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2.1. The ED Study

The study had no direct e�ect on patient care, and participants in the study were cared

for using standard hospital procedures. The study was approved by the Central O�ce of

Research Ethics Committees (COREC), and funded by the National Institute for Health

Research (NIHR) Biomedical Research Centre, Oxford.

All adults entering one of three areas, the Resuscitation Room (Resus), Majors, or the

Clinical Decision Unit, of the ED were eligible for inclusion in the study. Participants

were selected for inclusion in the study if the last digit of their randomly allocated seven-

digit hospital number was either `0', `5' or `7'. This was performed to limit the number of

patients being monitored concurrently. Participants were excluded from the study if they

were under 18 years old, unable to tolerate vital-sign monitoring for any reason, unable to

understand English, did not consent to participate, or if they had fewer than three nurse

observations of their vital signs while they were in the ED. A minimum of three recorded

sets of vital-sign observations was deemed necessary a priori to reduce the in�uence of

spurious observations, and to allow trends in physiology to be examined.

Each patient eligible for the study was provided with an information lea�et and verbal

information about the study, and was then required to sign a release form before their

data could be stored and used. For patients lacking in capacity to consent, the next of

kin were asked to act on behalf of the patient, in line with the provisions of the Mental

Capacity Act (2005). In the event of a full patient recovery, further attempts were made

by the nursing sta� to gain written consent.

The nurse vital sign observation data were collected from each participant during their

stay in the ED, with the GCS score being used as the measure of consciousness. In

addition to these, the pupil dilation and urine output were also recorded when nursing

sta� considered it to be appropriate. The GCS is a scoring system that measures the

level of consciousness of a patient according to their response to visual, verbal, and motor

stimuli. These are assessed according to the criteria given in Table 2.1. The subscores are

summed so that the GCS takes a value between 3 and 15, with a fully comatose patient

scoring 3 and a fully alert patient scoring 15.

T&T scores were calculated by nursing sta� during their periodic observations, in keep-
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Eyes Verbal Motor

1 No eye opening No verbal response Makes no
movements

2 Eye opening in
response to painful

stimulus

Incomprehensible
sounds

Extension to painful
stimulus

3 Opens eyes in
response to verbal

command

Utters inappropriate
words

Abnormal �exion to
painful stimulus

4 Opens eyes
spontaneously

Confused,
disoriented

Flexion/ Withdrawal
to painful stimulus

5 Oriented, converses
normally

Localizes painful
stimulus

6 Obeys commands

Table 2.1.: Glasgow Coma Score criteria for the Eyes, Verbal, and Motor subscores (Teas-
dale and Murray [113])

ing with standard procedures using the scoring system of Table 1.2. Both the T&T scores

and the manually-recorded vital-sign data were written down on an observation chart,

which was collected after the patient was discharged. The clinical notes for each patient

were also collected at the end of their stay in the ED, so that the observed vital signs

could be linked retrospectively to a patient's clinical context.

Continuous measurements of RR, HR, SpO2 and temperature were recorded at a sam-

pling rate of 30 seconds. Intermittent measurements of BP were recorded at intervals

related to the condition of the patient. The most acute patients had BP recordings taken

every 5 minutes, whereas recordings were as infrequent as once per hour for patients

with less serious conditions. The data were collected using a Phillips Intellivue® bedside

monitor and then saved to a hospital data server.

A more detailed description of how the vital signs are recorded by the bedside monitors

can be found in Chapter 1. The modern Phillips monitors are also designed to consider

probe connectivity, and have speci�c alerts that indicate when probes are disconnected

or when the signal is erratic. In these instances, the corrupted vital sign data are not

output by the monitor, to the study server, until the probes are reattached. The time

after probe disconnection at which probe-o� alerts are generated is not documented in

the user manual, but these alerts were found generally to occur within 30 seconds for

continuously monitored variables except for blood pressure.
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We note that the measure of temperature initially used, skin temperature, is not typ-

ically recorded in standard care but was used in preference to core body temperature

because it is easier to monitor continuously. The skin temperature has an o�set with

respect to core body temperature, depending on peripheral perfusion.

The continuous vital sign measurements were displayed on the bedside monitors in real

time because they were part of standard care for the most acute patients and nursing sta�

were already familiar with the monitors prior to the start of the study. The data were

stored on a central Philips server, transferred to a local study server using a Health Level

7 (HL7) standard interface and then stored in an SQL database.

The study data were collected between January 2009 and January 2010. All patients

who attended the ED on more than one occasion during the study period were included as

separate episodes for the purpose of analysis. Over the study period, a small proportion

(13/476) of patients attended the ED on more than one occasion, accounting for 33

separate attendances.

In the �rst part of the study, which included the period from 15th January 2009 to 5th

May 2009, participants were enrolled into the study at any time of the day. However,

during the second part of the study, which included all dates between 1st September

2009 to 15th January 2010, only patients that attended the ED between 9am and 6pm

were enrolled due to changes in the working practices of the research nurses. No patient

data were recorded between May 10th and September 1st 2009 because of unavoidable

administrative and technical problems.

Data were collected with the aid of a team of three research nurses. The research nurses

were directly in charge of consenting patients to the study and entering the patient's hos-

pital number into a bedside monitor. Additionally, a senior clinical team consisting of

an ED nurse consultant, an ED consultant and an ED specialist registrar also assisted in

the study. The senior clinical team was responsible for analysing the hospital records for

each patient to determine whether an escalation event had occurred, and then assessing

the type of escalation. Both the research nurses and the senior clinical team were respon-

sible for creating electronic backups from the manual observation charts data and then

transcribing the data into one of two electronic databases.
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Figure 2.2.1.: Flowchart showing the reconciliation of manual observations and continuous
vital sign data into a single error-corrected database

As well as the two hospital-based teams, a university research team consisting of two

doctoral students and a post-doctoral researcher created the database infrastructure for

the study. Once database entry had been completed, the university research team also

reconciled the two databases to provide a single error-corrected database.

2.2. Data Reconciliation

The data collection process provided three sources of data: the observation charts, the

patient notes, and the continuous vital sign data from the Philips monitors. To cross-

correlate and analyse the disparate sources, it was �rst necessary to create an electronic

record of all the data, and to assign the continuous data to the study patients. The

process is shown in Figure 2.2.1 and described below.

Firstly, each individual observation from the paper observation charts was transcribed

into an electronic database. To minimise the number of transcription errors, every ob-

servation was transcribed into �red� and �blue� databases by two teams who worked

independently of each other, and each team was given the task of entering observations

into a single database only. The two teams were generated by randomly selecting a total

of three members from the research nurse team and the senior clinical team. The paper

observation charts were also scanned and saved for reference. In addition to the obser-

vation charts, selected anonymised clinical data (presenting complaint, triage category,
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location in ED, discharge destination) and demographics (age, gender, date and time of

ED attendance, and time of ED discharge) were also entered into both of the databases

by both the �red� and �blue� teams.

During the transcription process, the data for each study patient were anonymised to

conform to the ethics requirements. This was achieved by replacing the patient's name

and hospital ID with a 5-digit study ID that had a pre�x beginning �ED�. The study ID

was generated automatically and sequentially, so that the �rst patient consented to the

study had the ID �ED00001�, the second patient, �ED00002�, and so on. The study ID

was also written on the paper observation charts by the research nurses so that patient

notes could be recovered easily if required. The mapping between hospital ID and study

ID was kept in a separate �le that was not accessible to anyone apart from the research

nurses and the senior clinical team.

Secondly, the university research team checked red and blue databases for transcription

errors to provide a �nal reconciled database of the observation chart information. Any

vital sign values that di�ered between the two databases by an insigni�cant amount, as

determined by the senior clinical team, were attributed to di�culties in interpreting the

observation charts.

HR and BP were recorded graphically on the observation chart, on which each division

on the chart represents 10 beats/min or 10 mmHg. The divisions on the observation chart

are closely spaced physically, so that it is di�cult to determine the value of the observa-

tion if it is between divisions. Therefore, an error was considered to be insigni�cant if it

was less than to be less than 10 beats/min (bpm) and 10 mmHg for HR and BP respec-

tively. RR, temperature, and SpO2 are typically written numerically on the observation

chart. Consequently, the constraints were much more stringent on these observations: 1

respiration/min (rpm) for RR, 1oC for temperature and 1% for SpO2. If the vital sign

measurements were within these boundaries, the value recorded in the reconciled database

was computed as the mean of the values in the red and blue databases. This accounted

for 96.2% of the vital sign observations.

The remaining 3.8% of observations had discrepancies that were greater than the ac-

ceptable errors. These were independently checked by a member of the university research
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team, who manually examined the relevant scanned observation charts. In most cases,

this allowed the university researcher to select the correct value when the value in either

the red or blue database had been entered incorrectly. In the remaining cases, di�erences

in the red and blue databases occurred when the observations were illegible or ambigu-

ous. If a decision could not be reached satisfactorily after studying the charts, the vital

sign observation was discarded. The output of this process was an error-corrected set of

observations for each patient.

The third stage of the reconciliation process was to assign continuous vital sign data

from the Ingress server to the correct study patient. Each vital sign was stored with a date

stamp and the bed number from which the data were recorded. However, this stage of

the reconciliation process was non-trivial as speci�c patient identi�ers were not recorded

for the data set.

The solution of this problem required the patient admission and exit time information

from the reconciled database. In addition to this, another independent source of admission

and discharge time was acquired using an additional bedside database, in which times were

recorded from the computer's internal clock when the attending nurse pressed a button

to indicate the arrival or discharge of a patient. Using these admission and discharge

times, it was possible to estimate the start and end time of each vital sign record for each

study patient, as the admission and discharge times should approximately match with

periods of vital sign activity. In addition, this process allows us to con�rm which beds the

patient occupied. The relevant continuous vital sign data could then be extracted from

the Ingress server and displayed alongside the manual observations. The continuous data

were assigned to the patient if:

� Continuous data recording started and ended within 30 minutes of the admission

and discharge times

� There was a high degree of similarity (see below) between the continuous vital sign

values and the manual observations during the same period.

The �exible start and end times were required because the times recorded in the reconciled

database were often estimates that had been written down retrospectively, soon after

the patient had left the ED. The degree of similarity between manual and continuous
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observations was determined by expert review from a member of the university research

team. The reviewers were speci�cally told to look for instances when the blood pressure

values were the same in both data sets. This was a strong indication of a match, as the

manual observations of the systolic and diastolic BP values that were entered on the paper

T&T chart were usually the same as the values displayed on the Philips monitor, which

corresponded to the last in�ation of the blood pressure cu� prior to the nurse observations.

This process required extra care to ensure that data were correctly matched during

April and October, when daylight saving time changes a�ected the times recorded on the

T&T charts with respect to the Philips monitors and Ingress server, whose internal clocks

were set to go forward one hour at 1a.m. on 29th March 2009 and back one hour at 2a.m.

on 25th October 2009.

The process was further complicated by the fact that the Philips bedside monitors were

regularly serviced and then re-installed in a di�erent ED cubicle so that the bed from

which the continuous data had been collected was no longer clearly identi�able. To solve

this problem and to maximise the amount of matched continuous data, we adopted a

more thorough search strategy which involved reviewing the continuous vital sign data in

all the beds when it was suspected that monitor locations had been switched.

In addition to the continuous vital sign data and the observation data, the �nal data

set also contained the escalations of care for each patient and the error-free retrospective

T&T scores, which were both de�ned at the start of the chapter. These were identi�ed

using the clinical notes, according to the criteria which were also provided at the start of

this chapter. For each patient, the time and the cause of any escalations were assessed

independently by the ED consultant and ED nurse consultant from the senior clinical

team. Where disagreement arose, the third team member made an independent decision.

The error-free retrospective T&T scores were generated using the reconciled vital sign

observations, based on the JR T&T scoring criteria of Table 1.2

The completed data set contained vital sign observations, the corresponding T&T

scores, error-free retrospective T&T scores, continuous vital sign data, copies of the orig-

inal observation charts, and a list of the times and causes of escalations of care for each

study patient.
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Figure 2.3.1.: A consort diagram showing the patient inclusion for the ED study

2.3. Data Overview and Completion Rates

557 patients were recruited to the study, and 476 patients ful�lled the study inclusion

criteria. The breakdown of patients is shown in the consort diagram (Figure 2.3.1).

The mean age of the patients was 61 years (range 18-108, IQR 43-79), and the patient

demographics shown in Table 2.2 show that a valid representative sample of patients was

selected. The 53 patients excluded from the analysis for having fewer than three sets of

vital-sign observations were similar to the study group, but were less likely to be admitted

to hospital (46.7% admitted).

3025 sets of vital sign observations were recorded from the 476 study patients. Over

99% of patients had at least one full set of observations (HR,RR, BP and SpO2). GCS and

temperature were not considered as part of the �full set� as they are typically not indicated

to be recorded as frequently as the other observations if the parameters are within normal

limits. Despite this, 89% of patients also had their temperature and GCS recorded at

least once whilst in the ED. In the overwhelming majority of cases, the urine output and

pupil dilation were not recorded because they were deemed clinically irrelevant. These

measurements were therefore excluded from the analysis.

The histogram for the time between consecutive observations in the data set is shown

in Figure 2.3.2. The mean time between observations was 65 minutes. The longest time

between any two observations was 9.8 hours, for an elderly patient who had fallen and
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Gender 255 male (52%)
236 female (48%)

Age Range 18-99
Age mean (s.d.) 61 (21.8)

Initial Location of patients in ED Resus
Majors
CDU

Other (unspeci�ed bay in
CDU or Majors, Minors)

122
276
6
87

Admitted in hospital 290 (59%)
Discharged from hospital 201 (41%)
Of those discharged: GP follow up

Outpatient Department
No follow up

Left before/ refused
treatment

Died in department
Unknown

102
22
56
2

2
17

Table 2.2.: Patient Demographics for the ED study

Figure 2.3.2.: Histogram showing the time between consecutive nurse observations (in-
cluding CDU patients)
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had minor bruising. He was kept in the CDU overnight, but regular observations during

the night were not deemed necessary. If patients in CDU are excluded, the maximum

time between observations decreased to 5.4 hours.

The spikes in the histogram correspond to 15, 30, 60, 90 and 120 minutes between

observations. This matches the expected observation frequency in the ED, where patients

are observed every hour in the Majors area if vital signs are normal, and at 30 and 15

minute intervals when the T&T score is greater or equal to 2.

Of the 3025 sets of vital signs, only 1037 (34.3%) had corresponding T&T scores, and

T&T scores were recorded at least once for just 60.3% of the study patients during their

stay at the ED. Of the 1037 T&T scores, 44.4% were scored as a zero, and 20.1% exceeded

the T&T threshold. In comparison, by using the arithmetic-corrected retrospective T&T

scores we calculated that 43.7% of the 3025 sets of observations should have been scored

as a zero, and the T&T thresholds should have been exceeded in 26.0% of cases.

The percentage T&T completion by month is depicted in Figure 2.3.3. The T&T

completion rate signi�cantly improved during the second part of the study, with a 51.8%

completion rate in comparison to 20.1% for the �rst part. The improvement in completion

rate was expected by the clinical sta� during the study as a result of changes in the way

that nurses were trained, but it may also have been partly due to the fact that patients

were only admitted during the day for the study in the later months. As an aside, we also

note the relatively high completion rate in January 2009, and suggest that this may be

caused in part by the Hawthorne e�ect (see Section 1.3.4 for de�nition). The completion

rate between June to August was zero due to the data collection problems mentioned in

Section 2.1.

The percentage T&T completion per hour of the day is shown in Figure 2.3.4. To remove

the bias caused by the fact that only day patients were accepted during the second half

of the study, the Figure only shows the T&T completion for the patients attending the

department before 5th May 2009. Overall, T&T completion is slightly better during the

day between 9a.m. and 5p.m. (23.6%), compared to at night between 11p.m. and 7a.m.

(17.0%). In addition to this, there are signi�cant increases in T&T completion rates

between the hours of 8-9a.m., and 7-8pm, and 9-10pm, which coincide with changes in
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Figure 2.3.3.: Percentage of T&T scores calculated for each month of the ED study.

nursing shifts. There is also a signi�cant spike between the hours of 12a.m. and 1a.m.,

which can be attributed to the fact that observations that contained a date without a

speci�c time were automatically assigned to midnight due to a limitation of the method

(Matlab's datestr function) used.

2.4. Incorrect T&T Calculation

In addition to a low T&T completion rate, the T&T score was also calculated incorrectly

in 211 out of 1037 cases when compared to the retrospective T&T scores. Of those that

were incorrect, 34 were calculated incorrectly in situations when the retrospective T&T

score exceeded the triggering threshold, and the nurse-recorded T&T score was below the

threshold. These indicate instances where errors in T&T calculation could potentially

have led to deterioration being missed. Figure 2.4.1 further shows that most erroneous

T&T scores di�ered from the retrospective score by one or two points (16.2%), but that

a sizeable proportion, 4.1% of observations, had scores that di�ered by three or more

points. The skew on the graph indicates that nursing sta� tended to under-score their

patients, reducing the overall number of T&T alerts, but making it more likely that

patient deterioration could be missed.

Using the reconciled database and scanned observations charts, four potential reasons

for errors in the T&T totals were identi�ed, and are described below with some examples
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Figure 2.3.4.: Percentage completion of T&T scores per hour in the ED during the study.
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Figure 2.4.1.: Bar chart showing the di�erence between the score as calculated by the
nursing sta� and the retrospective error-free T&T score.
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taken from the study.

Incorrect T&T Parameter Score Allocation

We describe an incorrect parameter score allocation as a situation where the recorded

vital sign parameter and the corresponding T&T parameter score are inconsistent, based

on the T&T criteria of Table 1.2. For instance, patient ED00223 was given a score of

1 for high respiratory rate (Figure 2.4.2) whereas the actual recorded respiratory rate of

33 respirations/minute should have led to a score of 3, and senior sta� should have been

noti�ed. In this case, no action was taken, and the patient's respiratory rate remained

high at the next observation, indicating that it was not a spurious measurement. Two

members of the clinical team independently reviewed this case and noted that a trigger

should have been raised and may have led to a change in patient management, although

the clinical signi�cance of any potential intervention is unclear from the notes, as the

patient was later discharged from CDU.

Further examination of the patient records shows that incorrect parameter score allo-

cation often occurred when patients were known to be hypertensive or to have Chronic

Obstructive Pulmonary Disease (COPD), and were therefore expected to have high sys-

tolic blood pressure, or low SpO2 respectively. In such cases, it is possible that the

attending nurse will note the abnormal vital sign, which should have scored 3 and trig-

gered an alert, but then correctly deemed the result to be clinically irrelevant, and scored

it as a zero.

This could explain why incorrect T&T scores appear to be underscored, as shown in

Figure observation in Figure 2.4.1, and may also explain why the discrepancies between

the manually-calculated and retrospective T&T scores were greater than 1 in many cases.

Incorrect parameter score allocations were found for 202 of the 1037 T&T scores, making

it the most common source of errors.

Incorrect T&T Score Addition

T&T scores were deemed to be incorrectly added if the total T&T score did not equal the

sum of the individual parameter scores, regardless of whether or not the parameter scores
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Figure 2.4.2.: Part of the observations chart for patient ED00226, showing an incorrect
T&T total caused by incorrect allocation of the respiratory rate sub-score.

were correct to begin with. This type of error accounted for 14 observations in the study.

An example of this type of error is shown in Figure 2.4.3 for patient ED00360, a 79-year

old man who entered the ED with a consistently high heart rate because of paroxysmal

atrial �brillation.

At 15:45, the patient was administered with Amiodarone to treat the symptom, and

at around the same time, the patient's systolic blood pressure dropped below the normal

range. This, in combination with a high heart rate and slightly elevated respiratory rate,

should have led to a total T&T score of 6, but the observations were incorrectly scored

as a 4. The T&T total score of 4 met the T&T criteria for triggering further action, and

so this mistake was unlikely to have e�ected change in patient care. However, the correct

score may have alerted sta� to possible further deterioration in the patient's status, as

the correct T&T score of 6 is more severe than the patient's previous scores of 4 and 5 at

15:10 and 15:15 respectively.
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Figure 2.4.3.: Example of incorrect T&T addition for patient ED00360. The score for the
observations at 15:45 should have been a 6, but was incorrectly calculated
as a 4.

Incorrect GCS Recording

The GCS is comprised of three subscores, and is thus also prone to incorrect addition.

For the 2686 GCS observations, 13 had been added up incorrectly. Eight of the thirteen

mis-scored observations were due to �follow-through� error, where a new observer simply

copied the previous score without doing a new addition. An example of both of these

errors is shown for Patient ED00196 (Figure 2.4.4), where the attending sta� incorrectly

calculated the GCS total as 12 at 18:35, and made the same mistake 35 minutes later

during the next observation. The medical impact of this error was limited by the fact

that the patient had previously been transferred to the highest acuity area of the ED for

neurological reasons, so the condition of the patient was being heavily monitored at the

time.

The recording of GCS is also prone to error during its measurement. To measure

the GCS, an observer must be present to judge a patient's response to Pain, Voice, and

their Eye-Movement. This often involves speaking to, and physically moving, the patient.

Because the score depends on interaction with the observer, it may be argued that it

is di�cult to arrive at an objective GCS score. The di�culties with recording GCS are

well known, and Rowley and Fielding [?] have reported that while inter- and intra-rater
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Figure 2.4.4.: Partial view of observation chart for Patient ED00196 demonstrating addi-
tion error in GCS total and follow-through of error

GCS estimates were consistent, inexperienced nurses often underestimated the score when

compared to a trained expert. The systematic errors in GCS recording are made before

the observation is entered on the observation chart, and so our analysis will be unable to

detect how prevalent these problems are.

Incorrect Temperature Recording

During the study, manual observations of temperature were made using tympanic ther-

mometers to measure core temperature. Continuous monitoring of temperature was also

attempted by using thermistors, and the Phillips bedside monitor displayed the skin

temperature values in real-time. This is di�erent to standard practice, for which no tem-

perature measurements are displayed on the bedside monitor. The distributions of the

two sets of temperature measurements are shown in Figure 2.4.5. The �gure indicates

that there are signi�cant di�erences between the two types of temperature measurements.

The skin temperature has a wider interquartile range than the core temperature (1.7oC in

comparison to 1.0oC), and a median of 34.8oC, compared to 36.1oC for core temperature.

The two methods of measuring temperature gives di�erent values, but core temperature

is used in the T&T score charts. However, we surmise that the display of skin temperature

on the bedside monitors may have led some nurses to record skin temperature on the T&T

chart instead of using a tympanic thermometer to measure temperature.

To test this hypothesis, we calculated δ, the di�erence between the intermittent core
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Figure 2.4.5.: Discrete probability density distributions of intermittent core temperature
measurements as recorded by nurses (blue), and continuous skin temper-
ature recordings (red). We hypothesise that some of the core tempera-
ture measurements, particularly those with unusually low temperature, and
where hypothermia was not mentioned in the doctors notes, were not mea-
sured using a tympanic thermometer and were instead taken from the skin
temperature reading.

temperature measurements and the corresponding continuous skin temperature observa-

tion. Due to minor di�erences between the time recorded on the bedside monitors and

the manually recorded time, we assumed that the manually recorded time was correct,

and that the time-stamp from the continuous monitor would be accurate to within ±5

minutes. Therefore, the skin temperature value used to calculate δ was taken to be the

mean temperature value within a 10-minute window centred at the time of the manual

observation.

The distribution, and the cumulative distribution of δ are shown in Figure 2.4.6. In

total, there were 912 temperature observations during the course of the study. However,

only 102 observations were used in this analysis, as all other temperature observations

did not occur at times when the patient's skin temperature was also being monitored.

If the di�erence between the core and skin temperature measurements was less than

a critical threshold, then we considered it likely that the manual observation had been

copied from the bedside monitor. The critical threshold was established by assuming

that the core temperature was written down from the bedside monitor if it matched

the continuously recorded skin temperature at any point within the ten-minute window;

therefore, the core temperature is deemed to be a copy of the bedside monitor value if:
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Figure 2.4.6.: (a) Histogram of the temperature observations within δ of the monitor tem-
perature (b) The cumulative distribution showing the number of tempera-
ture observations within δ of the monitor temperature, for increasing δ.

tempskin −
1

2
range(tempskin) ≤ tempcore ≤ tempskin +

1

2
range(tempskin) (2.4.1)

The mean range of the skin temperature over all of the 10-minute windows was calcu-

lated to be 0.4oC, so the critical threshold was set at tempskin ± 0.2 . The cumulative

distribution of δ is shown in Figure 2.4.6(b). The dotted line highlights that 30 out of

102 temperature observations were within 0.2oC of the skin temperature as displayed on

the bedside monitor, and thus likely to have been erroneously copied from the bedside

monitors.

The histogram in Figure 2.4.6(a) also con�rms that a signi�cant proportion of temper-

ature observations appear to have been copied from the bedside monitor, showing that 23

manual observations were within 0.1oC of the continuous skin temperature reading. In

addition, the distribution appears to be bimodal, with one major peak occurring when

δ = 0, and another peak occurring when δ ≈ 1.0, which is approximately the same as the

mean di�erence between the core and skin temperatures.

Illegible Observation Sheets

There were numerous instances where observations could not be read properly from the

observation chart. In some cases, the time stamps were illegible, while in other instances,
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Figure 2.4.7.: Partial observations chart for Patient ED00560, showing an instance where
there are spurious crosses and dots (the upper red circles), which may be
confused with heart rate measurements (lower circles)

such as that shown in Figure 2.4.7, it was unclear which vital signs were being recorded

on the chart. This may lead to confusion when trying to determine long-term trends in

the data.

We also observed that the nursing sta� used a variety of styles to �ll in the observation

chart. In some cases, the style changed within the same observation chart, as shown in

Figure 2.4.8. In this example, the blood pressure was initially recorded with inverted

arrows. Later on, at 1320, the systolic blood pressure may have been written down

numerically (although the numbers may also refer to the heart rate), and later on, by

1340, the blood pressure was recorded using normal arrows.

Figure 2.4.8.: Observations chart for patient ED00021, demonstrating multiple styles. Of
particular note are the three di�erent styles for recording blood pressure.
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2.5. Sensitivity and Speci�city Analysis for Multiple

Observations

Up until this point, we have considered the types of errors made while recording T&T

charts, and how often these errors are made. However, it is unclear what impact the

errors have on the standard of patient care. In order to evaluate this, we assessed the

e�ectiveness of the T&T scores at predicting escalation events (as de�ned in Section 2.2)

using the analysis framework described below.

In Chapter 1, we brie�y outlined how Early Warning Score (EWS) systems, or indeed

any other classi�cation system, could be evaluated using the concepts of sensitivity and

speci�city. In order to compute these metrics, the number of true positives (TP), true

negatives (TN), false positives (FP) and false negatives (FN) must �rst be calculated.

In this case, the test is the T&T system, which outputs either a positive (T&T score

exceeds one or more alerting criteria) or a negative (T&T score does not exceed one

or more alerting criteria) result. To assess whether the test result is true or false, we

require an outcome marker that represents ground truth. For instance, in Smith et al.

[100], a positive event was recorded if the initial EWS, or Track and Trigger (T&T), score

exceeded the alerting threshold, and was considered to be a TP if the patient died before

hospital discharge, and a FP otherwise. In this case, the outcome marker was in-hospital

mortality.

Unlike Smith et al., our study considers the multiple T&T scores recorded during the

course of a patient's stay in the ED. Furthermore, the outcome markers were chosen to

be the escalations of care de�ned at the start of Chapter 2, which had been documented

according to the procedure described in Section 2.2. Because a patient may deteriorate

several times during their stay, multiple escalations may be recorded for each patient.

These multiple escalation events for each patient are unlikely to be independent. This

makes sense clinically, as the initial escalation may trigger further secondary escalations.

Similarly, prompt intervention after an initial escalation may prevent further escalations.

Therefore, in order to provide the most clinically relevant result, and to avoid the problem

of dependent events or outcome markers, the main aim of a classi�cation system such as
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T&T should be to correctly identify the �rst instance of deterioration. This allows the

sensitivity and speci�city analysis to focus on a single outcome per patient.

Using the T&T score and escalation of care as the test and outcome marker respectively,

we would like to build a confusion matrix from which we may calculate sensitivity and

speci�city. We now have multiple tests over time for each patient, however, whereas

sensitivity and speci�city are usually assessed for a single (diagnostic) test and a single

outcome measure. We now go on to describe how TPs, FPs, TNs and FNs can be de�ned

within our analysis framework.

2.5.1. True Positives and False Negatives

TPs or FNs are only evaluated on the group of patients with one or more escalations,

�escalation patients�, using the �rst escalation in time as the event or outcome marker.

We assign a TP classi�cation if the �rst escalation is correctly identi�ed from the T&T

score; conversely, we de�ne a FN if the �rst escalation is not successfully detected. An

escalation can be considered to have been detected if the T&T score generates an alert

within a time, t, ahead of that escalation, or a time, τ , after the escalation. The time τ

is included because, in practice, the timestamps for escalations are inaccurate.

The time, t, is included to re�ect our prior belief that an optimised patient monitoring

system may be able to provide early warning of the escalation. t cannot be extended

inde�nitely, because the association between the test and the escalation decreases as t

increases. In our initial analysis, we will assume a conservative value of t = 10 minutes.

Longer window lengths may be more appropriate and are considered later. A pictorial

representation of this process is shown in Figure 2.5.1 and explains how this framework

deals with an �escalation patient�.

2.5.2. False Positives and True Negatives

In this section, we present an equivalent per-patient framework for FPs and TNs. We can

achieve this by �rst de�ning �normal� patients as the group that comprises all patients

who had no escalations. An FP classi�cation is then de�ned to occur when the data from

a �normal patient� generates one or more alerts as a result of the T&T alerting thresholds
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Figure 2.5.1.: Detection of a True Positive for an �escalation patient� within the analysis
framework. Test results are shown as crosses, while the escalation events
and their associated windows are labelled. The �rst escalation is classi�ed
as a TP as the positive result occurs within the time window associated
with the escalation event. The remaining escalations are greyed out to
denote that only the initial escalation is considered, and that the framework
requires that the �escalation patient� is classi�ed as a True Positive or a False
Negative.

being exceeded; conversely, we de�ne a TN classi�cation to occur when the data from a

�normal� patient generate no alerts. A pictorial representation of FP and TN patients

(with no escalations) is shown in Figure 2.5.1.

2.5.3. Shortcomings of the Framework

The approach we have taken for describing TPs, TNs, FPs and FNs is able to deal with

multiple tests and a single outcome marker. This per-patient framework makes clinical

sense, as the aim is to generate alerts, as early as possible, for all the patients whose care

is eventually escalated. Furthermore, there should be as few false alerts as possible for

the �normal patients� group.

While the framework is consistent, there remain some minor drawbacks. Firstly, its

accuracy depends on the availability of the information for the outcome markers (escala-

tions). In practice, escalations that relate to transient abnormality are most likely to be

missed. Therefore, it is possible that a small percentage of the �normal patients� should

be in the �escalation patients� group. The problem of incomplete recording of events in

the clinical environment is largely beyond our control, but we note that the e�ect should

be the same for all systems that are tested, so comparisons within the framework are

valid.
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Figure 2.5.2.: Both of these examples show records from �normal patients� with no esca-
lations. In the top example, x1,x4,x5 and x7 show positive results, and thus
the record is classi�ed as a FP. In the bottom example, all of the test results
are negative, and correctly re�ect that there are no escalations. Therefore
the record is classi�ed as a TN.

Secondly, the framework risks oversimplifying the treatment of FPs. In our framework,

both a �normal patient� that has multiple false alerts, and a �normal patient� with one

false alert will be counted as a single FP. This does not re�ect the realities of clinical

practice, where each false alert may lead to separate interventions, so the number of false

alerts for each patient is important. Similarly, a transient false alert is likely to have a

smaller e�ect than a long-term false alert.

The impact of transient alerts does not need to be considered for T&T systems because

each T&T alert does not persist for any length of time. However, the length of alerts

is an important issue when we will be considering alerting systems based on continuous

vital sign data. In order to achieve a more thorough analysis of these systems, we will

report distributions of the duration and number of alerts per patient in addition to the

sensitivity and speci�city. We will also report a false alert rate, which is calculated as the

total number of alerts for the �normal patients�, divided by the total time of vital signs

recorded for the �normal patients�, and has units of alerts/hour per bed. The framework

that has been presented here will form the basis of the analysis in the following chapters

for analysing the e�ectiveness of both T&T systems and continuous monitoring systems

for detecting patient deterioration.
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Escalation Type A1 B1 C1 A2 B2 C2

No. Escalations 75 22 96 51 13 27

Table 2.3.: Break down of the escalation events according to whether they occurred pre-
or post-arrival in the ED, and according to the cause of the escalations. Type-1
escalations were those that were caused by events that occurred at presentation
to, or prior to arrival in, the ED, whereas Type-2 escalations were those due to
patient deterioration during their time in the ED. Type A escalations were due
to abnormalities in the physiological vital signs, type B related to neurological
dysfunction as determined by the GCS score and by other factors recorded in
the clinical record (e.g. epilepsy), and escalations that were neither type A or
B were classi�ed as type C.

2.6. ED Study Results

From the 476 patients in the ED study, there were 284 escalation events in total as shown

in Table 2.3. Of these, 193 were Type-1 events that occurred upon arrival, and the

remaining 91 represented events that occurred due to patient deterioration after arrival.

For the sake of this analysis, only the �rst escalation for each patient was considered for

the reasons given in Section 2.5. The �rst escalations included all of the Type-1 events,

and an additional 14 Type-2 events, where the patient deteriorated after arrival and had

no previous Type-1 escalations. In total, 207 �rst escalation events were analysed.

The �rst escalations were also classi�ed according to whether they were caused by

physiological or neurological issues (type A and B escalations), or non-physiological causes

(type C). While the analysis shows results for both of these groups, the escalations were

partitioned in this way as the T&T criteria are designed to detect type A and B events,

which we call �physiological escalations�, only.

2.6.1. Analysis of Initial Escalations

Table 2.4 shows how well the T&T system, as used in the ED, detected initial escalations.

Within this analysis framework, an initial escalation was only considered to have been

detected (i.e. a true positive) if the T&T score exceeded the triggering criteria for an

observation within a ±10 minute window centred at the time of the escalation. Where

there was any ambiguity, the patient notes were used to help determine whether the

T&T score was directly related to the escalation event. If the T&T score was below the

threshold, it was classi�ed as a FN. If the T&T score was not worked out by the nurse,
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A+B escalations C escalations No escalations Total

T&T was completed
and met triggering
criteria (at the time
of escalation when
one occurred)

28 1 22 51

T&T was completed
at some point, but

did not meet
triggering criteria
(at the time of the
escalation when one

occurred)

32 63 141 236

T&T never
completed

44 39 106 189

Total 104 103 269 476

Table 2.4.: Overview of the manually-observed T&T system's ability to detect �rst-time
escalation events.

the resulting classi�cation was not included in the sensitivity and speci�city calculations.

Table 2.4 shows that 28 out of 104 physiological escalations were detected by the T&T

system. In 32 cases of physiological escalation, the T&T scores did not meet the triggering

threshold or else the T&T score was not worked out at the time of the escalation. In

contrast, only one non-physiological escalation was detected using the T&T system, as

one may expect from using a system based upon physiological parameters. In this case,

the patient had been moved to Resus because of chest pain, but happened to have an

unrelated high systolic blood pressure.

Twenty-two patients exceeded T&T thresholds but were never escalated during their

stay (false positives). One of these, Patient ED00277, exceeded the T&T threshold be-

cause the T&T parameter scores had been added incorrectly. Twelve of the patients

triggered due to hypertension. These were reviewed by the senior clinical team mentioned

in Section 2.1. In each case, all three team-members agreed that the hypertensions were

not of clinical signi�cance and would not have changed clinical management at the time.

Typically, hypertension is ignored in the ED as it is often not relevant to the presenting

complaint. More often than not, the hypertension will be a chronic condition that has no

associated signs or symptoms, but may increase a patient's risk to cardiovascular disease.

The remaining nine patients triggered due to hypotension, tachycardia, bradypnoea, or
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A+B escs C escs no escs total

T&T met triggering
criteria (at the time of
escalation when one

occurred)

98 12 80 190

T&T did not meet
triggering criteria (at
time of escalation
when one occurred)

6 91 189 286

Total 104 103 269 476

Table 2.5.: Overview of retrospective T&T's ability to detect of �rst-time escalation
events.

combinations of vital sign abnormalities. In each case, a review from one member of the

clinical team con�rmed that no change in treatment would have been advised in each

case. In two cases, a doctor was present with the patient at the time of the observation.

In one other case, an unusually low RR was attributed to drugs given for pain relief.

Three cases of hypotension were borderline, and not considered clinically important. The

remaining three cases included vital signs that may have warranted a doctor's review, but

the patient was not felt to have been at risk according to retrospective analysis by the

senior clinical team.

As we mentioned in Section 2.6.1, the T&T system is only designed to detect phys-

iological abnormality. Therefore, the sensitivity and speci�city analysis should only be

calculated for the physiological escalations (types A1, A2, B1 and B2). The sensitivity

and speci�city of T&T scores for detecting physiological escalations for all patients who

had the T&T process completed during their stay is:

Sensitivity =
28

28 + 32
= 0.47, Specificity =

141

141 + 22
= 0.87 (2.6.1)

In comparison, the e�ectiveness of an error-free retrospective T&T (as de�ned at the

start of this chapter) is shown in Table 2.5. In this case, only six patients had physiological

events without a corresponding T&T Trigger (false negatives) in comparison to 32 for the

nurses' T&T. Of these, four did exceed the T&T thresholds, but the observations had been

written down in the patient notes rather than on the observation chart. The fact that

patient abnormality was recorded in the notes indicates that these patients were managed
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appropriately. One other patient may also have had observations that met the T&T

triggering criteria. However, the observation chart was di�cult to interpret, and it was

unclear whether the time of the relevant observation had been changed retrospectively

to match the escalation. The remaining patient was not observed at the time of their

escalation, and instead nursing sta� were called back to the patient by their relative due

to a decrease in the patient's consciousness. The notes state the appropriate clinical action

was taken thereafter.

80 patients had a triggering score, but did not escalate at any time during their stay

(false positives). 38 of the 80 Triggers were due to cases of isolated systolic hypertension,

which were again deemed to be clinically irrelevant. Of the other potentially �missed�

alerts, 11 were for hypoxia, 9 for tachycardia, 5 for tachypnoea, 2 for bradypnoea, 4

for hypotension, 1 for pyrexia, and 10 were triggered by a combination of two or more

vital sign abnormalities. The clinical notes for the 42 patients without hypertension

were reviewed by the clinical team. For 38 of the 42, it would have been appropriate to

document that clinicians had been informed of the abnormal vital signs, but it is unlikely

that any change in clinical management would have occurred, Of the remaining four, one

had bradypnoea that settled by the time of subsequent observations; one had hypoxia,

possibly due to undocumented COPD and was later discharged home; one had pyrexia

that could have been assessed more promptly than was documented, and another had

hypoxia from sepsis and it is unclear when treatment was commenced.

We further note that abnormally low SpO2 is often caused by the common chronic

condition of COPD, and cannot always be treated with oxygen therapy. In nine of the

cases here, each alert was deemed to have been appropriately ignored due to pre-existing

COPD.

The sensitivity and speci�city of error-free T&T, using physiological escalations as the

outcome marker are:

Sensitivity =
98

98 + 6
= 0.94, Specificity =

189

189 + 80
= 0.70 (2.6.2)
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2.7. Discussion

2.7.1. Observation and T&T Completeness

T&T e�ectiveness will be �rstly limited by the frequency of observation and secondly

by how often the T&T total is calculated for each set of observations. In our study,

observations were taken frequently and regularly, with a mean time of one hour between

observations. Furthermore, 99% of patients had at least one full set of observations (HR,

RR, BP, and SpO2 measurements). Section 2.3 clari�es why temperature and GCS were

not included in the full set.

In contrast, T&T totals were calculated for only 34.3% of the observations. The poor

T&T completion rate can be attributed to two causes. Firstly, the e�ect of clinical

pressures may result in T&T scores not being calculated for the most ill patients because

immediate treatment is required, and because deterioration has already been identi�ed

without use of the score. Additional results from this study provide evidence for this

hypothesis. By calculating the T&T completion rate in each of the ED areas, we observed

that T&T observations were completed in 33.1% of cases in the most acute area, Resus,

in comparison to 38.5% and 37.0% completion rates for Majors and CDU respectively.

Secondly, poor T&T completion may also be due to sta� tiredness. Figure 2.3.4 showed

that T&T completion rate increased during day time hours, and also during changes of

shift. This can be addressed by regular training, and results from the study show a gradual

increase in T&T completeness over the course of the study, suggesting that this issue was

adequately addressed (see Figure 2.3.3).

2.7.2. T&T Score Errors

In addition to the poor completion rate, 20.3% of the observations had incorrect T&T

overall scores. While the error rate may seem high, it compares favourably with results

reported by Prytherch et al. in a controlled setting [89].

The vast majority of errors were due to incorrect assignment of individual vital sign

parameter scores. In a few cases, the incorrect assignment appeared to have been caused

by simple human error. For instance, one patient was scored 0 for a RR of 19 respi-
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rations/min, when it should have scored 1. Mistakes such as these may be recti�ed by

sta� training, or by improving the layout of the T&T charts. The likelihood of making

incorrect assignment errors is also increased by the fact that T&T criteria vary between

hospitals, and even from ward to ward. Subsequent to the completion of this study, the

T&T charts have been redesigned to improve the ease of assigning scores. The new chart

is shown in Appendix A.

In many other cases, vital sign parameters appeared to be deliberately mis-scored as

nursing sta� used their clinical judgement to over-rule the T&T criteria. In the majority

of these cases, the T&T parameter scores for SpO2 or for high SBP were scored as a zero

to prevent an unnecessary call-out. As mentioned previously, these are usually indications

of chronic conditions that have no relevance to the presenting complaint. Adjusting SBP

and SpO2 parameter scores from three to zero explains why there were sometimes large

discrepancies between the recorded and error-free T&T scores (see Figure 2.4.1).

Incorrect T&T totals were also caused by errors in arithmetic, though these were un-

common, accounting for only 1% of observations. Arithmetic mistakes tended to be com-

pounded by additional errors which occurred when previous results were simply copied

without repeating the addition. Arithmetic errors seem to occur more frequently during

night shifts, with six out of eight of the initially incorrect GCS totals (that is, ignoring

any copying errors) occurring during the night. However, the small sample means that

this result is not statistically signi�cant.

Our continuous measurement of skin temperature was another potential source of error

unique to this particular study. By analysing the manually recorded core temperature,

and the continuously monitored skin temperature, it was shown that at least 29% of

temperature data were likely to have been recorded from the monitor, despite the fact

that a cursory look at the skin temperature data would show it to be well outside the

normal range for core body temperature. In addition to quantifying the e�ect of the

temperature errors, this result also raises wider issues that go beyond the scope of this

thesis. This includes the question of whether nurses place too much con�dence in the

reliability of bedside monitors at the expense of making physical contact with the patient.
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2.7.3. E�ectiveness of Track and Trigger

While a 20% error rate for T&T scores may seem high, the result should not be interpreted

outside its clinical context. Whether the mistakes in T&T had an e�ect on patient

outcome is the more relevant question.

Section 2.6.1 showed the retrospective, error-free, T&T scores had a much higher sensi-

tivity than the nurse-recorded T&T, and thus detected a greater proportion of physiologi-

cal events. The retrospective T&T scores detected all but six physiological escalations, of

which only one would have been missed if observations had been documented accurately

on the observation charts. In contrast, manual T&T calculation resulted in 32 missed

physiological escalations.

However, the error-free T&T score was also far less speci�c than nurse-recorded T&T,

which means that it provided a greater number of false alerts. False alerts are particularly

troublesome in clinical settings, as studies using audible single-channel alerts have shown

that false alerts lead to clinicians learning to ignore the alerts [115]. In order to be truly

viable in the ED, the speci�city of the retrospective T&T should be at least comparable

to the manually recorded T&T.

2.8. Conclusion

In Chapter 1, we described how vital sign measurements were important for determining

the condition of a patient, and also described how Early Warning Scores could be used

to analyse the data. The ways in which continuous monitoring could be used to enhance

patient care were also reviewed. The introduction of both continuous monitoring and

T&T systems into the ED are steps towards attempting to identify unwell or deteriorating

patients early.

The analysis in this chapter allows us to assess how well the T&T system has been

adopted. We have shown that while vital sign observations were taken regularly by nursing

sta�, T&T scores were calculated infrequently. By using an error-free retrospective T&T

score, we were able to highlight that T&T scores were incorrect 20% of the time. We

also identi�ed a number of reasons why T&T scores were often erroneous, showing that
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the most common problem was an inability to convert vital signs accurately into their

corresponding T&T parameter scores. This matches the results reported by Edwards et

al. [29], who conducted a study over four medical and surgical wards, and reported that

69.7% of MEWS score errors were due to incorrect score assignment.

The clinical signi�cance of the 20% error rate was evaluated by comparing how well

T&T would detect clinically-validated escalation events in comparison to a computer-

generated, retrospective T&T score. It was shown that the error-free score minimised the

chances of missing patient deterioration at the cost of providing many more false alerts.

For manually-scored T&T, there were 22 instances for which the T&T threshold was

exceeded, but with no recorded escalation events, whereas there were 80 such instances

using the retrospective T&T score.

In conclusion, this chapter has shown the current limitations of manually-scored T&T,

and demonstrated that a retrospective computer-generated score increases the e�ective-

ness of T&T at detecting physiological escalations. This increased sensitivity is at the

cost of reduced speci�city, leading to more false alerts. It should be possible to create an

automatic scoring system that emulates our retrospective T&T score. In fact, one such

product exists: the VitalPACTM system, for which nurses enter the values of vital sign

observations into a handheld computer and the T&T score is computed immediately. The

VitalPACTM system has so far only been studied in standard ward settings [?].

Until this point, the continuous vital sign data that were collected during the study has

not been analysed. In the following chapters, we will investigate whether it is possible,

through the use of the continuous data, to increase sensitivity to escalation events while

maintaining a high speci�city. We will begin by investigating how well the T&T criteria

perform when applied directly to the continuous data. Following this, we will investigate

other methods of combining the continuous vital sign data so that they can correctly

identify physiological escalation events. Ultimately, we aim to show that models based

on continuous vital sign data provide substantial bene�ts compared to only using a T&T

system based on intermittent observations.
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Track and Trigger Criteria

In Chapter 2, we demonstrated that Track and Trigger (T&T) was useful for identifying

escalation events and consequently patient deterioration. We also showed that there

were serious practical issues in implementing T&T scoring systems within the Emergency

Department (ED), including low T&T completion rates, and a signi�cant error rate which

limited the system's sensitivity. We concluded that a computer-assisted T&T system may

help to improve the standard of care within the ED.

Even if T&T were to be perfectly implemented, however, the e�ectiveness of the system

would be limited by the low frequency of patient observation. Consider the example in

Figure 3.0.1, which shows vital sign data collected continuously from a bedside monitor

for a patient in a Step-Down Unit at the University of Pittsburgh Medical Centre (UPMC)

[49]. Let us assume a perfect T&T system, in which patients are observed at intervals

of 60 minutes, and that one such observation was taken at 15:30. The continuous vital

sign data shows that the patient appeared to be stable at this time. All of the vital signs

were within normal limits apart from Systolic BP, which had been elevated throughout

the patient's stay.

A second observation would then be taken at 16:30. At this instant, the vital signs

appear to be normal. There is a slight decrease in oxygen saturation compared to the

previous observation, but no noticeable di�erence in the other vital signs. The �gure

clearly shows that the patient su�ers a sudden deterioration between the two hypothetical

observations, at 16:10, at which point both HR and oxygen saturation become abnormal,

increasing to 95 beats/min and decreasing to 84%, respectively. Similar events occur at

14:20 and 18:00. We can be con�dent that these sudden events are not artefactual because
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Figure 3.0.1.: An example vital sign record from a study conducted at a UPMC Step-
Down Unit. The RR, HR, and SpO2 are recorded in yellow, green and blue
respectively. The Systolic BP and Diastolic BP are indicated by the upper
and lower red lines, while their arithmetic mean is shown as a dashed black
line. The record indicates that the patient slowly deteriorates between
12:00 and 18:00, but su�ers signi�cant short-term deterioration at 14:20,
16:10, and 18:00 (oxygen desaturation and increased heart rate in each
case). Between these events, there is partial recovery due to homeostasis.

abnormalities occur simultaneously for two independently collected vital signs. Further-

more, the short-term events are consistent with the long-term gradual deterioration that

can be seen during the six hours of monitoring. For example, we observe an increase in

respiratory rate and respiratory rate variability over the course of the recording. Contin-

uous monitoring is able to identify short-term deteriorations, which may be missed if the

patient is intermittently observed.

Even if short-term patient deterioration is not missed by intermittent observations,

continuous monitoring allows deteriorations to be detected in real-time, thus providing

early warning with respect to T&T. Let us consider Figure 3.0.1 once more, and this time

assume that observations were instead taken at 17:00 and 18:00. In this case, a T&T

system would detect the deterioration at 18:00 associated with a low oxygen saturation

of 85%. An e�ective continuous monitoring system would have detected the decrease to

90% of oxygen saturation at 17:15, potentially providing 45 minutes of early warning.

A method that uses the continuous data recorded by the bedside monitors may enable

real-time detection of short-term deterioration and facilitate prompt interventions. In
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this chapter, we conduct an initial investigation, based on the assumption that the T&T

criteria, that were �rst described in Chapter 1, can be applied to continuous data. We

derive a continuous T&T model and then further T&T models which emulate manual

observations taken at 15, 30 and 60 minute intervals. We evaluate their performance

using the known escalation events described previously as outcome markers, within the

sensitivity and speci�city framework described in Chapter 2.5.

3.1. Method

3.1.1. Continuous Track and Trigger

The T&T criteria of Table 1.2 de�ned in Chapter 1 were used to develop a continuous

T&T system. The system was designed to emulate nursing practice as closely as possible,

which necessitated the modi�cations described below.

During the study described in Chapter 2, we observed that nurses use the values dis-

played by the bedside monitors when these are available. In order to ensure a meaningful

reading, an experienced nurse will wait to see if there are any momentary �uctuations be-

fore recording the �most appropriate� value, thus reducing the in�uence of any artefacts.

To simulate this e�ect in the continuous model, the median of a one-minute window of

each vital sign parameter was used when calculating the T&T score, as shown in Figure

3.1.1. With non-overlapping windows, scores are generated every minute.

The one-minute T&T scores were also sampled at 15, 30 and 60 minute intervals, with

a zero time-o�set from the start of the record. These sampled scores simulate the e�ect

of recording intermittent observations at regular intervals. Practically, this is the same

as assuming that an initial observation would be made as soon as the patient is assigned

to a bed, which conforms with our knowledge of standard ED practice. The four T&T

models allow us to evaluate the e�ect of changing the frequency of T&T observations.

The continuous T&T system was tested on the continuous data set recorded from the

476 ED study patients. Only the variables recorded by the bedside monitor can be used

in the continuous scoring system. Hence, measurements of Glasgow Coma Score (GCS),

pupil dilation, or urine output are not taken into account, and so their associated T&T
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Figure 3.1.1.: Computation of Continuous T&T. The median value is calculated for each
of the vital sign channels (red crosses), and then used to compute the con-
tinuous T&T score at time tn using the criteria listed in Table 1.2. The
next Track and Trigger score is calculated at time tn+1 = tn + 60 sec.

scores are always set to zero. Of the �ve continuous variables collected during the study,

only four, HR, RR, SpO2, and SysBP were used. Temperature was not included, as the

bedside monitor recorded skin temperature values, whilst the T&T criteria require the

use of core temperature (see Section 2.1).

3.1.2. Analysis Plan for Continuous T&T System

The performance of the continuous T&T System was assessed using the escalation events

described in Chapter 2. Using the analysis framework developed in Section 2.5, we again

consider only the �rst escalation, which is classi�ed as either �non-physiological� or �phys-

iological�. In doing this, we allow for a direct comparison with the retrospective and

nurse-recorded T&T results reported in the previous chapter. The escalation was consid-

ered to have been detected, and therefore a True Positive, if the continuous T&T score

met the alerting criteria (T&T scores of 3 for a single vital sign, or an overall score of

4 or more for a combination of vital signs) within a window of t = 10 minutes before

an escalation event and τ = 10 minutes after an escalation event, and a False Negative

otherwise. Using the same framework, we generate False Positives (and True Negatives)
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by considering only the patients for whom there were no escalations. The resulting sen-

sitivity and speci�city are calculated using all �rst escalations, in order to make a direct

comparison with the previous results.

In Chapter 2, we reported that a large proportion of escalations, 198/289 occurred on

arrival to the ED and were documented during triage rather than during the patients'

stay in one of the ED areas. At this stage, the patient is not connected to a bedside

monitor, these escalations are not detected using T&T. Hence, in the second half of the

analysis we will apply our framework to the �rst physiological escalations that occurred

after arrival (type 2 escalations). Furthermore, we recognize that the length of the window

was set arbitrarily at t = 10, τ = 10 minutes, however, other window lengths may be more

appropriate.

Rather than trying to optimise the length of the window, in the second half of the

analysis we also report the number of True Positives for a range of window lengths. The

window length is adjusted in such a way that the window always ends τ = 10 minutes

after the escalation to account for the di�erences in time-keeping methods, but the time

before the escalation event is varied between t = 1 to t = 60 minutes to allow for the

possibility of early detection of deterioration.

In summary, we use the following outcome measures:

� False Positives (on a per patient basis for all �rst escalations initially, then on a per

patient basis for the �rst A2 or B2 escalations)

� True Positives (on a per patient basis for all �rst escalations initially, then on a per

patient basis for the �rst A2 or B2 escalations)

� Alerts per patient (for those with A2 or B2 escalations and those with no escalations)

� Alert durations ( for those with A2 or B2 escalations and those with no escalations)

In addition to these metrics, we will also report the distributions of the number of alerts,

and the duration of alerts for patients with physiological escalations and for patients with

no escalations.
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3.2. Results

3.2.1. Continuous Data Loss

476 ED study patients were eligible for data collection, but continuous vital sign data

were only available for 402 of them. The length of stay for each patient was calculated

from their admission and discharge times, as recorded in the patient notes. Patients

stayed in the ED for 2,170 hours in total, with a mean length of stay of 5.39 hours. It

is probable that the length of stay is an overestimate, as patients' documented times of

departure were likely to have been �lled in retrospectively, after the patients had left the

department.

In total, 1708.4 hours of continuous vital sign data were collected. The patients with

continuous data often had gaps during which no vital signs were recorded. There are a

number of possible causes for this, but the most likely is that data could not be transmitted

during certain medical interventions, such as the occasions on which patients were moved

from one bed to another or taken for scans.

We can quantify the average data loss per patient as:

data loss =
length of stay − length of record

length of stay
(3.2.1)

To compute this, the length of each vital sign record was estimated by calculating the

period for which at least one vital sign was being monitored. For all of the vital sign

channels, apart from blood pressure, measurements were made every 30 seconds (Blood

pressure is only measured intermittently, with several minutes between each measure-

ment.)

For the purpose of estimating the length of the vital sign record, each vital sign recording

was subjected to a zero-order hold of length 30 seconds. The length of the total vital sign

record is then simply calculated from the union of the individual vital sign records.

The ratio of length of record to length of stay for the 402 study patients with continuous

data is shown in Figure 3.2.1. The mean value of this ratio (expressed as a percentage)

is 79%, indicating that the mean data loss was 21%. This data loss estimate is likely to

be an overestimate, as the length of stay is over-estimated.
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Figure 3.2.1.: The length of vital sign record / length of stay ratio for the 402 study
patients that had continuously recorded data is shown in blue. The ratios
for the �rst and second half of the study are shown in orange and green
respectively, and are broadly similar in shape.

In Chapter 2, it was shown that the completeness of the nurses' observations improved

markedly during the study. Unlike manual observations, continuous recording requires

very little human intervention and we would therefore expect no di�erences between the

two halves of the study. The distribution of the length of record/length of stay ratios

in Figure 3.2.1 is relatively �at as expected, with a non-signi�cant decrease in the ratio

(from 81% to 77%) between the �rst and second halves of the study.

In addition to data drop-out on all channels, individual vital signs were absent for

periods of time due to probe disconnection. The reason for this type of data loss may be

attributed to practical di�culties such as chest electrodes losing their adhesion, or SpO2

probes being removed by the patient due to discomfort. The extent of this problem can be

quanti�ed by calculating the overall recording time for each vital sign, and the percentage

data loss as shown in Table 3.1. As an aside, we note that the data loss for temperature,

which was not considered for continuous T&T, is 74.0%, far exceeding the data loss for

the other channels.

The similarity in percentage data loss values for each vital sign suggests that there is

no obvious problem with any one vital sign probe. Given that at least one vital sign is

present 78% of the time, and that each vital sign has completion rates of approximately
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Vital Sign HR RR SpO2 SBP

total time in hours 1645 1629 1664 1776
% data loss 24.2 24.9 23.3 18.2

Table 3.1.: Total time of vital signs recorded and percentage data loss for each channel of
vital sign data

Figure 3.2.2.: Best and worst case scenarios for single channel data loss. In each case, total
loss of data occurs 12% of the time, and each vital sign channel contains
data for approximately 75% of the time. The upper �gure shows the best
case, in which 6% of data is a�ected, and the lower �gure shows the worst
case, when 12% of data is a�ected

75% (Table 3.1), we can also conclude that single-channel drop-out is a minor issue. At

best, only 6% of the data were a�ected, and at worst, the single channel drop-out may

have had an e�ect on 12% of the data if data loss on each channel occurred out at di�erent

times. In comparison, data loss over all channels occurred 22% of the time.

The distributions of values for each of the four vital signs are shown in Figure 3.2.3,

where the red lines indicate the single-channel T&T alerting criteria for each vital sign.

The distributions for the whole study population, for the patients with physiological

escalations (i.e. A or B escalations), and for those with no escalations have been plotted in

blue, grey and red respectively. The distributions for the A/B-type escalations group di�er

signi�cantly from the distributions corresponding to the other two groups. In particular,

the median HR is higher and the median SBP is lower in the A/B escalation group. In

addition to this, all of the vital signs distributions from the A/B-type escalation group

have longer tails than the other groups. For instance, consider the SpO2 distribution for

the A/B escalation group, which has a �atter distribution with long tails. In comparison

to the distributions from the other groups, this distribution has a lower modal value, and
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Figure 3.2.3.: Estimates of the discrete pdfs for each of the vital signs calculated by nor-
malising the vital sign histograms for the ED study patients. Estimated
pdfs for the sub-populations with No Escalations, and Physiological (A or
B) Escalations are in red and grey respectively.

higher probabilities for all SpO2 values lower than 94%. The presence of long tails means

that there is a relatively high probability that the vital sign values will cause the T&T

thresholds to be exceeded. Overall, the vital sign distributions con�rm that patients with

A/B escalations are physiologically abnormal, particularly with respect to hypotension

(low blood pressure) and tachycardia (high heart rate).

3.2.2. Detection of Escalations

The e�ectiveness of continuous T&T at detecting physiological and non-physiological

escalations within 10 minutes of the escalation is shown in Table 3.2, using the same

format as in the analysis of Chapter 2 (Table 2.5). All patients without continuous data

were assigned to the second row in Table 3.2 to allow comparison to previous results. The

accuracy of the result is dependent on the percentage data loss during the ±10-minute

window, which is shown in Figure 3.2.4. The graph indicates that a large proportion of
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A/B escs C escs no escs Total

continuous T&T
score above alerting

criteria*

61 20 168 249

continuous T&T
score below alerting

criteria*

43 83 101 227

Total 104 103 269 476
*at the time of the escalation if one occurred, and within the test window

Table 3.2.: Initial escalations detected using continuous T&T within a window with t = 10
before the escalation and τ=10 minutes after the escalation
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Figure 3.2.4.: Percentage of continuous data available during the ±10 minute window for
each of the 207 �rst escalations

the patients who had escalations had high data loss at the time of their escalation. 61

patients had an initial escalation that would have met the alerting criteria for continuous

T&T if the T&T score had been computed continuously. 168 patients had continuous

T&T scores that met the alerting criteria, but did not have an escalation during their

stay. The resulting sensitivity and speci�city are 59% and 38% respectively, which does

not compare favourably with retrospective T&T.

As indicated in Section 3.1.2, only the physiological (A2 or B2) escalation events that

occurred after arrival to the ED should be considered. We previously reported in Section

2.6 (Table 2.3) that there were 64 such events. Of these, one did not have a time recorded,

4 occurred for patients that had no continuous vital sign data available, 13 were due to
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low GCS, and one other escalation was caused by an abnormal temperature. In addition,

there were 3 additional escalations (pertaining to patients ED00502, ED00354) for which

no vital sign data were recorded during the 60 minutes or 10 minutes after the escalation

event time, although vital sign data were available at other times during the patients'

stays. This reduced the maximum number of events that could be detected by continuous

T&T to 43 events. These escalation events occurred in 29 patients, as some of the patients

had more than one physiological escalation event.

The number of escalation events detected by continuous T&T (i.e. the true positive

rate), and the sampled T&T scores, T&T15,30,60, are shown in Figure 3.2.5 for window

lengths varying between t = 1 and t = 60 minutes. An escalation event was deemed to

have been detected when the initial physiological escalation was detected within the test

window. The �gure also shows the number of escalation events which would have been

detected, that is, the number of True Positives, on a per-patient basis.

The majority of escalations were detected within a 10-minute window length, regardless

of the frequency of T&T observations. With a ±10-minute window, the continuous T&T

system detects 36 out of 43 escalation events (see Figure 3.2.5). In comparison, the

sampled T&T scoring systems perform worse, with T&T15 (i.e. intermittent observations

every 15 minutes) detecting 25 out of 43 escalation events and T&T30 and T&T60 detecting

16 and 10 escalation events respectively.

By considering the same data on a per patient basis, Figure 3.2.5 indicates that 24 out

of 29 patients would have had their escalations of care identi�ed by continuous T&T in

comparison to 14, 8, and 5 patients for the T&T15, T&T30 and T&T60 systems respectively.

At the maximum window length considered, 60 minutes, continuous T&T would have

detected 40 escalation events and 26 out of 29 patients. In comparison, the next best

system, T&T15, would have detected only 32 escalation events. Although the system's de-

tection performance improves marginally for at the longer window lengths, it is debatable

whether or not the vital sign and the event are linked for window lengths of 60 minutes.

Table 3.2 showed that there were 269 patients who did not have any escalation events.

These will be True Negatives if the continuous T&T score did not meet the T&T calling

criteria at any time during the patient's stay, and a False Positive otherwise. The same
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Figure 3.2.5.: Left : Number of correctly identi�ed A2 and B2 escalation events (true posi-
tives) over a range of window lengths, Right: Number of correctly identi�ed
�rst A2 and B2 escalations (True Positives on a per patient basis)

Continuous T&T T&T15 T&T30 T&T60

True Negative (Zero Alerts) 101 (49) 168 (116) 183 (131) 200 (148)
False Positive (≥ 1 Alerts) 168 101 86 69

Table 3.3.: Summary of the true negative/false positive rate for patients with no escalation
events

analysis was undertaken using the sampled T&T scoring systems (T&T15,30,60) and the

results are listed in Table 3.3. We note that the 269 patients include those who did not

have any continuous data. The corresponding �gures for those with continuous data are

shown in brackets.

The per-patient False Positive shown in by Table 3.2 is a slight oversimpli�cation. In a

clinical setting, the importance of a False Positive depends both on how often and for what

duration the T&T score meets the calling criteria. For instance, long-term false alerts

that require intervention may add signi�cantly to the nursing workload, whereas transient

false alerts are likely to have resolved themselves before sta� can respond. We can assess

this e�ect by �rst calculating the number of occasions on which the T&T alert criteria

were met per patient, when using the continuous T&T score, as shown in Figure 3.2.6.

Similar distributions are also plotted for the patients who had physiological escalations,

and the patients who had no escalations.

The two sub-populations have markedly di�erent distributions. The no-escalation group
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Figure 3.2.6.: Number of alerts per patient when using the continuous T&T system. The
plot in white shows the distribution for the entire population, while the plots
in orange and green show the alert distribution for patients with physiolog-
ical (A or B) escalations and no escalations respectively.

contains 78.8% of its data mass between 0 and 5 alerts and has a median of one alert. In

comparison, the group of patients with physiological escalations contains 53.4% of its data

mass between 0 and 5 alerts, and has a median of �ve alerts. We can compare the two

distributions using the Mann-Whitney rank-sum test, which tests whether their medians

di�er by a statistically signi�cant amount. The advantage of this test over other tests

such as the Student T-test, is that it does not assume any knowledge about the shape of

the distribution. The two sets of data are ranked by value. The test statistic, U, is then

given by:

U1 = R1 −
n1(n1 + 1)

2
(3.2.2)

where R1 is the sum of the ranks for the �rst set of data, which contains n1elements.

U1thus represents the di�erence between the actual rank-sum and the expected rank-sum.

To gauge whether U is statistically signi�cant, we assume that U is normally distributed

for large samples, so that the normal approximation for the Mann-Whitney test can be

used. The standardised test statistic is calculated as:

z =
U −mu

σu
(3.2.3)

where mu and σu, the mean and standard deviation of U, are:
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mu =
n1n2

2
(3.2.4)

σU =

√
n1n2(n1 + n2 + 1)

12
(3.2.5)

Applying this to our data set indicates that the medians of the two groups are sig-

ni�cantly di�erent (p = 1.4 × 10−9). Although the no-escalation group meets the T&T

alerting criteria far less frequently on average, there is nevertheless a wide range, and 37

(13.8%) of these 269 patients exceeded the alerting criteria more than 10 times during

their stay in the ED.

Using the information required to generate Figure 3.2.6, we can also calculate an �alert

rate� by dividing the total bed-time by the number of alerts (i.e. the number of occasions

on which the continuous T&T score is greater than the alert criteria for a particular

patient group). For the entire study population, 1708.4 hours of data were recorded, and

the continuous T&T system would have generated 2503 alerts. This gives an estimate of

1.47 alerts/hour per bed. By considering only the patients with no alerts, and assuming

that all alerts for these patients are incorrect, we can estimate an underlying false alert

rate on the same basis. 1120 false alerts during 1156.7 hours of data gives an estimate

of 0.97 false alerts/hour per bed. In comparison, the alert rate for patients that had

physiological escalations is 1.77 alerts/hour per bed.

The impact of false alerts can be assessed by assuming that false alerts that persist for

a short time are likely to be less problematic than those that sustain for a long period.

We therefore calculated, for each patient, the time that the T&T alerting criteria was

met as a percentage of the total vital sign recording time (Figure 3.2.7). As expected,

patients with physiological escalations had longer alerts on average than patients with no

escalations, and their median alert lengths were 36.9% and 5.6% of the vital sign record

length, respectively.
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Figure 3.2.7.: Time spent in the alert state as a percentage of the total time on the ward,
for the whole population, and the sub-populations with No Escalations, and
Physiological (A or B) escalations.

3.3. Discussion

Our results show that the overall level of data collection was acceptable, with a 21%

upper-bound estimate on percentage data loss per patient. Technical problems accounted

for the vast majority of the 74 patients with no recorded data, though in a small number

of cases, continuous monitoring was not considered clinically appropriate; for instance, if

a patient was unable to tolerate monitoring. The exact number of these patients could

not be obtained from the ED data set due to the brevity of the written medical notes.

The technical issues included power outages that caused the data collection server to

shut down (despite using an uninterrupted power supply unit), and periods during which

the hospital's data server was switched o� due to overheating. These issues were largely

beyond our control, and did not a�ect whether or not the continuous vital sign data were

displayed on the bedside monitors.

The data loss for each vital sign channel was summarised in Table 3.1. During the

study period, we received anecdotal evidence that some patients would remove the SpO2

�nger probes due to discomfort; thus, some improvement in data collection rates may be

achieved by using more ergonomic pulse oximetry probes. However, the most signi�cant

losses of data occur when all vital signs are simultaneously lost, most likely as a result

of patients being disconnected from bedside monitors when moving between locations in

the department.
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3.3.1. True Positives

Table 3.2 showed the number of physiological and non-physiological escalation events

that the continuous T&T system would have been able to detect. In comparison to

the 90 physiological escalation events detected by retrospective T&T computed for nurse

observations, continuous T&T performs relatively poorly, detecting only 61 escalation

events. The worse performance can be attributed to a number of factors.

For instance, the continuous T&T system cannot be expected to detect any of the

15 neurological escalation events (B1 and B2 events), as the measure of neurological

function, GCS, requires a human observer. Relevant data may also be unavailable for

any of the type-1 escalations event (A1,B1,C1), that is, escalation events that occurred

at the time of, or prior to, the patient's arrival in the ED. In these instances, the patients

will have been manually observed, assessed and escalated before being assigned to a bed

with continuous monitoring equipment. In addition to this, vital sign data at the time of

the escalation event may be unavailable in some cases due to patients being disconnected

from the monitors. The extent of data loss during escalation events can be assessed using

Figure 3.2.4, where we see that there was high data loss within the escalation windows.

3.3.2. False Positives

Table 3.2 also showed that 168 out of 269 patients would have generated False Positives

with continuous T&T. These patients had no escalations of any type, but their vital signs

still exceeded the T&T thresholds on at least one occasion. This again does not compare

favourably with retrospective T&T, which generated only 80 false positives.

In our analysis, we counted a False Positive every time a patient for whom one of the

T&T thresholds was exceeded despite the patient having no escalation event during their

stay in the ED. The validity of using this method is heavily dependent on the notion that

escalations are directly correlated with physiological abnormality, and that the opposite

is also true. The data distributions in Figure 3.2.3 con�rm that this is the case, showing

that the vital sign data for the patient group with no escalation events is largely within

the T&T thresholds.

In Section 3.2.2 we estimated the overall false alert rate for patients with no escalations
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to be 0.97 alerts per hour, with alerts typically enduring for 5% of the total stay. While

this �gure may at �rst sight appear reasonable, this changes when we consider the false

alert rate in the context of a typical ED such as the 20-bed unit at the John Radcli�e

hospital. We would then expect 20 alerts per hour, or one every 5 minutes if alerts were

spread uniformly. Thus, if continuous T&T were to be included in an audible alarm

system, a constant and unacceptable level of background noise would be generated.

The high sensitivity of the system may be attributed to the observation frequency,

because a high frequency allows T&T to detect short-term transient events which would

be missed at lower frequencies of observation. Table 3.3 clearly demonstrates that the

number of False Positives increases as the observation frequency is varied from 60 to 1

minute. Similarly, Figure 3.2.5 shows that the number of detected escalations increases

with the observation frequency.

High numbers of alerts can occur when a patient is borderline abnormal, and many

transient events occur. For instance, consider Figure 3.3.1, which shows the continuous

T&T data alongside the vital sign data for study patient ED00571, an 89 year-old female

patient who had presented to the ED after falling and dislocating an arm. The SpO2

record is fairly stable, and �uctuates around a mean of 94%. This is veri�ed by the

manual observations, all of which are 94% or 95% during the patient's stay. However, for

short periods of time, between one and two minutes, the SpO2 intermittently dips below

92%, thus meeting one of the T&T thresholds. During the 90-minute monitoring period,

the vital signs exceed the T&T thresholds on six separate occasions. However, there were

no documented escalations during this period, which indicates that the six alerts were

probably False Positives.

3.3.3. Persistence Criterion

From our previous example, it is clear that one of the reasons for the high number of

false alerts is the frequent occurrence of short-term transient changes in the vital signs.

These transients are most likely due to external factors such as patient movement. In

order to reduce the e�ect of these transients, we now modify the continuous T&T system

by introducing a persistence criterion, and assess its e�ectiveness using the same metrics.
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Figure 3.3.1.: Continuous T&T scores for study patient ED00571, showing multiple calls
for intervention (highlighted in grey), based on a �uctuating SpO2, near
the critical threshold.

In the original continuous T&T system, an alert was generated for any instance that the

T&T alerting threshold was exceeded. In the modi�ed model, an alert is only generated

if the T&T alerting threshold is exceeded for any 4 minutes out of a sliding 5 minute

window. The only exception to this rule occurs for blood pressure. If the T&T threshold

is exceeded due to a change in blood pressure, then the alert is generated immediately, as

the blood pressure measurements are typically recorded relatively infrequently.

The alert is stopped when the continuous T&T value drops below the alerting threshold

for at least 2 minutes out of a 3-minute sliding window. The parameter values used here

are arbitrary, and may be considered as merely an initial solution. The sensitivity and

speci�city of the continuous T&T system including the persistence criterion is:

sensT&T = 24
24+5

= 82.7% specT&T = 49
49+168

= 22.6%

sensT&T persist = 19
19+10

= 65.5% specT&T persist = 74
74+143

= 34.1%

We can examine the e�ect of the persistence criterion more widely by recalculating the

time spent in the alert state and the number of alerts per patient, and replicating the

graphs of Figures 3.2.6 and 3.2.7 for a modi�ed continuous T&T system that includes a

persistence criterion. Figure 3.3.2 can be directly compared to Figure 3.2.6, where it can
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Figure 3.3.2.: Number of alerts per patient, using the continuous T&T system with a
persistence criterion.
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Figure 3.3.3.: Time spent in the alert state as a percentage of the total time in the ED,
when using the continuous T&T system with a persistence criterion

be seen that far fewer alerts are generated by the modi�ed system. Whereas previously

the false alert rate was estimated at 0.97 false alerts/hour per bed, the e�ect of the

persistence criterion reduces this number to 0.57 false alerts/hour per bed. In comparison

to the original continuous T&T system (see Figure 3.2.7), the percentage of time spent

in the alert state after the introduction of the persistence criterion, which is depicted

in Figure 3.3.3, decreases slightly for each of the groups considered. The small changes

in length of alert, and large changes in number of alerts, are entirely expected, as the

persistence criterion acts to eliminate the many transient alerts.

The e�ect of the persistence criterion on an individual case can best be seen by consid-

ering once again patient ED00571. In Figure 3.3.4, the continuous T&T score including
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Figure 3.3.4.: Continuous T&T score including the persistence criterion for Patient
ED00571. The corresponding vital signs and unmodi�ed continuous T&T
score are shown in Figure 3.3.1

the persistence criterion is plotted. In comparison to Figure 3.3.1, the modi�ed system

contains no greyed-out areas representing periods of alert for this patient, as each increase

in the SpO2 score lasts for a no more than one minute and are not frequent enough to

meet the persistence criterion.

While the persistence criterion solves the problem of transient alerts, we also observe

that continuous T&T has the further drawback of producing large changes in score even

though there may only be relatively minor changes in the patient's vital signs. For in-

stance, the T&T score for patient ED00571 �uctuates from a completely normal score

of zero, to a severely abnormal score of 3. This behaviour highlights the coarseness of

the T&T scores, which takes only integer values between 0 and 3. While this simpli�es

the calculation of the T&T score by the nursing sta�, automatically computed contin-

uous T&T scores do not have be subject to these limitations, and a better detection of

deterioration may be achieved by a more �nely-graded score.

3.4. Conclusion

We have attempted to use the T&T system in a continuous manner to try and identify

deterioration events in ED patients. The continuous T&T system developed here did

not fully replicate the manual T&T system as used on the ED because temperature and

GCS measurements were not available, and so our implementation relied on only four

vital signs. A more complete vital sign monitoring system may be able to use continu-

ously recorded skin temperature measurements, and additionally make use of intermittent

manual observations such as the GCS score.

Our results show that the four vital-sign continuous T&T system would have been
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able to detect the majority of the escalation events, the latter being considered to be

an appropriate proxy for patient deterioration. However, the system also misclassi�ed

a large proportion of the patients in the �no escalations� group, with many of these

patients, 13.8%, having at least ten false alerts. The number of False Positives, 168, was

signi�cantly higher than the number of False Positives for the retrospective T&T system

used in Chapter 2, where only 80 out of 269 patients were incorrectly classi�ed.

In order to e�ectively detect patient deterioration in real time, a monitoring system

must have high speci�city, such that it does not generate large numbers of false alerts,

while still being able to correctly identify escalations. We showed that the number of false

alerts in the continuous T&T system may be reduced through the introduction of a simple

persistence criterion. However, we further note that the current T&T scoring system has

a coarse scale. For instance, a drop in SpO2 from 100% to 93% will have no e�ect on the

overall T&T score for that patient, but may have clinical value in helping to detect future

deterioration. A �ner-grained scoring system may lead to improved detection of patient

deterioration.

In the following chapter, we begin to investigate whether other techniques may be more

e�ective than continuous T&T at detecting escalation events while still maintaining a

low False Positive rate. We start by analysing a baseline data fusion technique and then

introduce three alternative techniques which address some of the baseline technique's

weaknesses.
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4. Data Fusion for Patient Vital

Sign Monitoring

In Chapter 3, we demonstrated that it was possible to identify deterioration by apply-

ing the ED T&T criteria to continuous data. We also observed some drawbacks of this

approach. Firstly, the continuous T&T system generated many false alerts. These were

attributed to brief changes in the measurements caused by insigni�cant transient changes

in the patient, or else by measurement artefacts caused by, for instance, patient move-

ment. The number of false alerts was greatly reduced by the introduction of a persistence

criterion.

Secondly, we also noted that the T&T scoring system is coarse-grained, as the T&T

score for each vital sign parameter may only take integer values between 0 and 3. While

this enables the total score to be calculated quickly by nursing sta�, it may also prevent

gradual deterioration from being detected.

In this chapter, we begin to investigate whether alternative methods may be more

e�ective at identifying patient deterioration, while keeping the number of false alerts at a

manageable level. Firstly, we will focus on an intelligent continuous vital sign monitoring

system that uses a previously developed data fusion model. After describing how the

model is derived, we then discuss its advantages and limitations. Following this, we

outline two alternative methods for improving on this baseline data fusion model.
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4. Data Fusion for Patient Vital Sign Monitoring

4.1. A Baseline Data Fusion Algorithm for Patient

Monitoring

We �rstly consider the vital sign data fusion system previously developed in our research

group to identify patient deterioration in real time. The system, described by Tarassenko

et al. [110], uses a model initially trained on pilot study data acquired at the John

Radcli�e Hospital, Oxford, which has since been tested using data collected from the

Clarian Methodist Hospital in Indianapolis and at the University of Pittsburgh Medical

Centre (UPMC) [49, 56].

The central premise of the system is that acute patient conditions are strongly associ-

ated with uncommon, or novel, vectors of vital signs. A vital sign `vector' is de�ned as

the set of all vital sign parameters values recorded at one instant in time. The system

attempts to distinguish between novel and normal vectors. By considering vectors, rather

than each vital sign parameter individually, the method takes into account associations

between parameters, as explained below.

There are two main approaches to classi�cation. In �supervised� learning, the training

data are labelled, and the classi�cation algorithm attempts to group the training data such

that data points with the same label are assigned to the same class. In this application,

the simplest labels that we can assign the data are either �patient stable�, or �patient

unstable�, which can then be used to classify the data.

However, in our case, most of the data will come from the �patient stable� group as

events, such as escalations of care, are rare, even in acutely-ill patients. In addition, the

�patient unstable� group is unlikely to cover all possible unstable conditions. In such

a case, supervised learning may lead to incorrect classi�cation in regions with few data

points in the training set. The alternative is unsupervised learning, in which a labelled

data set is not required, and which instead uses the distribution of features of the data

set to learn the boundaries of the one class represented in the data set.

The algorithm described here uses unsupervised learning, or a one-class classi�cation,

assuming that the training data comes from patients with normal physiology. Any new

data vectors that are su�ciently dissimilar to the training data are then considered to be

85



4. Data Fusion for Patient Vital Sign Monitoring

novel. To achieve this, it is assumed that any vital sign vector may be modelled as an

independent selection from some underlying N-dimensional joint distribution over the N

vital sign vectors. When a new vector from a continuously monitored patient is presented

to the system, the probability of the vector being selected from the estimated underlying

distribution is calculated, and then converted into a Patient Status Index (PSI). The PSI

is designed so that novel vital sign vectors are assigned a high score. A threshold on

the PSI is then determined so that any vectors above the threshold are assigned to the

�patient unstable� group.

This method avoids two of the major drawbacks of the T&T early warning scores.

Firstly, in contrast to the subjective T&T scores, PSI scores are calculated using a model

derived from training data collected from a large, representative population of acutely-ill

patients, thus providing an objective, data-driven score. In addition, the method used

to evaluate the underlying model's probability density function (p.d.f.) allows for small

changes in vital signs, unlike the T&T scores, which provide coarse estimates of vital sign

abnormality as the scores may only take integer values.

The following section describes the data fusion algorithm in greater detail, showing how

the model is derived from training data and how new vital sign data are interpreted to

provide alerts as a result of patient deterioration. An overview of the training procedure

is provided in Figure 4.1.1.

4.1.1. Training Data and Pre-Processing

The original model was trained on 3,500 hours of continuous vital sign data collected

from 150 high-risk patients at the John Radcli�e Hospital, Oxford between 2001 and

2003 as part of an observational study [110]. The patient group included those who

had severe heart failure, acute respiratory problems (such as acute asthma or pneumonia

or pulmonary embolism), trauma, and those who were being continuously monitored

following a myocardial infarction. The vital signs measured were HR, RR, temperature,

SpO2, and Systolic and Diastolic blood pressures (SBP and DBP), using the continuous

monitoring methods described in Chapter 1. The HR, RR, temperature and SpO2 values

were sampled at a frequency of approximately 1Hz. SBP and DBP were measured at
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Figure 4.1.1.: Flow diagram showing the steps involved in constructing a model of patient
normality and calculating a Patient Status Index for test vectors

Lower Threshold Upper Threshold

HR (bpm) 30 300
SDA (mmHg) 20 180
SpO2 (%) 60 -
Temp. (◦C) 32 39
RR (rpm) 3 45

Table 4.1.: Physiological upper and lower bounds for the �ve vital sign parameters. Sys-
tolic and Diastolic blood pressure have been combined into one parameter,
Systolic-Diastolic Average (SDA)

30-minute intervals during the day, and at hourly intervals during the night, when the

patient was asleep.

Because the channels of data were recorded asynchronously, the vital sign data were

�rst aligned into vectors, and then sampled at 5-second intervals. This produced 2.6×105

vectors of vital signs, with each vector having �ve elements (one per vital sign parameter).

Vectors with elements which had physiologically implausible values were rejected ac-

cording to the criteria shown in Table 4.1. Any SpO2 readings below 85% were also

discarded, as the pulse oximeter is considered to be inaccurate for SpO2 measurements

below this value. The e�ect of this was to reduce the number of available training vectors

to 2.4× 105. The distributions of each of the vital signs in the training set are shown in

Figure 4.1.2.
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Figure 4.1.2.: Vital sign distributions for the training data set
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µ σ

HR (bpm) 83.7697 17.4831
SDA (mmHg) 94.6828 16.5471
SpO2(%) 95.2000 3.4900

Temp. (◦C) 36.0459 1.2767
RR (rpm) 18.3043 5.0568

Table 4.2.: Mean (µ) and standard deviation (σ) of each vital sign parameter in the train-
ing set

In the data fusion model, it is implicitly assumed that each of the vital signs has equal

importance, and should therefore have an equal weighting in the model. The �nal two

steps of data pre-processing were undertaken according to this assumption. Firstly, only

one measurement of blood pressure was used in the vital sign vector (now �ve-dimensional)

to avoid placing more importance on blood pressure than on the other vital signs. SBP

and DBP, were combined into one parameter, the Systolic-Diastolic Average (SDA), by

calculating their arithmetic mean. As a result, SBP and DBP have equal in�uence on the

blood pressure parameter, despite the fact that SDA is not a standard measure in clinical

care.

The �nal stage of pre-processing involved scaling each of the parameters by applying

the zero-mean unit-variance transformation on each vital sign measurement v:

vn =
v − µ
σ

(4.1.1)

where vn is the scaled value, µ is the mean value for that vital sign in the training set,

and σ is the training set standard deviation. The mean and variance of each vital sign

parameter are shown in Table 4.2.

4.1.2. Parzen Windows

Parzen windows allows the underlying 5D vital sign distribution, or p.d.f., to be estimated

from training data points. While other methods, such as Gaussian mixture models, were

considered, Parzen windows was chosen as it has the advantage of being a non-parametric

technique. This means that no a priori assumptions are made about the form of the

probability distribution.
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In the Parzen windows scheme, we estimate the p.d.f. of a random variable, X, by

placing a kernel function on each training data point. The estimated p.d.f. is the lin-

ear combination of the kernels, which is then normalised by the number of kernels so

that the integral is 1.0. Mathematically, Parzen windows can be described as follows:

if x1, x2, ..., xN ∼ f is an independent and identically distributed sample of a random

variable, then an approximation of the p.d.f. evaluated at a new data point, x, can be

written as:

f̂h(x) =
1

Nh

N∑

i=1

K

(
x− xi
h

)
(4.1.2)

where K is some kernel function, N is the number of training data points, and h is

a smoothing parameter. Analysis has shown that, in the limit, the shape of kernel is

not crucial for estimating the p.d.f. in the case of independent and identically distributed

random variables [28], but it must be symmetric and integrate to 1.0. For this application,

a multivariate Gaussian kernel with dimension, d, and zero mean and unit variance was

chosen:

Kx =
1

(2π)d/2
exp

{
−x2

2

}
(4.1.3)

so that the Parzen windows estimate for this problem is:

f̂h(x) =
1

N(2π)d/2σd

N∑

i=1

exp

{
−|x− xi|2

2h2

}
(4.1.4)

The smoothing parameter, h, is also equivalent to the kernel width, and has the e�ect of

controlling the level of detail in the Parzen windows p.d.f. As Figure 4.1.3 demonstrates, a

large value of h leads to a distribution that is too general and does not capture the details

of the data, while too small a value causes the p.d.f. to be over-�tted to the data. In

theory, a risk function metric such as the Mean Integrated Squared Error may be used to

derive the optimum value of h. However, in practice, the true state of the underlying p.d.f.

is not known, and data-based methods such as cross-validation, or maximum likelihood

estimates are often used.

90



4. Data Fusion for Patient Vital Sign Monitoring

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

x

 

 

reference

h=0.3

h=0.6

h=1

Figure 4.1.3.: Parzen windows model of a zero mean, unit variance Gaussian distribution
using 30 kernels and various width parameters. The original distribution is
shown in dashed lines. For h=1, the Parzen windows p.d.f. is wider than
the underlying distribution, whereas for h=0.3, the thin kernels lead to an
over-�tted model.

4.1.3. Application of Parzen Windows

While the Parzen windows technique is simple and generalisable, it is impractical to apply

it directly to our training data set due to the large number of training vectors (> 105). In

particular, such a solution would require storage of all the training vectors, xi, and each

estimate f(x), would require a number of additions and computation time proportional

to the size of the training set.

To circumvent this problem, the number of training vectors is reduced to 400 �proto-

type vectors�. The reduction in training vectors is implemented in two stages. Initially,

the training data vectors were clustered into 500 prototype vectors using the K-means

algorithm (see algorithm 4.1); the resulting centroids of each cluster were de�ned to be

Algorithm 4.1 The K-means algorithm
1. Place K initial points into the space represented by the objects that are being

clustered

2. Assign each object to the group that has the closest centroid

3. When all objects have been assigned, recalculate the positions of the K centroids

4. Repeat until convergence
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a prototype vector. The number of prototype vectors selected at this stage was chosen

empirically, but 500 centres have since been shown to provide a reasonable model [26].

The training data from which the p.d.f. is derived contains vital signs from all moni-

tored patients. In the majority of cases, these vital signs correspond to times when the

patient was stable. However, in a few instances, vital signs will have been recorded from

patients who were unstable, even for a short period of time. These abnormal events in

the data set will be captured as clusters during the K-means procedure, and we should

therefore remove the outlying cluster centres to ensure that only normal physiology is

captured .

The second stage of the data reduction was implemented by discarding the 100 pro-

totype vectors with the greatest Euclidean distance from the origin so that only the 400

most �normal� vectors are used in the subsequent Parzen windows model. An investiga-

tion by Hann [41] using patient data from a separate study con�rmed that this adaptation

was an improvement over the 500-vector model.

The removal of 100 points was based on the empirical observation that roughly 20% of

the vital sign values recorded for acutely-ill patients represent abnormal physiology. The

removal of 20% of values can be further justi�ed by calculating the percentage of manual

observations, for the ED data, that resulted in a single vital sign channel with a T&T

score of 3. In total 722/3025 (23.9%) of the ED observations met this criterion.

The e�ect of this process is visualised in Figure 4.1.4 using a 2D Sparse Approximated

Sammon Stress (SASS) map of the cluster centres. The SASS visualisation is based on

the Sammon map, which attempts to maintain Euclidean distances between points in the

original feature space, and the (typically 2D) visualisation space. Further details on both

Sammon maps and SASS visualisation are given in Appendix B.

The baseline model of normality estimates the p.d.f. of the vital sign distribution using

the Parzen windows method with 400 prototype vectors. The kernel width parameter was

set using a heuristic suggested by Bishop [11], who recommended calculating the mean of

the local estimate of the variance at each vector location:

h =
1

N

N∑

i=1

(
1

m

∑

j∈Qi

|xi − xj|2
)

(4.1.5)
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Figure 4.1.4.: SASS map of the 400 prototype centres in blue, and the 100 removed pro-
totype centres in red.

where N is the number of prototype vectors, and Qi are the m nearest neighbours for

each vector. m = 10 members was chosen, which produced a value of h = 1.49, and so

the Parzen windows estimate for the baseline model, f(x), is given by:

f(x) =
1

400(2π)
5
2 1.495

400∑

i=1

exp

{
− |x− xi|2

2× 1.492

}
(4.1.6)

4.1.4. Patient Status Index

In order to provide a score corresponding to the novelty of a patient's vital sign vector,

the Patient Status Index (PSI), which is also known as the Visensia Status Index and

Novelty Index in related literature [50, 49], is calculated from the p.d.f. as follows:

PSI = log

(
1

p(x)

)
− log

(
1

pmax(x)

)
= log

(
pmax(x)

p(x)

)
(4.1.7)

where p(x) is the p.d.f. evaluated at x, and pmax(x) is the maximum possible value of

p(x). This point can be determined using gradient descent methods, and is approximately

located at the origin and has a value of 6.08 when a 5-dimensional Parzen windows model

is generated using the training data. pmax(x) is subtracted to adjust the scale so that

the PSI is close to zero when all the vital signs are normal. The log transform of the
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probability is used so that a low probability corresponds to a high PSI score, so that a

high score indicates highly improbable, abnormal physiology.

4.1.5. Frequency of Score Calculation and Missing Data

To use the data fusion model with test data, a vector of data containing all channels of

vital sign data is required so that a point on the p.d.f. can be evaluated. However, with

most vital sign monitors, each channel of data is treated independently and hence data

are received asynchronously. To deal with this, values of all the vital sign parameters are

sampled-and-held, and a new PSI is calculated each time new data from a single channel

becomes available.

In practice, vital sign data may be unavailable for extended periods of time due to

disconnection of the sensors; this often occurs as electrodes become poorly attached over

time, or as patients actively remove the pulse oximeter �nger probe. To deal with this

situation, a simple heuristic is used. If a vital sign parameter value is missing over a

one minute period, the median value of that vital sign over the last �ve minutes is used

instead. This heuristic is used for all the vital signs apart from blood pressure, which is

sampled far less frequently.

If data are missing for 30 minutes or more, the mean value of the vital signs in the

training data set is used instead. This has the e�ect of reducing the dimensionality of

the data fusion model by limiting vital sign vectors to a 4D cross section of the 5D data

space. The short term median �lter and population mean methods are only deemed valid

in the cases where up to two vital sign parameters are missing. In the case of any further

data drop-out, no PSI is calculated.

4.1.6. Alert Generation

By setting a suitable threshold on the PSI, alerts can be generated that are associated

with vital sign abnormality. The baseline model uses a threshold of PSI = 3.0, and

the suitability of this threshold was assessed by considering how the PSI responded to

single channel events. This was achieved by varying only one vital sign parameter at a

time, between -4 and +4 standard deviations from the mean, while keeping the others
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Figure 4.1.5.: Patient Status Index for the case when each vital sign parameter is varied
from -4 to +4 standard deviations in turn, while �xing the remaining vital
signs at their normalised mean value of zero.

Lower Threshold Upper Threshold

Vital sign Deviation
from mean

(σ)

Vital sign Deviation
from mean

(σ)
HR (bpm) 25.29 -3.34 142.90 3.38

SDA (mmHg) 43.72 -3.08 151.29 3.42
SpO2(%) 83.52 -3.35 N/A N/A

Temp. (◦C) 32.01 -3.16 39.67 2.84
RR (rpm) 1.59 -3.30 34.37 3.18

Table 4.3.: Values of individual parameters that cause the novelty to exceed PSI = 3.0,
when the other parameters are set to the mean value in the training set.

�xed at their mean value (Figure 4.1.5). SpO2, was only varied between -4 and +1.37

standard deviations away from its mean value, as 100% oxygen saturation corresponds to

µSpO2 + 1.37σSpO2 .

The value of each vital sign at the candidate threshold is shown in Table 4.3, and

demonstrates that a PSI of 3 is reached when any the vital sign parameters are between

2.84 and 3.42 standard deviations from their mean value in the training set.

Tests conducted on a data set collected from a similar patient population to the training

data showed that the candidate alerting threshold was highly e�ective for single-channel

alerts and also for alerts that were caused by multiple vital signs [110]. Although a �xed

threshold of PSI 3.0 has both theoretical and empirical support, more complex methods

of generating alerts may produce better results [21].

In order to reduce the number of false alerts due to transient spikes in the PSI, a

heuristic persistence criterion that was �rst introduced for continuous T&T in Section
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3.3.3, is also introduced to the data fusion system here so that alerts are only generated

if the PSI exceeds the alert threshold for four minutes within the previous �ve minutes.

The alert will remain active until the PSI drops beneath the threshold for two minutes

out of three. The only exception to this is for alerts generated due to blood pressure. Any

PSI score that exceeds the alerting threshold due to changes in blood pressure generates

an immediate alert.

4.2. Shortcomings of the Data Fusion Algorithm

In the algorithm described in 4.1, we noted that directly applying Parzen windows to the

entire training data set was unfeasible due to computational costs. Instead, a sub-set of

400 �prototype� centres was extracted under the assumption that this reduced set would

be representative of the full training set. Further analysis, presented here, shows that this

assumption is not entirely correct.

In the �rst instance, it is simple to show that the assumption underlying the use of

the clustering step using the K-means algorithm is not true for all cases by using a 1-D

example. Consider the example in Figure 4.2.1, which shows a number of training data

points. The black line in the upper �gure shows the kernel density estimate from Parzen

windows, which appears to be an adequate estimate. The lower �gure shows the e�ect of

reducing the same data set by using K-means clustering with two centres, following the

procedure described in Section 4.2. The output of the K-means algorithm is represented

by two red crosses, and the subsequent Parzen windows estimate is shown as a black line.

The p.d.f. estimates using the two methods are considerably di�erent.

The di�erence can be explained by noting that the K-means clustering algorithm can

produce clusters of unequal population. When Parzen windows is used subsequently, the

least populated cluster will have the same in�uence as the most populated cluster. This

can be seen in Figure 4.2.1, in which the right-hand cluster has support from only four of

the twenty four data points, yet contributes to 50% of the probability mass estimate.

This argument holds true as long as there are di�erences in the cluster populations, and

the size of the e�ect will depend on how di�erent the cluster populations are. It therefore

remains for us to show whether di�erences in cluster population exist when the algorithm
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Figure 4.2.1.: The top graph shows a Parzen windows estimate of the underlying p.d.f.

based on the training data (in blue). The lower graph shows the e�ect
of applying an intermediate clustering step to provide two �prototypes� (in
red). The Parzen windows estimate in this situation is considerably di�erent
to that in the top graph, and does not model the data correctly.
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Figure 4.2.2.: K-means cluster populations for the 400 prototype centres and the 100
�outlying� centres, as described in Section 4.1.

is applied to real training data. For the training procedure and the data set described in

Section 4.1, the K-means cluster populations of the 400 prototypes are highlighted in red

in Figure 4.2.2. In addition, the remaining 100 `outlying' clusters are shown in blue. As

expected, the 100 removed `outlying' clusters have much lower populations, which serves

to reduce the error in the Parzen windows estimator.

However, the population of the remaining 400 prototype clusters still varies from 539 to

4538 data points. In the original algorithm, all of these prototypes have equal in�uence

on the model, whereas in a more principled scheme, the prototype with 4538 data points

associated with it should have approximately eight times the in�uence of the prototype

with 539 data points.

In summary, the use of the K-means algorithm, in combination with Parzen windows,

may cause the baseline model's e�ectiveness at detecting physiological deterioration to be

sub-optimal. Hence, there is a need to improve the baseline model's training procedure,

or else alternative machine learning techniques should be investigated. The remainder
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of this chapter considers two alternatives to the current training procedure. The �rst

method, weighted Parzen windows, is a natural extension to the original algorithm that

addresses the issue highlighted in this section. The second method uses one-class Support

Vector Machines (SVM), to construct the vital sign data fusion model of normality.

4.3. Weighted Parzen Windows

In the previous section, we highlighted the fact that the baseline model incorrectly esti-

mates the p.d.f. because each prototype centre is assigned an equal prior, despite the fact

that each prototype represents a di�erent number of training data. The most natural so-

lution to this problem is to allow each prototype a prior based on the number of patterns

associated with that cluster. This is known as Weighted Parzen Windows (wPw), and

was �rst proposed by Babich and Camps [5] to deal with the problem of the signi�cant

processing time and data storage needed to compute a kernel density estimate as a data

set becomes large. Mathematically, the wPw approximates Parzen Windows using a set

of m prototype patterns, and is described by:

pm(x) =
m∑

i=1

ωi
h
K

( |x− xi|
h

)
(4.3.1)

where ωi is the i
th cluster weighting and is equal to population of the ith cluster, divided

by the total size of the training set. All other variables take the same meaning as in

equation 4.1.4. The result of this process is that the kernels that lie in low density regions

of data space are assigned lower weightings, reducing those kernels' in�uence on the overall

shape of the estimated p.d.f., thus providing a more accurate estimate. Once the wPw

model is generated, the PSI score can be calculated using the transform given in Equation

4.1.7.

The accuracy of distributions generated by wPw was assessed on a simple 2D exam-

ple. 10,000 samples were selected from a 2D Gaussian distribution with unit variance in

both directions (Figure 4.3.1(d)). The data were then down-sampled using the K-means

algorithm to generate a subset of 50 prototype centres. The populations of each cluster

were stored and used to compute a kernel density estimate using wPw as described in
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Figure 4.3.1.: Kernel density estimates using 50 kernels derived from a 2D Gaussian dis-
tribution. (a) shows the Parzen Windows result using the original training
procedure (b) shows the Parzen Windows estimate using 50 kernels selected
directly from the underlying distribution, (c) shows the result of wPw, and
(d) shows the original distribution.

Equation 4.3.1, and the result is shown in Figure 4.3.1(c). The result from using the

original algorithm is shown in Figure 4.3.1(a). For comparison, 4.3.1(b) shows the e�ect

of applying Parzen windows to a randomly selected subset of 50 of the 10,000 samples.

In each case, the Parzen width parameter was set empirically at h = 0.1.

Through visual inspection, we can see that wPw is a better estimate of the origi-

nal Gaussian distribution than the limited centres Parzen Windows (b) and the original

training method (c). The degree of error for each of the models can be quanti�ed using the

Bhattycharyya distance, which measures the similarity of two probability distributions.

The Bhattycharyya distance is de�ned for discrete distributions as:

Db(p, q) = −ln(BC(p, q)) (4.3.2)

where:

BC(p, q) =
∑

x∈X

√
p(x)q(x) (4.3.3)

The Bhattycharyya distance between the original distribution and the estimates in

(a),(b) and (c) are 0.0470, 0.0662 and 0.0045 respectively, again demonstrating that the
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Figure 4.4.1.: (a) an example of a 2-input (x1, x2) two-class data set, show by the red
and blue dots. The data are not linearly separable, as indicated by the
black dashed line (b) shows the same two-class data set, with an additional
feature (x3 = x21 + x22). The inclusion of this extra feature allows the data
set to be linearly separated by a plane through x3 = 20, as indicated in
black.

wPw estimate is the most accurate. The distances were calculated over the range −5 ≤

x1 ≤ 5 and −5 ≤ x2 ≤ 5 in steps of 0.1 in each direction.

4.4. Support Vector Machines

One recent machine learning technique that has proved to be popular for pattern recog-

nition problems is the Support Vector Machine (SVM). Unlike the baseline model, SVMs

are unable to produce a probabilistic output, and cannot therefore provide a meaningful

PSI score. However, the method has been shown to provide accurate classi�cations in

numerous applications (for example, see [54, 81, 4]) which may be used, in the vital sign

monitoring context, to generate patient alerts. Introduced by Vapnik in 1995 [22], SVMs

were originally developed for two-class classi�cation. Although the basic technique uses

labelled data and is thus a form of supervised learning, SVMs can also be adapted for use

in novelty detection applications by using a one-class unsupervised version of the method.

The SVM attempts to linearly separate two classes of data (i.e. creating an optimal

hyperplane) in some feature space that may be high or in�nite dimensional. Such a

separation can be described mathematically by:

y(x) = wTφ(x) + b (4.4.1)
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Figure 4.4.2.: One margin, m1, is shown for a simple synthetic 2D data set in which the
feature space is the same as the input data space. The optimal solution,
which maximises the margin, is shown as m2

where φ(x) describes the transformation from the input data space to the feature space,

w is a vector of weights and b is a bias term. y = 0 then describes the decision boundary

plane. The transformation of the data into a high-dimensional feature space increases the

likelihood that the data become linearly separable. For instance, consider the case shown

in Figure 4.4.1(a). In this example, the training data is two dimensional (x1, x2) and the

two classes of data, show in red and blue, are not linearly separable. By the inclusion

of an additional feature, x3 = x21 + x22, the data can be separated by a plane in the 3D

feature space (Figure 4.4.1(b)).

The degree of separation between the two classes is de�ned with reference to the �mar-

gin�, which is the minimum perpendicular distance between the decision boundary and

any of the transformed data points in the training set. Optimal separation occurs when

the margin is maximised. For instance, the example in Figure 4.4.2 shows two possible

separating planes, but the margin m2 is larger and thus corresponds to a better solution.

Figure 4.4.2 also demonstrates that the optimal solution in this case is only a�ected

by the four data points that are closest to the decision boundary. This hints at the fact

that general solutions to this type of problem may only depend on a small subset of the

data, the so-called �support vectors�. We now show how this problem can be formulated

mathematically, following the treatment of the problem by Bishop [12].
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4.4.1. Primal Formulation

Initially, we consider a two-class problem for which each of the data points is assigned a

target, tn, of -1 or +1 according to their class. Furthermore, we assume that the data

can be linearly separated in the feature space. The decision boundary is de�ned by the

hyperplane y(x) = 0, and all new data are classi�ed according the sign of y(x), so that

any data for which y(xn) < 0 is assigned tn = −1, otherwise it is assigned to tn = +1.

Consequently, the following inequality must hold:

tny(xn) > 0 (4.4.2)

The perpendicular distance of a point x, from the separating hyperplane y(x) = 0 can

be shown to be y(x)
‖w‖ through geometric arguments [12]. Using this identity with Equation

4.4.2, the scalar distance between some point, xn, and the plane is given by:

tny(xn)

‖w‖ =
tn(wTφ(xn) + b)

‖w‖ (4.4.3)

where the multiplication of y(xn)‖w‖ by tn merely ensures that resulting distance is positive.

The minimum distance to the hyperplane (i.e. the margin) can be found by minimising

this expression over all n data points. The SVM solution seeks to maximise the margin by

adjusting the hyperplane through the parameters w and b. The SVM objective function

is thus the maximin:

arg maxw,b

{
1

‖w‖ min
n

[tn(wTφ(xn) + b)]

}
(4.4.4)

where the term in the curly brackets is the margin. Without loss of generality, w and

b can be rescaled to derive the canonical representation of the problem. We rescale the

problem such that the minimum distance to the hyperplane is �xed as 1, and thus all of

the n data points, x, must be subject to the constraint:

y(xn) = t(wTφ(xn) + b) ≥ 1 n = 1, ..., N (4.4.5)

Thus, the maximin optimisation in equation 4.4.4 can be reduced to the maximisation
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of 1
‖w‖ , subject to the constraint in equation 4.4.5. Rather than maximising 1

‖w‖ , we

instead choose to solve the equivalent problem, the minimisation of 1
2
‖w‖2, where the

coe�cient of 1
2
has been introduced to simplify the mathematics. It should be noted that

the original objective function called for a maximisation over both w and b. However,

in practice we only need to optimise over ‖w‖, as all changes in w will a�ect b via the

constraints.

The constrained optimisation problem can be reformulated using Lagrange multipliers.

Lagrange multipliers are a mathematical technique which allow constrained optimisations

to be rewritten as an unconstrained optimisation in terms of an objective function and a

weighted sum of the constraints. The reformulation is known as the Lagrangian [24]. The

Lagrangian for this problem is:

L(w,b, a) =
1

2
‖w‖2 −

N∑

n=1

an{tn(wTφ(xn) + b)− 1} (4.4.6)

where an is the Lagrange multiplier for the constraint on the data point xn. There is

a minus sign in front of the Lagrange multiplier, as we are minimising with respect to w

and b, and maximising with respect to a. The Lagrangian can then be solved directly

using computational optimisation techniques (such as gradient descent) to give values for

w and b. However, we instead choose to reformulate the problem into a form that is

easier to solve, and allows us to work more easily in high dimensional feature space.

4.4.2. Dual Formulation

The constrained SVM problem can be converted into an alternative, dual, form by noting

that the partial di�erentials of the Lagrangians must be zero at the solution. The resulting

expressions may be substituted back into the Lagrangian, eliminating w, and producing

an optimisation in terms of the Lagrange multipliers instead. In this case, the partial

derivatives must satisfy:

∂L
∂w

= w −∑ antnφ(xn) = 0

∂L
∂a

=
∑
antn = 0

∂L
∂b

= 0

(4.4.7)
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By substituting these back into the Lagrangian, the dual representation of the problem

can be derived, which expresses the optimisation in terms of the Lagrange multipliers and

a kernel function k(xn,xm) = φ(x)Tφ(x):

L(a) =
N∑

n=1

an −
1

2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (4.4.8)

The Lagrangian is now maximised with respect to a. In order to ensure that there is a

solution, the kernel must be positive de�nite, such that the second term in the equation is

always negative. In this case, the solution of the constrained optimisation can be solved

using the Karush-Kuhn-Tucker (KKT) conditions, which are a set of general constraints

that are used when the problem constraints contain inequalities [24]. The KKT conditions

in this case are:

an ≥ 0

tny(xn)− 1 ≥ 0

an{tny(xn)− 1} = 0

(4.4.9)

and can be solved computationally.

The advantage of the dual representation is that all of the data (x) terms appear within

a dot product, or kernel. Rather than having to speci�cally choose a high dimensional

transformation φ(x), and solve the optimisation in the transformed space, the so-called

`kernel trick' allows us instead to pick a simple function that returns the dot product of

some implicit nonlinear transformation. To classify new points using the dual form, we

substitute for w using Equation 4.4.7 to transform the expression in Equation 4.4.1 to

one that only contains the kernel k:

y(x) =
∑

antnk(x,xn) + b (4.4.10)

we can then calculate y(x) for a new input ,x, and classify the point according to the

sign of y(x).

An example SVM output showing the classi�cation between two sets of data in red

and blue is shown for the 2D case in Figure 4.4.3. The support vectors are circled, and

lie close to the decision boundary in the data space and would be the closest points to
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Figure 4.4.3.: A non-linear classi�cation using SVMs with Gaussian kernels on a synthetic
2D data set. The support vectors are the small subset of points that lie
closest to the decision boundary in the feature space. In this case, the
support vectors also appear close to the decision boundary in the input
data space.

the decision boundary in the feature space. Note that the data are linearly separated in

the high-dimensional feature space, which in this case corresponds to a highly non-linear

separation in the input data space.

4.4.3. Slack Variables

So far, we have assumed that it is appropriate to separate the data in the feature space.

Even in the high-dimensional space, this may not be possible, and even in cases where

separation is possible, the resulting solution may generalise poorly and so the concept

of �slack� variables was introduced by Vapnik (1995). In this scheme, each data point is

assigned a slack variable which takes a value of zero for each data point on the correct

side of the margin, and |tn − y(xn)| for every point on the wrong side of the margin. This

means that any data point on the decision hyperplane has ξ = 1, and any misclassi�ed

data point has ξ > 1 (see Figure 4.4.4)

The mathematical formulation of the SVM optimisation changes only slightly. Rather

than minimising 1
2
‖w‖2, the objective function is now:

C
∑

ξn +
1

2
‖w‖2 (4.4.11)
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Figure 4.4.4.: Depiction of slack variables for the triangular class. All data points in the
correct class and outside the margin are scored zero. Data points in the
correct class but within the margin are scored linearly between one and
zero. Data points in the incorrect class have a slack variable greater than
one.

Figure 4.4.5.: A non-linear classi�cation using SVMs with soft margins on the synthetic
2D data set. The slack variable takes the value of C = 1.

In this case, the slack variables allow a `softer' hyperplane boundary such that, the

optimal hyperplane is now the one that best classi�es the training data, while still main-

taining a large margin, or separation, between the classes. The e�ect of the slack variables

is controlled by C; when C → 0, the solution returns to the �hard� margin solution. The

e�ect of using soft margins (C > 0) is shown in Figure 4.4.5 for a 2D example with a

conservative value of C = 1, which provides a much smoother boundary.

4.4.4. One-Class Support Vector Machines

With the vital sign monitoring application considered in this thesis, there are relatively

few instances of vital signs from deteriorating patients. Scholkopf [95] extended SVMs for
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single-class (i.e. novelty detection) problems, and the technique has been used successfully

in applications such as document classi�cation [69], and seizure analysis [36].

The main idea in this scheme is that the vast majority of the data come from a single

class, which is to be separated from the origin in the feature space with maximum margin.

By using an appropriate kernel function, the origin maps to in�nity in all directions in

the feature space. One such kernel function is the Gaussian kernel:

k(xi,xj) = (φ(xi) · φ(xj)) = e
−‖xi−xj‖2

γ (4.4.12)

where γ is a free parameter that controls the size of the kernel. As xi and xj move

further apart in the data space, then the value of the kernel function in feature space

becomes closer to the origin. In order to separate the data from zero, we assume that the

margin is always measured with respect to the origin, and so the hyperplane takes the

form:

φ(xi).w + b = 1

∴ φ(xi).w − ρ = 0
(4.4.13)

This changes the SVM optimisation problem to:

min
1

2
‖w‖2 + C

∑

n

ξn − ρ (4.4.14)

subject to the constraints

(w.φ(xn)) ≥ ρ− ξn
ξi ≥ 0

(4.4.15)

This formulation can be solved using the same methods as before.

4.5. Conclusion

In this chapter, we have described the baseline data fusion algorithm for vital sign mon-

itoring, showing �rstly how a probabilistic model of normality is created using K-means

and Parzen windows, and then how the resulting probabilities may be converted into a
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Patient Status Index score. We then showed that there are theoretical problems with the

algorithm that may result in an inaccurate model.

Two alternative methods have been proposed that address these problems. The �rst,

weighted Parzen windows, is a simple modi�cation of the baseline algorithm that ap-

plies priors over the Parzen windows prototype centres, and thus corrects for the outlier

bias error that had previously been observed in Section 4.2. The second method is the

SVM classi�er, which was then extended for novelty detection using Scholkopf's one-class

classi�er. The next chapter is concerned with assessing how well each of these methods

performs when tested on the continuous vital sign data acquired from the ED patients.
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Models

5.1. Introduction

In Chapter 4, we introduced the baseline popular data fusion algorithm for calculating

the Patient Status Index for vital sign data, which is a score used to facilitate in the

assessment of a patient's physiological condition. This chapter is concerned with the

application of weighted Parzen windows (wPw) and one-class Support Vector Machines

(SVMs) to the same problem.

In the �rst instance, we will describe the training, validation and test data sets for the

data fusion models. By examining the quality of the data, we will then determine whether

it is appropriate to include all of the vital sign channels in the models. After this, we

describe how each of the data fusion models were trained using the training set data, and

then explain how any free parameters within the model were set by using the validation

data set. Finally, we use the test data to assess how well each of the methods perform,

using the analysis framework described in Chapter 2.5. As part of this analysis, we will

ascertain how well the new models detect escalation events in comparison to the baseline

model, and to the continuous T&T system developed in Chapter 3.
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5.2. Data Sets

Training Data Set

Each of the data fusion models was trained using the vital sign data set that had been

used to train the baseline model as described in Section 4.1.1. The distributions of each

of the vital signs in the training set are reproduced in Figure 5.2.1 (for later comparison

with the distributions of the validation and test data sets).

Validation Data Set

The one-class SVM does not require labelled data to make a classi�cation, as long as there

is a prior estimate of the percentage of data points in the abnormal class. However, Hayton

et al. [44] note the accuracy of the classi�er may be improved with some abnormal data.

The values of the parameters were estimated simultaneously by maximising the accuracy,

as calculated on a balanced validation subset.

The validation data set was collected from Phase I of a three-phase clinical study at the

University of Pittsburg Medical Centre (UPMC) [49]. The data set consists of continuous

observations from 333 patient admissions within a 24-bed Step Down Unit, for patients

stepping down from the Intensive Care Unit (ICU). HR, RR, SpO2 and temperature data

were recorded using the Hewlett Packard �Viridia 24� bedside monitors, and the data

were sampled approximately every 20 seconds. SBP and DBP were recorded every 30

minutes while the patient was awake and once every hour while they were asleep in order

to minimise patient discomfort. In total, this provided 28,782 hours of vital sign data.

Distributions of each of the vital signs for the study population are also shown in Figure

5.2.1, where the SDA has been computed as the arithmetic mean of the SBP and DBP

values, so that the validation data set can be directly compared to the training data set.

To be useful as a validation set for one-class classi�cation (or novelty detection), the data

vectors must be labelled as �normal� or �abnormal� (for the few instances of physiological

deterioration in the thousands of hours of data). Initially, abnormal data vectors were

labelled using computer assistance; all continuous vital sign data that met the UPMC's

Medical Emergency Team (MET) calling criteria were labelled as a C event (see Table 5.1
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Lower Limit Upper Limit

HR (bpm) 40 140
RR (bpm) 8 36

SBP (mmHg) 80 200
DBP (mmHg) - 110

SpO2 80 -

Table 5.1.: Single-channel Medical Emergency Team criteria for the UPMC, used to gen-
erate C events

for MET criteria). The C events were then checked manually by two independent clinicians

and any events that were considered to be non-artefactual and physiologically plausible

were relabelled as C' events. The C' events were further evaluated to classify those

with �serious, persistent, and generally displaying multiparameter abnormality� into a C�

class. The C� events were initially classi�ed independently by two critical care medicine

clinicians. The inter-rater variability of this process was 61%, and a second review was

required, in which the clinicians met together to reach a consensus classi�cation.

In total 237 C' and 112 C� events were identi�ed, which had a mean length of 24

minutes. We note that the C' and C� labels di�er from the �escalation� events that were

previously used to label the ED data set, in that the C events in the validation data set

were derived from the continuous data, whereas escalation events were documented cases

of clinical interventions.

In practice, the labelled data set should contain equal amount of �normal� and �abnor-

mal� data so that the resulting model will not be biased towards having either a high

sensitivity or high speci�city. To achieve this, a subset of the validation data was created

by �rst selecting all the data during the C' and C� events to be abnormal data vectors. An

equal number of data vectors containing only normal physiology was created by randomly

selecting vital sign data from any of the patients who did not have any C events. The

size of the subset was thus 1.4 × 105 vectors of data, which corresponds to roughly 800

hours of data.

Test Data Set

The data fusion models were tested on the ED data set which was previously used to assess

the performance of continuous T&T in Chapter 3. The set contains 1708 hours of data
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Figure 5.2.1.: Vital sign distributions for the training data set (red), the validation data
set (green), and the test data set (blue)

recorded from 402 patients presenting to the John Radcli�e Hospital ED. A more detailed

description of how the data set was recorded and labelled has already been provided in

Section 2.1. The distributions of each of the vital signs for the test data set population

are shown in Figure 5.2.1.

5.2.1. Data Set Summary

Each of the data sets was checked for physiologically implausible measurements. For

instance, a quick examination of the training and validation data showed many instances

during which the respiratory rate and heart rate were recorded as zero, when the ECG
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Vital Sign Lower Threshold Upper Threshold

Heart Rate (bpm) 30 300
Resp. Rate (rpm) 3 45
SDA (mmHg) 20 180
SpO2 (%) 10 101
Temp (◦C) 32 39

Table 5.2.: Criteria used for removing spurious data in the Training and Validation data
sets

Training Validation Test

Location JR UPMC Step-down Unit JR Emergency Dept.
Hours of Data 3500 28,782 1,708
No. Patients 150 333 476
Male/Female 50/50 58/42 52/48

Table 5.3.: Summary of the data sets

electrodes attached to the patient are likely to have become disconnected. The criteria

used for removing spurious data are shown in Table 5.2. More modern monitors, such

as those used for collecting the test data set, recognise when probes are disconnected,

making the removal of spurious data unnecessary.

An overview of the training, validation and test sets, including information on the size

of the data sets and the hospital locations, are given in Table 5.3. The histograms for each

of the vital signs are shown in Figure 5.2.1 for the three data sets. A visual inspection of

these graphs indicates that the shape of the vital sign distributions are similar for each

of the data sets, apart from the temperature distribution. The modal temperature for

the training set is approximately 37◦C, whereas the test set has a modal temperature of

35◦C. The shapes of the temperature distributions for the training and test sets also di�er

signi�cantly. The di�erence in mean value between the training and test set temperatures

is µtrain − µtest = 1.24 (see Table 5.5), equivalent to approximately 1 standard deviation,

as σtrain = 1.26 and σtest = 1.19. In comparison, the di�erence in means for RR is 0.73

rpm, or approximately 0.14 standard deviations.

We can quantify the similarity of the data sets using some distance metric such as

the Kullback-Leibler divergence. The K-L divergence can be considered as the relative

entropy, that is the level of disorder, of a distribution P with respect to Q.

Formally, the Kullback-Leibler divergence is described as:

113



5. Application of the Data Fusion Models

HR RR SDA Temp. SpO2

Training - Test 0.1915 0.0724 0.2453 1.5606 0.5240
Training - Validation 0.0809 0.0221 0.1538 0.2767 0.1983
Validation - Test 0.1171 0.0409 0.2419 0.9541 0.0918

Table 5.4.: Pairwise comparisons of the Kullback-Leibler distances for each of the vital
signs, using the training, validation and test data sets described previously.

DKL(P ||Q) =
∑

i

P (i)log
P (i)

Q(i)
(5.2.1)

However, this is non-symmetric measure such that DKL(P ||Q) 6= DKL(Q||P ), and

instead we use the symmetrised divergence

DKL(P ||Q) +Dkl(Q||P ) (5.2.2)

The symmetrised divergence for each vital sign, for each pair of data sets, is shown in

Table 5.4, and indicates that the test set is more similar to the validation set than to the

training data set. The validation set is equally similar to both the test and training data

sets.

µTrain µV alid µTest σTrain σV alid σTest

HR 83.77 83.22 83.17 17.48 16.60 20.83
RR 18.30 18.61 19.03 5.06 5.12 4.60
SDA 94.68 97.61 102.5 16.54 15.06 19.79
SpO2 95.20 96.44 96.98 3.49 3.10 3.13
Temp. 36.05 35.87 34.81 1.26 1.24 1.19

Table 5.5.: Means and Standard deviations for the �ve vital signs recorded in the training
(JR) and validation (UPMC) data sets

5.2.2. Removal of Temperature Recordings

In our previous investigation of continuous T&T in Chapter 4, we disregarded the tem-

perature recordings because the T&T temperature criteria were designed to be used with
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core temperature measurements rather than the skin temperature that had been recorded

by the bedside monitors. In each of the data fusion models presented in Chapter 4, the

classi�cation of abnormal measurements is no longer based on a clinical heuristic, but is

instead derived directly from the data set. Therefore, we are no longer constrained to

using one type of temperature measurement, and it should be possible to incorporate skin

temperature recordings.

In the end, we decided not to include temperature recordings in the data fusion models

for two reasons. Firstly, as noted in the previous section, the training and test set tem-

perature distributions are very di�erent. Therefore, a model based on the temperature

data from the training set is unlikely to be able to discriminate well between normal and

abnormal temperatures in the test set.

Secondly, we observed a high level of temperature data loss from the validation and test

data sets. Discussions with the clinical teams that collected the validation and test data

sets led to the observation that the thermistors tended to detach in the clinical setting,

leading to unreliable and missing data. For instance, 48% of the temperatures recorded in

the validation data set were outside the expected physiological limits of 32 and 39#C for

skin temperature, as determined by clinical experts during the UPMC study. Similarly,

the data loss for skin temperature in the test data set is 74%, in comparison to the data

losses for the other variables, which were around 25% (see Table 3.1).

By limiting the data fusion models to the four vital sign parameters (HR, RR, SpO2

and SDA), we also have the further bene�t that we are able to compare the results from

the data fusion models to those obtained with continuous T&T.

5.3. Implementation of Data Fusion Models

5.3.1. Baseline Parzen Windows Model

The �ve vital sign baseline model was trained according to the procedure outlined in

Section 4.1. The model can be applied to the appropriate subset of four vital signs by

setting the temperature to the mean value of the training set (that is, a value of zero after

vital sign normalisation).
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The baseline model contains three model parameters: the number of Parzen window

centres, the Parzen window kernel width, and the alerting threshold on the resulting

probability density function. Of these, none were set using the validation data. The initial

number of Parzen window centres was set at 500, to reduce the size of the data set by a

factor of approximately 4000. The alerting threshold was set heuristically at PSI = 3.0,

on the basis that this score corresponds to single-channel values of ±3 standard deviations

away from the mean for any of the vital signs (Section 4.1.6).

The kernel width, which is used to de�ne the size of the kernel in Equation 4.1.3, was

set at h = 1.49, using the approach recommended by Bishop [11].

5.3.2. Weighted Parzen Windows

The wPw model follows the same training procedure as the baseline model and has the

same free parameters. However, unlike the baseline model, temperature data were not

included so that a 4-dimensional Parzen windows distribution was created. The number of

Parzen windows centres was again set at 400 centres, in keeping with the baseline model.

However, we now consider two methods of generating the 400 centres.

In the baseline model, the 400 prototype centres were identi�ed by �rst applying the

K-means algorithm to cluster the training data into 500 prototype centres. Following

this, 100 prototype centres, broadly corresponding to clusters of abnormal vital sign data,

were removed. The same procedure was applied in the wPw training procedure, again

using K-means to generate 500 prototype centres. The relative weights of each centre were

computed by recording the membership of each centre. This was achieved by adapting

the Netlab [76] implementation of the K-means algorithm (kmeans.m), which also extends

its ability to deal with very large data sets. However, unlike with the baseline model, we

then considered two methods of pruning the 100 most �abnormal� centres to derive the

�nal set of 400 prototype centres.

The �rst method, which produces a model we de�ne as wPwdist, involves removing 100

prototype centres using the same criterion as for the baseline model: the 100 prototype

centres with the greatest Euclidean distance from the population mean were removed.

In Section 4.2, we postulated that outlier removal should be based instead on cluster
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Figure 5.3.1.: Representation of the 400 wPw kernels and 100 outlier kernels using SASS
visualisation maps where (a) kernels are selected to be the 400 k-means
centres with the largest membership (b) kernels are selected to be the 400
k-means centres with the smallest Euclidean distance to the mean [0 0 0 0].

population. Clusters with few patterns belonging to them denote the areas in data space

with lower probabilities, and hence the vital sign data in these sparsely populated regions

are likely to be abnormal.

We therefore considered an alternative method of removing 100 prototype centres, by

removing the 100 centres with the lowest K-means cluster populations. The model that

resulted from this procedure is de�ned as wPwpop.

The 400 prototype centres and the 100 pruned centres are shown for both methods in

Figure 5.3.1, using the SASS visualisation map. Although the maps show the same 500

centres, the visualisations appear slightly di�erent as there are many possible equally-valid

visualisations when data dimensionality is reduced, as described by Nabney [76]. In both

cases, the 400 centres and their associated cluster memberships were used to generate a

probability density function using wPw according to equation 4.3.1.

The kernel width parameter was again set using the method described in Equation 4.1.5,

this time giving values of k = 0.56 and k = 0.46 for wPwpop and wPwdist respectively. The

kernel widths are substantially smaller than for the baseline model because the vital sign

vectors are of a lower dimensionality. By sampling from the resulting wPw distributions

the o�set pmax(x) that is required to generate a positive Patient Status Index (PSI) in all

cases was determined to have a value of 4.30 for both models.

The �nal free parameter, the alerting threshold, was set using the same method as
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Figure 5.3.2.: Patient Status Indices for the cases where HR, BR, SpO2 and SDA are
varied while remaining variables are held at their mean value. 3sds away
from the mean are marked for each parameter.

for the baseline algorithm. 1D slices through the wPwpop and wPwdist models, which are

analogous to the slices in Figure 4.1.5, are shown in blue in Figure 5.3.2 for the case where

one vital sign variable is varied between ±4s.d.s while the remaining variables are set to

their mean value. For comparison, the corresponding slices for the baseline model are

also plotted in green. The points at which any of the single variables deviate by ±3s.d.s

from the mean is also marked on the diagram in red. An alert which would trigger when

any single variable deviated by 3s.d.s from the mean requires a PSI threshold between 3.4

and 4.0 in both the wPwpop and wPwdist models. The alerting threshold was therefore

set between these two bounds, at PSI = 3.7, for both of the models.

So that the wPw models can be fairly compared to the baseline model, we continued

to use the method described in Chapter 4 for dealing with missing data, which involved

�rst setting a missing channel to the local median after 5 minutes, and then to the

population mean after 30 minutes of missing data. Furthermore, the persistence criterion

for generating PSI alerts, as described in Section 4.1.6 for the baseline model, was also

used when generating alerts in the wPw models.

5.3.3. Support Vector Machines

The one-class SVM technique was applied to the JR training data set using the LIB-

SVM [18] toolbox for Matlab. We recall from Section 4.4.4 that the SVM problem can

be de�ned as an optimisation problem that is dependent on two model parameters, C

(Equation 4.4.14), the slack variable weighting, and γ, the kernel size (Equation 4.4.12).
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The parameter C is often rewritten in terms of the number of data points, l, so that:

C =
1

lν
(5.3.1)

An optimal value for the accuracy was ensured by employing a grid-search over the two

parameters. The accuracy is de�ned as:

accuracy =
TP + TN

TP + FP + FN + TN
(5.3.2)

and can be viewed as a summary of the overall classi�cation rate. The True Postives

(TP), True Negatives (TN), False Positives (FP) and False Negatives (FN) were all cal-

culated on a sample-to-sample basis. The true, false, negative and positives were de�ned

as follows:

� True Positive - Any �abnormal� validation data vector that is correctly classi�ed as

being outside of the decision boundary by the SVM (i.e. an outlier)

� True Negative - Any �normal� validation data vector that is correctly classi�ed as

being inside the decision boundary by the SVM

� False Positive - Any �normal� validation data vector that is incorrectly classi�ed as

being outside the decision boundary by the SVM (i.e. an outlier)

� False Negative - Any �abnormal� validation data vector that is incorrectly classi�ed

as being inside the decision boundary by the SVM.

An abnormal data vector was de�ned as any vector of four vital sign measurements ([HR

RR SpO2 SDA]) that was recorded during a C' or C� event. Conversely, a normal data

vector was de�ned as any vector of four vital signs that was recorded from a patient with

no C, C' or C� events. The validation subset contained an equal number of abnormal and

normal vectors so that there was no bias that could a�ect the accuracy.

We note that TPs, TNs, FPs and FNs were calculated using a di�erent method than

the one outlined in the analysis framework in Chapter 2.5. The reason for this is twofold.

Firstly, the outcome marker for the validation set is di�erent from the outcome marker in

the test set, and the two cannot be used interchangeably. The C, C' and C� events were
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Figure 5.3.3.: A plot of the SVM accuracy, as calculated on the validation data subset.
Grid search was performed at the points in blue. The optimum point (in
red) was chosen. Interpolation between points shows that optimisation is a
smooth function in the limit (of in�nite validation data)

based on retrospective analysis of whether or not vital signs met the MET-calling criteria,

and are not the same as an �escalation� event, which is a clinical intervention documented

at the time of the event and which may have both physiological and non-physiological

causes.

Secondly, the analysis framework in Chapter 2.5 was designed to assess the clinical

bene�t of a system by determining whether patients were identi�ed promptly. In this

validation step, we do not optimise the system as a whole, but only the model used for

classi�cation. A classi�cation is made for each vital sign vector, therefore it is appropriate

that the completion of accuracy that is used to optimise the model should be performed

on a per-vital sign vector basis.

The accuracy was calculated over the parameter ranges 0.05 ≤ ν ≤ 0.50 and 0.05 ≤

γ ≤ 0.25. From these results, a more re�ned search in the range 0.15 ≤ ν ≤ 0.20 and

0.01 ≤ γ ≤ 0.05 was carried out to improve the estimate of accuracy. The result of

the grid search is shown graphically in Figure 5.3.3, where the optimal parameter pair,

(ν = 0.19,γ = 0.03) is highlighted in red.

Alerts were generated using the binary output of the SVM, and the persistence criterion.

Alerts were generated if the SVM classi�ed the vital sign data as being abnormal for 4

minutes out of any 5-minute window and alerts were turned o� once data had returned

to a normal state for 2 minutes out of any 3-minute window. Alerts were also generated

immediately whenever a blood pressure reading resulted in the data being classi�ed as
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abnormal.

One further heuristic was introduced for the SVM model. Any SpO2 measurements

that were greater than the mean of the training data were replaced by that mean. For

instance, an SpO2 measurement of 99% would be replaced by a value of 95.2%. The

heuristic was required because the SVM model correctly determines that SpO2 values

above 100% are extremely unlikely (in fact, impossible). Therefore, the SVM decision

boundary is close to 100% saturation, and vital sign vectors that include values of 100%

for the SpO2 measurement could erroneously be classi�ed as abnormal.

5.4. Evaluation of Data Fusion Models

All the data fusion models were applied to the ED test data set. In the section that

follows, we �rstly demonstrate the output from each of the models on a small subset of

patients. Following this, we quantitatively assess the performance of each model, using

the analysis framework previously developed for evaluating continuous T&T in Section

3. By using the same metrics, we may compare the results from the data fusion models

directly with the corresponding results from the continuous T&T system.

5.4.1. Examples of the Data Fusion Systems

The data fusion systems were �rst applied to the test data from two example patients.

Figure 5.4.1 shows the vital signs and scores from the baseline model, wPw models, and

SVM models for a 81-year old female patient who had attended the department with chest

pains and shortness of breath, and had been unwell for the previous week. A physiological

escalation at 14:05, 20 minutes after arrival, caused by a high heart rate due to atrial

�brillation and a high respiratory rate, is marked on the �gure in red. The patient's vital

signs are recorded in the upper graph, and the four data fusion models are shown below

on separate axes. In this example, where two of the parameters are grossly abnormal,

each of the methods correctly assigns an alert (denoted by a grey background) at the time

of the escalation. We note that in general, the weighted Parzen windows models have a

similar overall behaviour to the baseline model, and a larger dynamic range. The SVM

does not provide a score, but instead classi�es the vital signs as either normal (SVM=+1),
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Figure 5.4.1.: PSI scores for patient ED00112 derived using the baseline model, weighted
Parzen windows, and support vector machines. The patient deteriorates
at the start of the recording, and continues to remain unstable throughout
their stay on the bed. The patient was escalated a second time at the end of
the record, due to low SpO2 and continuing atrial �brillation. The greyed-
out areas represents occasions on which each data fusion system generates
an alert.

or abnormal (SVM=-1).

Figure 5.4.2 shows the vital signs and data fusion model scores for a 64-year old male

patient who was brought to the Emergency Department by ambulance, and had presented

with breathing problems, as indicated by initial heart and breathing rates that were

extremely high. In addition to this, the patient was hypotensive. At the time of arrival,

the patient was extremely unwell, which we deduced from his �red� triage category - the

most severe class.

The patient was initially admitted to Resus, after which he was stabilised before being
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5. Application of the Data Fusion Models

admitted to a general medical ward for septic shock caused by metastatic rectal cancer.

The record shows how the heart rate decreases from 160 bpm to 103 bpm, and how the

breathing rate decreases from 34 rpm to a more regular value of 19 rpm. The SpO2 values

also increase throughout the record, which denotes better blood oxygenation. However,

the SpO2 trend should be treated with scepticism, as the low sampling rate may be

indicative of intermittent probe disconnection. The blood pressure values also remain

abnormally low throughout the patient's stay on Resus.

The improvement in the patient's physiological condition is identi�ed by all four of the

data fusion models. At the start of the record, each of the models generates an alert due

to the initial abnormal physiology. The PSI and wPw values then decrease until they are

below the alerting threshold. Similarly, the SVM switches from an abnormal to a normal

state. Over the course of the record, there are brief period of high abnormality, due to

momentary measurements of low SpO2. However, data loss occurs in these cases before

the persistence criterion will allow an alert to be generated.

5.4.2. Sensitivity and Speci�city of the Data Fusion Models

True Positives

In Chapter 3, an escalation event was identi�ed if the continuous T&T alert was active

within some given time window of an escalation event. The method is repeated in this

section, again considering only the type-2 escalations caused by BP, RR or HR. The

number of escalation events identi�ed by each of the data fusion systems over the range

of windows is shown in Figure 5.4.3(a), and the number of patients identi�ed is shown in

Figure 5.4.3(b).

As before, the number of True Positives was calculated as the number of patients

identi�ed within a window de�ned by t = 10 and τ = 10. The True Positives, along with

the False Negatives, are summarised in Table 5.6 for each of the data fusion models. The

table indicates that the SVM system identi�es the greatest number of True Positives, 17,

while both of the weighted Parzen windows schemes perform better than the baseline

model, which detects only 12 escalation events. We also note that all of the methods

appear to be less sensitive than the continuous T&T system with and without a persistence
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Figure 5.4.2.: PSI scores for patient ED00263 derived using the baseline model, weighted
Parzen windows, and support vector machines. The patient stabilises dur-
ing their stay at the ED, as indicated by the reduction in alerts over the
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Figure 5.4.3.: The true positive rate for the baseline data fusion model, weighted Parzen
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ous T&T is also shown in solid grey (without a persistence criterion) and
dashed grey (with a persistence criterion).
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Baseline Model wPwpop wPwdist SVM Continuous T&T

True Positive
(�rst

escalation
detected)

12 14 15 17 24

False
Negative
(�rst

escalation not
detected)

17 15 14 12 7

Table 5.6.: Summary of the true positives and false negatives for all patients with at least
one physiological escalation event that occurred after arrival to the ED, for
each of the data fusion methods. The results for continuous T&T have been
included for comparison.

criterion, which identi�ed 19 and 24 true positives, respectively.

In total, 9 patients were classi�ed di�erently to continuous T&T without a persistence

criterion. 8 True Positives were detected by continuous T&T, but not the SVM model,

and 1 True Positive was detected by the SVM model, but not by continuous T&T. We

determined the cause of the di�erences between the SVM and continuous T&T models

by manually reviewing the continuous vital sign data for the patients that were classi�ed

di�erently by the two models.

In 5 cases (Patients ED00031, ED00066, ED00196, ED00320, ED00478), the escalation

was due to abnormal systolic blood pressure (SBP). These were not detected in the SVM

model (or Parzen windows models) as SBP was not directly included as one of the input

parameters and instead, the Systolic-Diastolic Average blood pressure had been used.

The problem with using the SDA can be most clearly seen for the example in Figure

5.4.4. In this example, the SBP �uctuates between 208 mmHg and 148 mmHg. This

is statistically signi�cant, denoting a change from the 99.99th centile to the 85.57th cen-

tile when compared to the training data. Physiologically, an SBP of 208mmHg indicates

extreme hypertension that may require immediate intervention, whereas 148mmHg indi-

cates slightly elevated blood pressure which would cause no clinical concern. Despite the

drastic range in the SBP, the SDA, shown in black, only �uctuates between 130 and 120

mmHg, which is equivalent to the 98.10th and 93.66th centiles in the training data, a much

smaller change. In this case, the change in SDA is small because the increase in Diastolic

Blood Pressure (DBP) occurs at a similar rate to the decrease in SBP.
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Figure 5.4.4.: Plot of vital signs and PSI score for patient ED000262, a 73-year old male
who was admitted to the hospital having being assessed to have symp-
tomatic bradycardia. Again, the greyed-out areas represents occasions on
which each data fusion system generates an alert. The patient was initially
in majors, and a clinical review of the patient was only prompted (A2 esca-
lation) at 16:00. Only one set of manual observations in majors was taken
at 11:00.

The escalation for patient ED00521 was due to the SpO2 saturation dropping below

90%. None of the data fusion algorithms were sensitive enough to identify these escala-

tions. However, in one of the cases, patient ED00536, an earlier alert would have been

generated by each of the data fusion algorithms due to a more prolonged and severe

desaturation that occurred 20 minutes before the escalation event. In this instance, a

continuous monitoring system may have provided early warning of the escalation event,

and it is only due to the limitations of our analysis framework that the patient is not

considered to be a true positive.

There were two patients that were identi�ed using continuous T&T, that we would not

expect to detect using the data fusion systems. Patient ED00210 experienced momentary

vital sign abnormality, but a nurse was on hand to repeat the measurement before the

persistence criterion was met, and an alert was generated. Patient ED00077 had an

escalation event caused by sustained hypotension which was identi�ed by continuous T&T,

but could not be identi�ed by the data fusion systems as more than 2 channels of data
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Baseline Model wPwpop wPwdist SVM Continuous T&T

True Negative
(Zero Alerts)

173 181 171 159 49

False Positive
(≥ 1 Alerts)

44 36 46 58 168

Table 5.7.: Summary of the true negative/false positive rate for patients with no escalation
events, for each of the data fusion methods. The results for continuous T&T
have been included for comparison.

were missing (see Section 4.1.5) at the time of the escalation.

The single case for which the SVM model correctly classi�ed an escalation, but contin-

uous T&T did not, was for Patient ED00139. In this instance, a combination of slightly

abnormal blood pressure and heart rate leads to a classi�cation that persists long enough

for an alert to be generated. In contrast, the continuous T&T score detects the abnor-

mality, but for a shorter length of time than 4 minutes (out of 5) and so no alert was

generated.

True Negatives

As in Section 2.5, a True Negative event was de�ned over the set of 217 patients who

had no escalations during their time in the ED and who had some continuous vital sign

data. Any of these patients for which the data fusion system correctly produced no alerts

during their stay were classed as True Negatives, otherwise the patient was considered

to be a False Positive. The number of true negatives in each of the systems is shown in

Table 5.7.

Using these �gures, the sensitivity and speci�city of each of the models can be calculated

using Equations 1.3.1 and 1.3.2, giving the following values:

sensbaseline = 12
12+17

= 41.3% specbaseline = 173
173+34

= 79.7%

senswpw_pop = 14
14+15

= 48.3% specwpw_pop = 181
181+36

= 83.4%

senswpw_dist = 15
15+14

= 51.7% specwpw_dist = 171
171+46

= 78.8%

sensSVM = 17
17+12

= 58.6% specSVM = 159
58+159

= 73.3%

in comparison, the sensitivity and speci�city for continuous T&T with and without a

persistence criterion are:
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Figure 5.4.5.: Distributions of the number of alerts per patient for the four data fusion
systems.

sensT&T = 24
24+5

= 82.7% specT&T = 49
49+168

= 22.6%

sensT&T persist = 19
19+10

= 65.5% specT&T persist = 74
74+143

= 34.1%

Alerts Per Patient

Figure 5.4.5 show the distribution of the number of alerts per patient, and Figure 5.4.6

shows the distribution of time spent in the alert state for each data fusion system. From

these graphs, we can infer that the SVM model generates a greater number of alerts than

the other three models, and also generates alerts for longer periods of time.

We can calculate the �alert rate� by dividing the total bed-time by the number of alerts

(i.e. occasions on which the T&T score exceeds the alert thresholds for a particular

patient group). For the entire study population, 1708.4 hours of data were recorded,

and the baseline model generated 316 alerts. This gives an estimate of 0.18 alerts/hour

per bed. Similar calculations were completed for each of the models, and the results are

summarised in Table 5.8. The false alert rate was calculated using the method described

in Section 3.2.2, and the results are also shown in Table 5.8.
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Figure 5.4.6.: Distributions over the duration of time spent in the alert state per patient
for the four data fusion systems.

Model Alert Rate False Alert Rate

Baseline 0.18 0.055
wPwdist 0.23 0.083
wPwpop 0.18 0.057
SVM 0.28 0.125

Table 5.8.: Alert rate and false alert rate for the data fusion models
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5.5. Discussion

In this chapter, we have described how four data fusion models: a baseline Parzen windows

model, two weighted Parzen windows models wPwpop, wPwdist and an SVM model, were

trained on previously acquired data and then tested on the continuous data recorded

during the ED study. Results in Section 5.4.2 showed that the SVM model had the highest

sensitivity and the lowest speci�city of the four models tested, whereas the baseline model

had the lowest sensitivity and highest speci�city. Without prior knowledge of the relative

importance of True positive and False positive events, it is impossible to make an overall

comparison as to which of the models performed best. Instead, we can compare the results

obtained with the data fusion models with the results generated using the continuous T&T

system, using the sensitivity and speci�city metrics.

In comparison to the continuous T&T system developed in Chapter 3, the data fusion

models tested in this chapter had much higher speci�cities. This was con�rmed by the

low false alert rate, 0.05 alerts/hour per bed for the baseline model and 0.125 alerts/hour

per bed for the SVM model, which correspond to 1 and 2.5 false alerts/hour respectively,

on a typical 20-bed ward. In comparison, continuous T&T (even with the persistence

criterion) produced 0.57 alerts/hour per bed, or 11 alerts/ward hour.

Whilst the data fusion models had a high speci�city, the models' sensitivities were sub-

optimal. The most sensitive data fusion model, the SVM, detected 8 fewer escalations

than the most sensitive of all the models, continuous T&T without a persistence criterion.

In Section 5.4.2, we showed that 5 of the 8 missed positive events were due to abnormal

blood pressures.

The one other event that we would expect to detect was missed, due to the SVM model's

insensitivity to low oxygen saturation. In the case of the SVM model, this was due to

the method by which C events were generated (in the validation data set). The SpO2

criterion for a C event was SpO2 ≤ 80% and consequently the SVM decision boundary

along the SpO2 direction in the input data space was close to 80%. Therefore, the SVM

model could only detect very severe oxygen desaturation. The Parzen windows and wPw

models also missed escalation events that were primarily due to low oxygen saturation,

even though they did not use the C events for validation. In this case, the poor sensitivity
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Figure 5.5.1.: The 1st, 5th and 10th percentiles of SpO2 for the training and test set distri-
butions. The training set has a much wider tail, denoted by the fact that
the centiles are situated at SpO2 values of 72%, 83% and 88%. In compar-
ison, the equivalent centiles in the test set distribution are 86%, 92% and
93%.

was due to di�erences between the training data and the test data in the tails of the SpO2

distributions. This can be seen more clearly in Figure 5.5.1, which plots the 1st, 5th and

10th percentiles for the training and test set distributions of SpO2 values.

The sensitivity and speci�city of the models also depends on the selection of the model

parameters. In this chapter, the PSI alerting threshold for the baseline model and the

wPw models were set using the method �rst described by Tarassenko et al. [110]. This

method assumes that it is appropriate to generate an alert if a single vital sign parameter

is close to ±3 standard deviations from its mean value in the training set. While this

is a sensible heuristic, it is unlikely that the resulting alert threshold is optimised for

detecting escalation events. A more principled method would be to set the alert threshold

based directly on the number of escalation events detected and false alerts generated, for

instance, using Receiver-Operating Characteristic (ROC) analysis.
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5. Application of the Data Fusion Models

5.5.1. Model Retraining

In the previous section, we observed that the simple arithmetic mean of SBP and DBP was

not appropriate, as it had no clinical or valid theoretical bene�t. We now brie�y consider

the e�ect of modifying an SVM model to include SBP and DBP separately. We note that

this approach will give a stronger preference towards blood pressure related conditions. A

model using the Mean Arterial Pressure (MAP) may provide a better model, as the MAP

is directly measured, whereas SBP and DBP are inferred heuristically. Unfortunately,

MAP measurements were not saved in the training data set.

SBP and DBP were �rst normalised following the procedure described in Section 4.1.1.

The SBP and DBP means were 125.38mmHg and 63.82mmHg, and the standard devi-

ations were 21.39mmHg and 13.4mmHg respectively. A 5-D SVM was trained, using

the same approach as that outlined in Section 5.3.3. The optimal values of the model

parameters were ν = 0.1 and γ = 0.1. The search space is visualised in Figure 5.5.2.

For the modi�ed SVM model, the number of detected A2 events, and �rst A2 events

per patient are shown in Figure 5.5.3 for window lengths between 1 and 60 minutes.

The plots show that the modi�ed model is worse at identifying escalation events than

the original SVM model, detecting 13 A2 events, though we note that the result is not

statistically signi�cant. The modi�ed model correctly detects 163/217 True Negatives, so

the sensitivity and speci�city can be calculated as 44.8% and 75.1% respectively.

The poorer performance of the retrained model could be due, in part, to the greater em-

phasis that the retrained model places on blood pressure parameters (two blood pressure

measurements, SBP and DBP, instead of the one, SDA, used previously). More signif-

icantly, the escalation events were determined using the patient notes. These included

T&T score data, which were based on SBP only. It is likely, therefore, that the addition

of DBP does not provide much additional value to the model.

Other shortcomings of the data fusion models could be addressed by retraining on a

data set that is more �similar� to the ED data set, so that any di�erences between the

training and test vital sign distributions, as we previously saw for SpO2 in Figure 5.5.1,
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Figure 5.5.2.: A plot of the SVM accuracy for the retrained model, as calculated on the
validation data subset. Grid search was performed at the points in blue.
The optimum point (in red) was chosen.
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Figure 5.5.3.: The true positive rate for the baseline data fusion model, support vector ma-
chine model, and retrained support vector machine (using SBP and DBP).
The true positive rate for continuous T&T is also shown in dashed grey.

will be minimised. During retraining, the alerting threshold would be set based on how

well the model identi�es escalation events, rather than on the statistical method used in

Section 4.1.6.

Typically, this analysis would be accomplished using ROC analysis. With this approach,

the alerting threshold is evaluated at a range of PSI values, and the resulting sensitivity

and speci�city, as determined on a subset of the training data, are recorded using an ROC

plot. The resulting ROC curve then allows the optimal alerting threshold to be set, based

on either a.) a minimum allowable sensitivity, b.) a minimum allowable speci�city, or

c.) the ratio between true positives and false positives, as shown in Figure 1.3.2. In this

application, it is di�cult to estimate the cost ratio (True Positives and False Positives),

and so a.) or b.) must be used.

One method of ensuring similarity between the training, validation, and test sets is to

generate the data sets directly from the ED data, using a cross-validation scheme to ensure

that the data fusion models are not over-trained. We considered whether this would be

feasible using two possible cross-validation schemes. In the �rst, repeated random sub-
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5. Application of the Data Fusion Models

Figure 5.5.4.: Pictorial representation of: a.) Repeated random sub-sampling validation,
b.) 5-fold cross-validation. In each case, patients with A2 escalations are
shown in red, patients with no escalations are shown in green, and all other
patients are shown in orange. In a.) the A2 events are selected randomly
for each retraining. In b.) the retraining is repeated 5 times, using the
patient in Fn on the nth retraining

sampling validation, a balanced test set is generated by randomly selecting half of the A2

patients and then randomly selecting the same number of patients with no escalations.

Similarly, a balanced validation set is created using the remaining A2 patients, along with

randomly selected patients with no escalations. The remaining patients are used as a

training set. The scheme is shown pictorially in Figure 5.5.4. In order to attain a result

that is representative of the whole data set, the process is repeated numerous times and

the mean sensitivity and speci�city on the test set is reported. The scheme is ine�ective in

this case, as the validation and test subsets contain only 14 or 15 events, so an operating

point cannot be set with any degree of con�dence.

The second method, 5-fold cross-validation, creates a test set by splitting the A2 events

into 5 equal sized groups, and choosing one group as the test subset, and the remainder

for the validation subset. This leads to the same problems as the previous scheme, but

to a greater degree, as only 5 A2 events are available for the test set (see Figure 5.5.4).

Therefore, cross-validation is not feasible, and we conclude that e�ective retraining will

require an independent data set with a greater number of patients.

Although retraining was not possible, improvements to the models may be generated

by using a heuristic approach. The approach is presented here for the baseline model in
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order to show that the changes to the models can lead to improved results, although no

scienti�c justi�cation for the changes is given here.

In the baseline model, input data were scaled by the training set population mean and

variance. In order to make the model more sensitive to hypotensive events, the SDA values

were re-scaled if the value was lower than the training set population mean. Rather than

the scaling:

SDAn =
SDA− µSDA

σSDA
=
SDA− 94.68

16.54

a new value of σSDA = 12 was chosen. This change has the e�ect of giving greater

importance to low and high blood pressures, so that hypotension is more likely to be

detected. Similarly, the SpO2 values were scaled using the mean and variance from the

ED data µSpO2 = 96.98 and σSpO2 = 3.13, in preference to the baseline model values of

µSpO2 = 95.20 and σSpO2 = 3.49

5.5.2. Modi�ed Model Results

The number of A2 events, and �rst A2 events per patient are shown in Figure 5.5.5 for

window lengths between 1 and 60 minutes. The plots show that the modi�ed baseline

model (changes in σSDAfrom 16.54 to 12, changes in µSpO2 from 95.2 to 96.98 and changes

in σSpO2 from 3.49 to 3.13) is better at identifying escalation events than the original

SVM model. Previously, we highlighted six escalation events that were caused primar-

ily by changes in blood pressure or SpO2 and were previously missed by SVM. Five of

these events were now identi�ed using the modi�ed baseline algorithm. The one event

that remained undetected, for ED00320, was due to a borderline hypotensive event that

resulted in a PSI score of 2.1, which did not exceed the alerting threshold. However, we

note that this patient had sustained hypotension throughout their stay, which would have

been identi�ed by the system in the hour preceding the escalation event.

The �ve extra escalations were detected for three additional patients, so the number of

True Positives is 20 and the sensitivity of the model is therefore:

sensitivity =
20

20 + 9
= 69.0%
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Figure 5.5.5.: Positive events detected by the modi�ed baseline model and SVM model,
on a per-event and a per-patient basis

There were a total of 151 true negatives and 66 false positives; 8 extra false positives

in comparison to SVMs. This leads to a speci�city of:

specificity =
151

151 + 66
= 69.6%

From these results, we postulate that proper retraining of the data fusion models could

lead to improvements in sensitivity, with little change in speci�city.

5.5.3. Further Limitations

The blood pressure and oxygen saturation adaptations to the baseline model show that

improvements in sensitivity and speci�city are achievable. A larger data set would allow

for model retraining and optimisation in a more structured way. However, even if the

model was retrained properly, it can only ever be e�ective for identifying patient vital

sign abnormality, not predict the onset of abnormality. This is because the baseline model

(and each of the other models considered here) only uses the most recent vector of vital

signs in its calculations, and discards any temporal information.

For example, consider the vital signs for the patient that was introduced at the start of

Chapter 3 in Figure 3.0.1; we now show the result of applying each data fusion model to

the vital signs in Figure 5.5.6. Each of the Parzen windows based models is able to detect

deterioration in the patient when there are severe oxygen desaturations at 14:20, 16:10 and

17:45, at which stage the current vital sign vector is abnormal with respect to the model.
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Figure 5.5.6.: Vital signs and data fusion models for the deteriorating patient previously
seen in Figure 3.0.1. The data fusion models show that deterioration could
have been detected at 14:20, approximately 4 hours before clinical interven-
tion at the end of the record. The gradual increase in score also suggests
that trend information may enhance the model.

However, the PSI values for all of the models increase over the course of the patient's

stay, indicating a gradual deterioration. In some cases, there will be long-term trends in

the vital signs that may be predictive of deterioration which may be detected using more

sophisticated methods. In the next chapter, we consider how time-series information may

be synthesized into a data fusion model through the use of Gaussian processes.
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Processes

We have so far considered a selection of classi�cation techniques for detecting vital sign

abnormality. In the previous chapter, we optimised two of these techniques for the ED

data set, which resulted in improvements in the number of physiological escalation events

detected. In this chapter, we develop a novel method for vital sign data analysis, which

overcomes two of the main limitations of current approaches: data drop-out and the lack

of temporal information.

6.1. Remaining Issues With Current Methods of Vital

Sign Data Analysis

6.1.1. Data Dropout

In Chapter 3, we noted that for the ED data set the instances for which a single channel

of data was temporarily missing a�ected between 6% and 12% of the total continuous

data. The baseline algorithm, as described in Section 4.1, has a short-term and long-term

approach to this problem. In the short-term, if single-channel data are not received for a

one-minute period, then a local median, calculated from the data for that channel in the

previous 5 minutes, is used as a proxy for the missing value. If the data loss is long-term,

persisting for more than 30 minutes, the mean of the training data for that channel is

used instead.

These approaches were developed heuristically and the parameters have not been jus-

ti�ed scienti�cally. For instance, it is unclear why 30 minutes was chosen as the time at
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which to switch to using the population mean, and why the short-time median should

use 5 minutes of data. The approach may also introduce artefactual step-changes in the

Patient Status Index when switching to the short-term median, and then when switching

from this median to the population mean.

An alternative long-term solution which may be used instead of the population mean

was proposed by Hann [41]. He suggests that rather than assigning a speci�c value for

the missing variable, a more principled method is to switch to a lower-dimensional model.

In doing so, the missing variable is marginalised out, so that the channel contains no

information. There are two main problems with this approach. Firstly, to account for

drop-out in each of the four vital signs, a separate model needs to be trained for every

combination of valid vital sign vectors. If a maximum of two vital sign channels are

allowed to drop out, then a total of six (C4
3 + C4

2) models must be trained and stored.

Secondly, the PSI scores generated by the marginalised models are not necessarily

equivalent. That is, if n vital signs produce a PSI of 3 in the 4D model, (n − 1) vital

signs will not produce a score of 3 in a 3D model. In order to create a standardised

score, we may convert the PSI scores generated by each model based on their cumulative

distributions, as shown in Figure 6.1.1. In this scheme, any vectors of vital signs that

have the same cumulative probability P (PSI < X) are given the same score.

The validity of this method depends on how well the underlying vital sign distribution

is estimated. In addition, the method described here does not address the issue of how

long before the system switches to a model of lower dimensions, and the switch may still

produce step-changes in the PSI that are unrelated to the underlying human physiology.

In summary, the methods currently used to deal with data drop-out are not based on

evidence, and are prone to errors caused by switching between short-term and long-term

solutions. A more complete solution would not require any such switching, and should

provide a probabilistic estimate of the missing vital sign based on all of the previously

seen data for that vital sign.
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Figure 6.1.1.: Cumulative Distribution Functions for PSI values in the 4D baseline model
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such that a score of 2.45 in the 4D model is equivalent to a PSI value of 0.7
in the 3D model.

6.1.2. Lack of Temporal Information

One further drawback of the data fusion methods presented so far is their inability to

assess the vital sign trends for a patient. Only the most recent vital sign vector is used

to assess the patient's physiological status. This di�ers from standard clinical practice,

in which rudimentary trend analysis is considered to be an important part of detecting

deterioration, and Track-and-Trigger observation charts are designed so that the overall

trajectory of a patient can be ascertained as easily as possible.

Trend analysis in automated systems has previously been attempted, most notably

by Charbonnier and Gentil [20]. In their system, semi-quantitative trend features are

calculated such that the output score is based not only on the latest values for the vital

signs, but also on trend features. However, one problem with their approach is that the

choice of trend features is arbitrary: an in�nite number of trend features could be selected,

and the research may be improved by principled feature selection.

6.1.3. Time Series Analysis

To deal with the drawbacks described in the previous section, we hypothesise that it may

be possible to use information from a vital sign time series to infer missing or future

vital sign values. The problem of data drop out could be potentially solved by predicting

the missing values, while the prediction of future vital sign values may be used for trend
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analysis.

For time-series techniques to be successful, we must �rst show that our vital sign data

are not comprised of independent and identically distributed (i.i.d.) samples, but instead

that there is some degree of correlation between vital sign values that are close together

in time. We can check whether the vital signs are i.i.d. by analysing each channel for

�records� [30]. A new record is set if the current value exceeds all previous values of that

vital sign. The status of a vital sign can be denoted by the vector Xj, where Xj = 1 if

the jth value is a record, and 0 otherwise. If a data set is i.i.d., the probability that the

jth value is a record is simply 1
j
. For any number of data samples the expected number

of records can be derived from simple probability theory and is given approximately by:

E (Xj) ≈ ln(j) + γ (6.1.1)

where γ is the Euler-Mascheroni constant:

γ = lim
n→∞

(
n∑

k=1

1

k
− ln(n)

)
=

ˆ ∞
1

(
1

|x| −
1

x

)
dx ≈ 0.577 (6.1.2)

This number of vital sign records was calculated for the entirety of JR training data set

from Chapter 4, by concatenating all of the vital sign vectors in chronological order, to

form one long data stream for each vital sign. This is less accurate than calculating the

number of records on a per-patient basis, as vital signs between patients are likely to be

independent. However, this method has the advantage of allowing results to be presented

in a single graph.

The results are shown in the upper graph in Figure 6.1.2. In each case, the shape

of the distribution is signi�cantly di�erent to that given by E(Xj), indicating that the

vital signs are not i.i.d. We con�rm that E(Xj) is a good estimate by comparing it to a

pseudo-independent vital sign data set that was generated by randomising the order of

the vital signs. The lower graph in Figure 6.1.2 shows there is a good match between the

distribution of E(Xj) and the number of records for the independent set.

The sudden step changes for each of the vital signs were due to instances where a patient

had abnormal, record-breaking, vital sign values to begin with, but then continued to

deteriorate such that every subsequent recording was also a record. While HR, SpO2 and
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SBP contained hundreds of records, there were only 23 respiratory rate records in total,

in comparison to 13 predicted by E(Xj). The low total is due to the vital signs for the

initial patients containing a very extreme value of respiratory rate (43 respirations/min),

which is only exceeded 3 times thereafter. Therefore, the total number of records depends

on the order of patients, and instead it is the di�erent shapes of the distributions that

indicate whether a data series is i.i.d.

6.2. I.I.D. Patient-Speci�c Model

In the next section, we will introduce a time-series model that will be trained on a patient-

speci�c basis. In order to test its e�ectiveness, we will �rstly compare it to the short-term

median �lter used by the baseline model as described in Chapter 4. In addition to this, we

will compare the time series model to an i.i.d. model that we now describe. The purpose

of this comparison is to determine whether time-series techniques have bene�ts over i.i.d.

techniques.

A simple i.i.d. model can be generated by applying Parzen windows to the vital sign

data from each patient. Parzen windows can be considered as i.i.d. as the time information

for the training points is not included in the model, and so each training point has an equal

in�uence on the prediction of future points. Figure 6.2.1 gives a pictorial representation

of how a kernel is applied to each data point. These kernels are then summed to generate

a posterior probability distribution depicted in red, which may be used to predict the next

vital sign value. Note that the model described here is generated on a patient-speci�c

basis; this will allow a fair comparison with the time-series model, which will also be

patient-speci�c. The kernel width parameter can again be estimated using the standard

metric (Equation 4.1.5), or else by maximising the likelihood of the data. The output

of the model is always zeroth order, so that the posterior distribution is the same for all

time. This is because the i.i.d. assumption implies that there is no di�erence between

vital sign behaviour in the near future and distant future.
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Figure 6.1.2.: Number of records for each of the vital signs in chronological order (upper
�gure), and in a random order (lower �gure). The expected number of
records for an i.i.d. data set is shown as a red line, while the actual number
of records is shown in blue.
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Figure 6.2.1.: Demonstration of a univariate patient-speci�c i.i.d. model for Heart Rate.
Each point of previously seen data (shown in blue) contributes to a Parzen
windows model (in red). Because the model is i.i.d., the Parzen windows
estimate remains the same in time until a new data point is seen.

6.3. Gaussian Processes

In the remainder of this chapter, we consider how the time series analysis technique known

as Gaussian processes may be used to deal with the problems highlighted in Sections 6.1.1

and 6.1.2 and then show how improvements to a data fusion model can be achieved within

an integrated framework which incorporates the Patient Status Index.

Time series analysis is a wide-ranging �eld, with practical applications in economics

[112] and meteorology [91], among others. A number of other time series methodologies

are not considered here, but may result in solutions that are as e�ective as the Gaussian

process in certain circumstances. In particular, Kalman �lters, which recursively estimate

the mean and variance of a variable with a Gaussian distribution can be shown to be

equivalent to a special case of Gaussian processes [67], in which the linear state state space

model used by the Kalman �lter maps to a Gaussian process model with a particular

covariance function. Gaussian process regression is a more general formulation than a

Kalman �lter, in that the training process involves choosing from a family of models

rather than assuming a model to begin with.

For more complex multimodal behaviour, the particle �lter approach may be more

applicable [3]. With this methodology, random 'particles' with associated weights are

used to represent the posterior density, which provides the ability to represent arbitrary

densities. However, the method has high computational complexity, and the number of

particles required increases exponentially with the number of dimensions in the problem
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domain.

6.3.1. Gaussian Process Overview

A Gaussian process is de�ned as a stochastic process for which any �nite combination of

samples have a joint Gaussian distribution. Using this property, it is possible to regress

onto previously unseen data points. We considered that the vital sign data met the

criteria for a Gaussian process, �rstly noting that under normal physiological conditions,

on the order of minutes, one would expect vital sign values to be similar to previous

vital sign observations. Furthermore, the probability that a new vital sign value deviates

from previous values should decrease with the magnitude of the deviation . Therefore, we

postulate that at short timescales, the posterior state of any of the vital sign parameters

can be well-modelled as a Gaussian.

This is particularly useful, as the distribution can be fully parameterised by a mean and

variance. In more complex applications, the posterior state may be multimodal, such that

the posterior mean is unsuitable as it may fall between two distinct regimes. Secondly,

Gaussian processes are able to deal naturally with asynchronous data, which is useful

in the ED setting where we may expect temporary data loss as a result of movement

artefacts.

The Gaussian process methodology for regression was used for time-series analysis as

long ago as 1880 [62]. However, the �rst modern applications of Gaussian processes were

developed in the 1970s in the �eld of geostatics where the method is known as Kriging [80].

Kriging was developed from the ideas of Krige [1], and was developed into a mathematical

framework by Matheron in 1963 [70]. Typically, the method is used within geostatics to

map physical surfaces from limited sample data.

The use of Gaussian processes in machine learning is much more recent and was derived

independently from previous theory. Subsequently, it has been shown that the Gaussian

process model has a close relationship to a Bayesian neural network [77, 119]; in partic-

ular, Neal showed that a neural network with one hidden layer converges to a Gaussian

process as the number of hidden nodes goes to in�inity. However, for a �nite Bayesian net-

work, Rasmussen demonstrated (using two independent examples) that Gaussian process
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methods performed best for small (up to 1000 point) training sets [92].

Gaussian process regression has since been used in a number of diverse applications

including generating music playlists [87], visualisation [63], and has been considered for

use in predicting patient condition in intensive care [40]. Gaussian processes can also be

adapted for classi�cation [117], though we only consider their use for regression in this

chapter.

We can gain an intuitive understanding of the Gaussian process model by �rst consid-

ering the 2-D Gaussian in Figure 6.3.1, which has a mean of




0

0


 and covariance of




1 0.6

0.6 1


.

Any point on the distribution (y1, y2) can be said to describe the joint probability of two

samples. For instance, the red dot on the left-hand side plot represents the probability of

the two points y1 = 1.5, y2 = −0.2.

Alternatively, the points y1 and y2 can also be depicted as a two-point time series, as

shown in the right subplot. Note that the time at which y1 and y2 occur has not yet been

speci�ed; this will be considered later, but for now, let us suppose that these points occur

at arbitrary times x1 and x2. As the time series grows with more points y3, y4,..., yn it

can continue to be modelled as a Gaussian process provided that the dimensionality of

the Gaussian is increased to 3, 4, ..., n. Thus an n-point stochastic time series can be fully

described by an n-dimensional Gaussian.

The primary advantage of modelling a time series with this approach is that it allows us

to infer a posterior probability distribution over the missing values of y, given the known

data. The mean of the posterior then represents our best estimate of the missing data,

and the variance provides a measure of con�dence in the inference.

For instance, in the example shown previously, the outermost contours indicate that y2

is likely to take values between -2 and 2. However, now consider the case for when the

value of y1 is known to be 1.5. The selection of y1 constrains y2 to a 1-D slice, denoted

by the dotted red line in Figure 6.3.1. This is the conditional distribution p(y2|y1 = 1.5).

From the contours, we can see that y2 is now likely to lie between -0.3 and 2. By using prior

knowledge about y1, we have reduced the uncertainty about the value of the unknown
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Figure 6.3.1.: Simple example of a Gaussian process for two points. The left �gure shows
the joint probabilities of all possible points as a bivariate Gaussian distri-
bution. The right �gure shows the time series plots for the three points on
the Gaussian distribution highlighted in blue, black and red.

point, y2.

6.3.2. Covariance Functions

The previous section showed how we could develop a time series, but without showing

how the values on the time axis were set. Similarly, we introduced a covariance matrix

governing the correlation between data points, but did not explain how the covariance

matrix was derived. We now show that the two are linked through the use of a covariance

function.

A covariance function is a function of the times (xi, xj) of any two data points (yi, yj).

The form of the function is free, but the function must lead to the production of pos-

itive semide�nite covariance matrices. In most practical applications, we expect local

behaviour to be highly correlated and the correlation to decrease as data samples become

further apart in time. Furthermore, in many cases, we may also expect the function to

be stationary, so that only the distance between xi and xj is important, and not their

absolute values.

For this reason, one of the most common classes of covariance functions is the squared

exponential, which takes the form:
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Cov(yi, yj) = K(xi, xj) = σ2
0exp(−

1

2

|xi − xj|2
λ

) (6.3.1)

Note that xi and xj may take any value, and therefore the generated time series does

not require evenly spaced data. The covariance function in this case contains two free

hyperparameters. The amplitude hyperparameter, σ0, de�nes the maximum allowable

variance, and is high for variables with a high dynamic range. The length-scale hyper-

parameter, λ, controls how long an observation will be correlated to future observations

and thus has the e�ect of shaping the smoothness of the output.

The hyperparameters may be set using prior knowledge. For example, if we were

modelling respiratory rate, we may want to set σ0 ≈ 3 to re�ect the fact that the range

of respiratory rates is approximately 20± 10 rpm (as 10 ≈ 3s.d. from the mean).

In the absence of strong prior knowledge, the hyperparameters can be learned from the

data by maximising the likelihood for the hyperparameters. Given Bayes' theorem:

P (A|B) =
P (B|A)P (A)

P (B)

and assuming that the prior P (Φ) is uninformative, the posterior over the hyperparam-

eters can be written as:

P (Φ|y,X) ∝ P (y|X,Φ)

The likelihood, p(B|A), in this situation is simply:

P (y|X,Φ) = N(µ,K) (6.3.2)

where K is the covariance matrix, y represents the N time series observations, X is

the corresponding vector of input data (the time points), and Φ are the set of covariance

function hyperparameters. The log likelihood is:

L =
1

2
log |K| − 1

2
yTK−1y − N

2
log 2π (6.3.3)

The derivative of the log likelihood with respect to Φ is then:
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∂L

∂Φi

= −1

2
trace(K−1

∂K

∂Φi

) +
1

2
yTK−1

∂K

∂Φi

K−1y (6.3.4)

By setting this to zero, the most likely value of Φ can be calculated. Alternatively, the

posterior distribution of Φ can be calculated using Monte Carlo sampling methods.

Where there is further structure in the data, other classes of covariance function may

be more suitable. For instance, a periodic covariance function (Equation 6.3.5) can be

used to enforce sinusoidal behavior.

k(x, x′) = exp

(
−2sin2

(
x−x′
2

)

λ2

)
(6.3.5)

In addition, new covariance functions can be constructed by combining standard classes

of covariance function by summing, convolution, or using the product of two known co-

variance functions. This allows for multi-scale behaviour to be modelled. An example of

this is given by Stegle et al. [102], who attempted to infer missing heart rate data using

Gaussian processes. They noticed that there were two types of behaviour - a short-term

process which appeared smooth on a timescale of a few minutes, and a long-term period-

icity due to circadian rhythm. In response, a covariance function consisting of the sum

of a Matern covariance function and periodic function was used successfully. The Matern

function takes the form:

k(x, x′) = σ2 1

Γ(ν)2ν−1

(
2
√
ν

(x− x′)
ρ

)ν
Kν

(
2
√
ν

(x− x′)
ρ

)

where ρ, σ, and ν are the covariance function hyperparameters, Γ is the gamma function,

and Kν is the modi�ed Bessel function of the second kind.

6.3.3. Gaussian Process Regression

The possibility of inference using a Gaussian process model was highlighted in Section

6.3.1. In this section, we formally derive the mathematics for Gaussian processes in the

general case, and then show how the equations may be applied to the simple 2D example

described in Section 6.3.1.

Consider the case for which the values of a number of points, y, are already known, and
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we wish to estimate the mean and covariance of an additional unknown points, y∗, based

on the known data. The vector of all the points, [y, y∗], has a vector with corresponding

times points [x, x∗]. By using a covariance function, we can build a covariance matrix,

K, for all the points, so that Ki,j = k(xi, xj). The elements of the covariance matrix

describe all the correlations between each pair of points, and as a whole describe the joint

distribution of all the points in the time series, P (y, y∗).

The covariance matrix can be divided up into the components that describe the cor-

relations between the known points y, the correlations between the unknown points, y∗,

and the cross-terms. Let us label these components, A, B and C, respectively, so that K

can be expressed as:

K =




A CT

C B


 (6.3.6)

The conditional distribution P (y∗|y), which describes the probability distribution of

the new points, y∗ when each of the other y points is �xed, may be derived using the

joint distribution. We may consider the conditional distribution to be a slice through

the joint distribution, and hence the conditional distribution is also Gaussian distributed,

with mean and variance:

p(y∗|y) ∼ N(CTB−1y, A−CTB−1C) (6.3.7)

The full derivation of the conditional distribution can be found in Appendix C. In

order to compute the conditional distribution, the elements of the covariance matrix must

be inverted, a process which is of order O(N3) complexity. This means that there is

a practical limit to the number of points in the time series of a few thousand points

on a regular desktop computer. The upper limit can be further extended through the

use of sparse matrix techniques. However, these limitations will not a�ect the use of

Gaussian processes in our application, where we may expect a maximum data series of

approximately 500 points during a patient's four-hour stay in the ED (assuming that the

maximum sampling rate is approximately equal to 30 seconds).

We can con�rm the result of Equation 6.3.7 using the example in Figure 6.3.1. In this
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Figure 6.3.2.: Comparison of the calculated conditional distribution P (x2|x1) and sam-
ples selected from the joint distribution P (x1, x2) when samples are only
accepted if 1.49 ≤ x1 ≤ 1.51.

example, the covariance matrix




1 0.6

0.6 1


 was used to generate the 2D Gaussian. Let

us now assume that the value of y1 has previously been observed as y1 = 1.5, so that we

want to infer the distribution of the slice along the dotted red line. Using Equation 6.3.7,

the conditional distribution of the point x2 is:

p(y2|y1 = 1.5) ∼ N(0.6× 1× 1.5, 1− 0.6× 1× 0.6) = N(0.9, 0.64) (6.3.8)

We can test this result by randomly sampling from the joint distribution, and only

accepting the values of y2 when 1.49 ≤ y1 ≤ 1.51. These samples can then be used

to generate a discrete probability distribution that can be compared to our calculated

conditional distribution. The result is shown in Figure 6.3.2, which shows a very close

match between the experimental and theoretical results.

6.3.4. Noise Processes

Up to this stage, the Gaussian process model that we have derived makes the assumption

that the input data are noiseless. However, in most practical applications, we do not

have access to the true underlying state, but only a noisy measurement of the state. This

is certainly true in our application, for which we may expect noise to be generated by
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external factors such as patient movement, as well as by noise processes in the measuring

device itself.

We assume that the noise is additive, and that it has behaviour characterised by a

Gaussian distribution with zero mean and variance σ2
n, such that our observations can be

modelled by:

y = f(x) + ε (6.3.9)

where ε is a noise process. This additional term can be incorporated into the Gaussian

process model by adapting the covariance function so that:

Cov(yi, yj) = K(xi, xj) + σ2
nδij (6.3.10)

where δij = 1 is the Kronecker delta function which takes a value of 1.0 if p = q, and is

zero otherwise. We can then update the predictive equations in Equation 6.3.7, so that

the mean and variance of the conditional distribution are:

mean = CT (B + σ2
nI)−1y

variance = A−CT (B + σ2
nI)−1C)

(6.3.11)

where I, the identity matrix, is necessarily the same size as B. The parameter, σ2
n, that

controls the level of noise can be set explicitly using prior knowledge. Otherwise, we may

treat it as another hyperparameter and use a maximum likelihood estimate. The e�ect on

the Gaussian process regression output is that the mean of the Gaussian process now no

longer has to pass through each of the observed data points. This allows a more general

regression, and so the introduction of the noise process can be likened to that of the slack

variable in the SVM method.

6.4. Univariate Gaussian Processes

Having established the Gaussian processes methodology, we now apply it to univariate

data. Initially, we demonstrate the method on synthetic data, and then test it more fully

on one of the vital signs, the heart rate, as a proof of concept. Heart rate was chosen
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because there was little data loss for this parameter in the ED data set. However, the

procedure outlined here is equally valid for any of the vital signs.

We use a squared exponential covariance function because of its simplicity and its ability

to model a wide range of behaviours. Furthermore, the function matches our prior belief

that data points close to each other in time are more strongly correlated than points

further apart in time. The hyperparameters are selected using the maximum a posteriori

estimates of the marginal log-likelihoods, as described is Section 6.3.2.

In general, the choice of covariance function is of critical importance, and in a more de-

tailed study it would be appropriate to select the covariance function in a more principled

manner. This may involve, for instance, searching through the data set and investigating

temporal features such as the average rate of change for each variable, which may indi-

cate a sensible range for the length-scale parameter, and whether there were any regular

patterns such as circadian rhythms.

6.4.1. Synthetic Data Example

The Gaussian process model was tested on a synthetic data example using training data

that consisted of 90 points generated from a sine wave signal given by y = sin(x) with

additive Gaussian white noise Noise ∼ N(0, 0.125). The points, ytrain, were evaluated

at evenly spaced intervals between 1 ≤ xtrain ≤ 9. Gaussian process regression was

then used to estimate the values of the next ten data points, between 9 ≤ xtest ≤ 10,

using the gpcovar.m and gpfwd.m functions from the Netlab toolkit, which estimates the

hyperparameters by maximising the likelihood over the hyperparameters. The results

are shown in Figure 6.4.1, where the training data are shown as black markers, and the

underlying sine wave is shown as a dashed black line. The mean of the regression, and

±2 standard deviations are shown in red on the �gure.

The 90 training points, xtrain, were used to generate the matrix A described in Equation

6.3.6, and the Gaussian process regression estimates were evaluated simultaneously at all

10 values of xtest, such that the matrices B and C in Equation 6.3.6 are of dimensionality

10× 10 and 1× 10 respectively.

The regression estimate is calculated from Equation 6.3.7, and the solution is a 10-
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dimensional Gaussian distribution. The mean and variance at a single point of interest

can be derived by marginalising out all of the other dimensions. We note that this is

exactly equivalent to evaluating each of the test points sequentially. Unlike other time-

series analysis methods such as Autoregressive Moving Average (ARMA) models, the data

points initially estimated are not used in estimation of any future next data points.

The upper plot in the �gure shows that the Gaussian process models the signal well,

continuing the short-term downward trend. In addition, the range between the ±2 s.d.

markers increases between x = 9 and x = 10, correctly indicating that the con�dence in

the prediction decreases as we get further away from the observations.

In comparison, Figure 6.4.1 also shows the results that would have been generated if

an i.i.d. model had been used (lower plot), and if the median �lter method employed by

the baseline model was used (middle plot). The i.i.d. model was trained on the 90 data

points used previously, using the Parzen windows algorithm as described in Section 6.2.

The Parzen windows width was set in the standard way as described by Equation 4.1.5.

The model was used to predict the 10 test points, and again, the data points initially

estimated were not used to update the model. The estimate of the median and the 5th

and 95th percentiles are shown as green dashed lines in the �gure, and the i.i.d. model

distribution is shown on a separate axis. Under the i.i.d. assumption, every training data

point, regardless of distance from the test points, has an equal in�uence on the posterior

distribution. As a consequence, the i.i.d. model is unable to capture short-term changes,

and each data point estimate has a wide variance that re�ects the sample variance of

ytrain.

In the baseline model, the unknown data are modelled by the short-term median of

the most recent training data. For the vital sign data, �short-term� is de�ned as all data

within the most recent 5-minute period. In this example, we calculate the median of the

ten most-recent data points, which re�ects the typical number of data points we would

expect within a 5-minute period, when the sampling rate is 30 seconds.

The result of this is shown as a solid blue line in Figure 6.4.1, from which it is clear that

the median does not model the characteristics of the time series well. In fact, one would

expect the median to perform poorly in any case where the signal has large changes
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Figure 6.4.1.: Gaussian process regression estimate on noisy sine wave data. The under-
lying sine wave is shown in black, along with the data points with added
Gaussian noise. The Gaussian process regression estimate is shown in the
uppermost graph, where the central line shows the mean of the posterior
distribution, and the two outer lines show the values of the mean ± two
standard deviations. For comparison, the estimate of the missing data us-
ing a 10-point median �lter that has a similar behaviour to the 5-minute
median �lter described for the baseline algorithm is shown in the middle
plot, and the i.i.d. model estimate is shown in green in the lower plot.

within the median �lter window. Unlike the Gaussian process, or the i.i.d model, the

median �lter does not provide a posterior distribution, and cannot therefore estimate the

uncertainty in a prediction.

6.4.2. Patient Data Examples

Gaussian processes were then tested on two examples of real vital sign data. The Gaussian

process regressions for heart rate data samples are shown in Figure 6.4.2. In the example

in Figure 6.4.2(a), 15 minutes of data were selected at random from an arbitrary patient

in the ED data set. This data were then split into an initial 10 minutes of training data,

which are depicted as black circles, and 5 minutes of test data, which are shown in red.

The Gaussian process model was implemented using the training data, and the mean of
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Figure 6.4.2.: Gaussian process regression examples for heart rate on (a) an arbitrarily
chosen patient (b) a patient with a pacemaker. The black dots were used
to train the model. The mean of the resulting model is shown as a black
line, and ±2s.d.s are shown as blue lines. The red dots were unseen test
data, and allow us to assess of the performance of the model.

the estimate is shown as a black line alongside the ±2s.d. con�dence intervals, which are

shown in blue. A visual inspection con�rms that the regression appears to predict an

overall upward trend in the heart rate values. In addition, we once again see that the

estimate becomes less certain as time progresses and the points that we try to estimate

become further away from the last observed data.

Figure 6.4.2(b) shows Patient ED00236, who had an activated pacemaker during his

stay at the ED. The graph shows that the patient's heart rate remained at 60 bpm for

most of the 23-minute segment of data that was used as the input to the model. The

short-term deviations from the �xed heart rate are likely to have been caused by errors

from the heart-rate monitor, rather than the pacemaker. The test data, again marked

in red, shows that the heart rate remained constant for the following ten minutes, apart

from two periods of short-term deviation.

The Gaussian process model correctly estimates that the heart rate remains constant

throughout the ten-minute period, and also predicts that the heart rate is 59.8± 0.5bpm

with 95% con�dence (2sds). Compared to Figure 6.4.2(a), the 95% con�dence interval is

much smaller due to the low variance in the training data. We note that for this atypical

example, both the i.i.d. model and the median �lter would also provide the correct heart

rate estimate.
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6.5. Testing the Model

Up to this point, we have shown how Gaussian processes appear to provide a sensible

estimate of missing data for two simple examples. The e�ectiveness of the model can be

assessed more thoroughly using a larger set of samples from the ED data set.

We selected 1000 samples at random from the ED data set, each consisting of 30-minute

segments of heart rate data. The randomisation process was as follows: �rstly, a patient

was selected using a random number generator. A data segment was extracted from the

data for this patient by setting the start of the segment to be a randomly-selected time

between the start and end of the patient's stay at the ED. The data segment was selected

to be the 30 minutes of data immediately following the start time.

Each segment was checked for data completeness and was accepted if it contained at

least 40 data points, representing a 2/3 completion rate, assuming that the data were

sampled every 30 seconds. If the segment did not have enough data points, it was dis-

carded, and another segment was selected at random. This process was repeated until

1000 segments had been selected. Each of the 30-minute segments were then divided into

an initial 20-minute period of training data, and a 10-minute period of test data. The

Gaussian processes were created using only the training data, and then tested by seeing

how well the model predicted the values in the test data set. Similarly, the i.i.d model was

generated from the 1000 segments and the baseline model median-�lter was also applied

to the �nal �ve minutes of each segment of training data.

The choice of 30 minutes for the length of the data segments provided a long enough

training period so that medium-term trends in the data might be identi�ed, but was

also short enough for the models to be computed quickly. A more detailed study could

examine the performance of Gaussian processes using di�erent segment lengths for the

training data, as the regression estimate should improve given more training data.

6.5.1. Quantifying the Gaussian Process Error

We can quantify the accuracy of the Gaussian process prediction by calculating the root-

mean-squared error (RMSE) for each of the data points in the 10 minutes of test data.

Typically, this will include up to 20 data points. If the test data, [y1y2...yn], and the
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Model Gaussian Process i.i.d. Baseline Median

Average Time (/s) 4× 10−1 3.5× 10−3 4.7× 10−5

Table 6.1.: The average time taken, in seconds, to compute the Gaussian process, i.i.d.,
and median �lter models using 1000 data segments.

Gaussian process estimate, [y∗1y∗2...y∗n], evaluated at points [x1, x2...xn] are represented

by:

Ytest = [y1, y2...yn] and Y∗ = [y∗1, y∗2...y∗n] (6.5.1)

respectively, then the RMSE is given by the formula:

RMSE(Ytest, Y∗) =

√∑n
i=1(yi − y∗i)2

n
(6.5.2)

We can then examine the distribution of the errors, and calculate the mean error over all

the 1000 segments to provide a metric which quanti�es the performance of the Gaussian

process model. Similarly, we can use the same method to evaluate how well the i.i.d

model, and the median-�lter baseline model perform.

6.5.2. Results

The Gaussian process, i.i.d., and median �lter models were applied to the 1000 segments

of training data. The average time to compute each model is shown in Table 6.1. Of

the three models, Gaussian processes were the slowest, taking 100 times longer to train

than the i.i.d. model. The training time may be improved to some extent by using a

more e�cient implementation, though it is still likely to be considerably longer than for

the other two techniques. Most importantly, although the Gaussian process was slowest,

with an average training time of 0.4 seconds, each of the models could be trained far more

quickly than the data acquisition rate of one sample every 30 seconds, and such models

could therefore be used in real-time applications.

The mean RMSE errors for the three models are summarised in Table 6.2. The average

absolute errors at 30 seconds, 1, 2, 3, and 5 minutes from the start of the test data are

also shown in the table. The mean RMSE for Gaussian processes is approximately the
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Model Gaussian Process i.i.d Baseline Median

Average Error (all times) 4.38 4.57 4.37
30 secs 2.51 3.48 2.85
1 min 3.14 3.78 3.19
2 min 3.60 3.81 3.52
3 min 3.87 3.93 3.66
5 min 4.01 4.28 4.10

Table 6.2.: The average RMSE error for the Gaussian process, i.i.d., and median �lter
models. The RMSE errors at various times from the start of each test data
segment are also presented.

same as the RMSE for the 5-minute median method, while the mean i.i.d. error is worse.

The average absolute error for the �rst 30 seconds of test data is smallest for the

Gaussian Process model, performing better than both the median and i.i.d. models. The

i.i.d. model performs particularly poorly, with an average error 50% greater than for

the Gaussian Process model. Each of the models shows an increase in mean absolute

error over the duration of the test data segment. The increase is most signi�cant for the

median and Gaussian Process models, which had errors ranging from 2.85 to 4.10, and

2.51 to 4.06 respectively, in comparison to the i.i.d. model, which ranged from 3.48 to

4.28. The distributions of the RMS errors are shown in Figure 6.5.1. The �gure shows

that each of the models appear to have similar distributions but that the modal error for

the i.i.d. and Gaussian Process methods is less than the modal error for the 5-minute

median. Furthermore, the i.i.d. method has a greater number of instances for which the

RMS error is greater than 20.

The results indicate that the the Gaussian Process regression performs at roughly the

same level as the 5-minute median. We postulate that this is due to the fact that in many

instances, the vital sign does not change signi�cantly over the test (10-minute) period,

so there are no signi�cant trends to detect. To test this, we repeated the experiment

on another randomly-selected set of 1000 samples. This time, we included an additional

condition, that the training data had a variance of 10 or greater. An additional method for

estimating missing data, sample-and-hold (in which the last observation is held through

time), was also included.

The RMS errors for each of the methods are shown in Table 6.3. As before, each of

the models shows an increase in error over the duration of the test. However, unlike
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Figure 6.5.1.: Distribution of the RMS error between the 1000 test data segments esti-
mated for the heart rate time series, and the corresponding estimates from
the Gaussian process, i.i.d., and median �lter models.

Model Gaussian Process i.i.d Baseline Median Sample-and-Hold

Average Error
(all times)

5.62 6.30 5.85 6.22

30 secs 3.10 4.78 3.62 3.33
1 min 3.76 4.98 3.95 4.00
2 min 4.37 5.23 4.53 4.73
3 min 4.75 5.40 4.85 5.21
5 min 5.30 5.70 5.29 5.75

Table 6.3.: The average RMSE error for the Gaussian process, i.i.d., and median �lter
models. The RMSE errors at various times from the start of each test data
segment are also presented.

the initial experiment, Gaussian process regression performs noticeably better than the

baseline median method. The sample-and-hold method performed very well in the short-

term, providing estimates comparable to those produced by Gaussian processes and the

baseline median, but much worse at later times.

In Section 6.4.1, we showed that the median �lter method fails in situations where

there are large changes in the values of the time series. We now consider the instances

in which the Gaussian process model performed particularly poorly on the ED data, by

identifying the occasions for which there were large RMS errors. The plots for the test

data samples that produced the ten largest RMS errors are shown in Figure 6.5.2. In

nine of these cases, the regression estimate seems reasonable, and the poor RMS error is

due to unexpected, and unpredictable step-changes in the data during the test period.
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Figure 6.5.2.: The Gaussian process regression estimates for the ten instances with the
highest RMS errors. The mean and ±2 s.d. of the posterior Gaussian
distribution are shown in black and blue respectively.

For instance, in (1), the overall trend in heart rate data continues at approximately 150

bpm for 8 minutes, before the heart rate drops to 100 bpm, where the Gaussian Process

estimate fails. For the remaining case, (7), the training data consisted of three distinct

modes; an initial period of HR = 110, a middle period of HR=180, and a �nal period at

HR=95. The regression estimate mean tended towards 135 bpm, and the ±2 s.d. range

was between 65 and 205 bpm, indicating a high uncertainty in the result. In this case,

the Gaussian process recognises that the training data are spread over a large dynamic

range, but is unable to model each of the likely modes with a single Gaussian.
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6.5.3. Discussion

In this test of 1-D Gaussian processes, we attempted to infer ten minutes of missing heart

rate data, given the previous 20 minutes of data. The aim of this process was originally

to provide a principled method of estimating the value of a single vital sign when data

were lost due to probe disconnection. Accurate inference of the missing channel of data

will then allow us to generate a PSI value without having to revert to a lower-dimensional

model.

We assessed the performance of three methods for inferring the missing heart rate data:

Gaussian Processes, i.i.d., and median �lter methods. The e�ectiveness of each method

was determined by comparing the RMS error between the model estimates and the test

data. This allowed us to show that the median �lter and Gaussian Process approaches

outperform the i.i.d. model. In addition, we showed that the error over the duration of the

record increases least for the i.i.d. model, which is expected given the time-independent

nature of the model.

The advantage of using RMSE to quantify error is that it allowed a simple comparison

between all three models. However, there are two potential problems with the method

described in this chapter. Firstly, it is unclear whether RMSE is the most suitable error

metric, as it heavily penalises outliers, and may therefore favour methods that may be

sub-optimal. One way of minimising with this is to use a di�erent metric such as the

mean absolute error, which is de�ned as:

MAE =
1

n

∑
|yi − y∗i| (6.5.3)

or else using a combination of both error metrics through the Huber loss function,

which is simply a piecewise loss function that is equivalent to the RMSE below a given

threshold, and linear above the threshold [52].

Secondly, the way in which error is measured, as a distance between points generated

by the model output and the test data points, does not fully describe the outputs of the

i.i.d. and Gaussian process models. Both of these methods produce posterior distributions

that must be reduced to a single point (using the distribution median and mean values

respectively) for the error to be measured. In doing so, we forego the bene�t of having a
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distribution from which the con�dence in our estimate can be captured.

A more appropriate way of assessing the i.i.d. and Gaussian models is to calculate the

likelihood for the test data, using its posterior distribution(s). For the i.i.d. model, this

can be calculated as:

Liid(θ|x1, x2, ..., xn) =
n∏

i=1

f(xi|θ) (6.5.4)

where θ is the vector of parameters (i.e. the means and variances of the Parzen kernel

centres) , and x are the test data. For the Gaussian processes model, the likelihood must

take into account the changing mean and variance of the posterior Gaussian through time:

Lgp(θ1, θ2, θn|x1, x2, ..., xn) =
n∏

i=1

f(xi|θi) (6.5.5)

6.6. Dependent Gaussian Processes

So far, we have introduced univariate Gaussian processes and considered how they may

be used to predict values in the future. We then tested the models, and showed that they

were e�ective at making short-term predictions for missing heart rate data. The models

that we introduced only considered one channel of vital sign data. We now hypothesise

that information about all the vital signs may lead to a narrower posterior over the missing

channel of data, as a result of the extra information present in the correlations between

vital signs. The hypothesis is based on the knowledge that some of the vital signs are not

independent. For instance, heart rate and breathing rate are related; as the heart rate

increases, then the breathing rate usually increases (see Figure 6.6.1).

We now show how multiple channels of data can be incorporated into a Gaussian process

model. In the �rst instance, we describe the di�culties in creating dependent Gaussian

processes models. We then introduce Gaussian processes in terms of linear �lters, which

allows simple modelling of inter-channel dependencies. Finally, we construct a simple

bivariate example to demonstrate how a single channel of missing data can be inferred

using information from two vital sign channels. This will provide an overall framework

that allows the use of Gaussian processes in conjunction with a data fusion algorithm
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Figure 6.6.1.: Scatter plot of heart rate and breathing rate from the JR data set. It is clear
that there is some positive correlation between the parameters. In particu-
lar, note that at extremely high heart rates (HR>120), the corresponding
breathing rate is highly correlated, belonging to one of two regimes: very
fast breathing (RR>35) or normal breathing (15<RR<20).

to output a probabilistic PSI score. We demonstrate how this may be done within the

context of the Parzen windows baseline model.

6.6.1. 2D Dependent Gaussian Processes

In this section, we review the mathematics which underpin a dependent Gaussian process

model, and then apply such a model to synthetic data. Let us �rst consider a 2-point

example. In Section 6.3.1, we showed that a two-point time series could be represented

by two univariate Gaussian distributions, so that the joint probability of the two points

is a bivariate Gaussian. By extension, it follows that a 2D vector of points, [HRn, RRn]T

can be represented by a 2D Gaussian, and that a two-point time-series can be represented

by a 4-D Gaussian. The corresponding covariance matrix thus takes the form:
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Cov =




σ(HR1,HR1) σ(HR1,HR2) | σ(HR1, RR1) σ(HR1, RR2)

σ(HR2,HR1) σ(HR2,HR2) | σ(HR2, RR1) σ(HR2, RR2)

−−−−− −−−−− − −−−−− −−−−−

σ(RR1, HR1) σ(RR1, HR2) | σ(RR1,RR1) σ(RR1,RR2)

σ(RR2, HR1) σ(RR2, HR2) | σ(RR2,RR1) σ(RR,BR2)




=




covHR covHR,RR

covHR,RR covRR


 (6.6.1)

where σ(x, x′) is the value of the covariance function between x and x′, and the ma-

trix has been labelled to show the dependencies of each of the elements. The elements

in bold represent correlations within one channel of data, and can therefore be treated

independently. Thus, the bold elements may be described by two independent covariance

functions of the form shown in Section 6.3.2, one for HR (CovHR) and one for RR (CovRR).

The hyperparameters may be estimated as before, treating each channel independently. If

the remaining, non-bold, elements are zero, then we have simply collapsed two Gaussian

processes into a single covariance matrix.

Unfortunately, there is no simple way to use standard covariance functions to generate

the remaining cross-covariance terms in the matrix while still ensuring a positive-de�nite

covariance matrix. An n × n real matrix, M, is positive de�nite if zTMz > 0 for all

non-zero vectors z. Using covariance functions to compute covHR,RR and covRR,HR will

result in a strictly positive matrix that is not necessarily positive-de�nite. For example,

the covariance matrix




a b

b a


 in which both a =




1 0

0 1


 and b =




2 0

0 2


 are

derived from a squared exponential covariance function, is not positive-de�nite (e.g. if

z = [−1 0 − 1 0]T ).

One solution to this problem was proposed by Boyle and Frean [14], which �rstly

involves recasting Gaussian processes in terms of linear �lters. Covariance functions are

then formed in terms of the �lter's impulse response and the input to the �lter. The

linear �lter approach can then be extended to allow for multiple inputs and outputs, to
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describe a fully-dependent model. It is possible to derive valid cross-covariance functions

from the impulse response and �lter inputs. We now review this approach in more detail.

6.6.2. Gaussian Processes and Linear Filters

First, consider that Gaussian white noise is a special case of the Gaussian process in which

the covariance between two points xi and xj is σ
2 for i = j, and zero otherwise. It is

known that if the input to a linear �lter is a Gaussian process, then the output is also a

Gaussian process [43]. Therefore, we may use the form:

y(x) = h(x) ∗ w(x) =

ˆ ∞
−∞

h(x− τ)w(τ)dτ (6.6.2)

to describe a general Gaussian process, where the input, w(x), is Gaussian white noise,

and h(x) is the impulse response of a linear �lter. Using this construction, any Gaussian

process is now fully described in terms of an impulse response and the noise variance on

w(x), and consequently the corresponding covariance function must also be parameterised

in terms of these new variables. From �rst principles, we can de�ne the variance between

two points as:

Cov(y, y′) = E{yy′} (6.6.3)

and hence the covariance function in terms of h(x) and w(x) is:

Cov(y, y′) = E{yy′}

= E
{´∞
−∞ h(τ)w(x− τ)dτ

´∞
−∞ h(λ)w(x′ − λ)dλ

}

=
´∞
−∞

´∞
−∞ h(τ)h(λ)E{w(x− τ)w(x′ − λ)dτdλ

=
´∞
−∞

´∞
−∞ h(τ)h(λ)δ(λ− (x′ − x+ τ))dτdλ

=
´∞
−∞ h(τ)h(x′ − x+ τ)dτ

(6.6.4)

where δ is the Dirac delta function. In general, Equation 6.6.4 will not have an analytic

solution. However, if we choose h(x) to be a Gaussian �lter:

h(x) = v exp(−(x− µ)TP−1(x− µ)

2
) (6.6.5)
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in which the free parameters ν,P, and µ are the amplitude scale, covariance, and o�set

respectively, then the covariance function may be calculated analytically, resulting in a

squared exponential. The full derivation of this result can be found in [13]. The solution

involves the convolution of two Gaussians:

c(s) = Cov(y,y′) =
v2(2π)√

2P−1
exp

(
−1

2
sT
(

P−1

2

)
s

)
(6.6.6)

where the �lter is time invariant, so the covariance function is fully described in terms

of s = x′−x. The advantage of the linear �lter approach is that it may be generalised for

M Gaussian noise inputs, and N Gaussian processes outputs, so that the N �lter outputs,

yn are given by the sum:

yn(t) =
M∑

m=1

ˆ ∞
−∞

hmn(τ)wm(t− τ)dτ (6.6.7)

Each output is a weighted sum of �ltered inputs, with the weights incorporated within

hmn. In this case, the output Gaussian processes are also dependent, as they rely on a

common set of M inputs.

6.6.3. 2D Example

Using the linear �lter approach developed in the previous section, we now consider an

example with two channels of univariate data, for which we would like to infer values

for one of the channels based on information from previous data samples (as in standard

Gaussian processes), and also on information from the correlations between the channels.

Boyle and Frean proposed a 2D dependent Gaussian process model such that the Gaus-

sian process output for each of the two channels was composed of an independent Gaussian

process and another Gaussian process common to both channels. In addition to this, each

of the channels is subject to measurement noise, which can be modelled with additional

Gaussian white noise sources. We adopt this approach, which is represented pictorially

in Figure 6.6.2.

The noiseless outputs, (z1, z2) can be thought of as arising from a 3-input, 2-output

model of the form described in Section 6.6.2 where hmn can be found from the elements

169



6. Trend Analysis Using Gaussian Processes

Figure 6.6.2.: Model for two dependent Gaussian Processes y1 and y2, adapted from Boyle
and Frean [14]. The clean outputs, z1 and z2 are the sum of an independent
Gaussian process and a common Gaussian process, and can be thought of
as a 3-input, 2-output model of the form given in Equation 6.6.8. The clean
outputs are then subjected to additive Gaussian noise, which represents
measurement error.

of the 3× 2 impulse response matrix:

h(x) =




h1 0

k1 k2

0 h2




(6.6.8)

For this example, we choose each �lter to be Gaussian so that:

hi(x) = wi exp(− x2

2Q−1i
) where i = 1, 2 (6.6.9)

k1(x) = v1 exp(− x2

2P−1
) (6.6.10)

k2(x) = v2 exp(−(x− µ)2

2P−1
) (6.6.11)

The Gaussian �lters k1 and k2 model the dependent Gaussian processes common to

both y1 and y2. The term µ in Equation 6.6.11 merely allows the dependency between

y1 and y2 to be phase shifted by an amount µ, and the term could equally have been

included in k1(x) instead of k2(x). The free parameters in the �lters are described by an
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amplitude matrix, v, and variance matrix, A:

v =




w1 0

v1 v2

0 w2




, A =




Q1 0

P P

0 Q2




(6.6.12)

Now that the model has been fully parameterised, the remaining task is to construct

the covariance matrix.

We attempt to �nd covzij(xi, xj), by generalising Equation 6.6.4 using the property that

the sum of covariance functions is itself a covariance function, so that covzij can be written

as:

covzij(d) =
∑ ˆ

hmj(τ)hmi(τ + d)dτ (6.6.13)

where z ∈ (v1, v2, u1, u2) and d = |xj − xi|

By setting h to be a Gaussian �lter, it is possible to derive the general covariance

function, which is a squared exponential:

covuij(d) =
M∑

m=1

(2π)1/2vmivmj√
|Pmj + Pmi|

exp(−1

2
(d− [µmi − µmj])TΣ(d− [µmi − µmj])T (6.6.14)

with Σ = Ami(Ami + Amj)
−1Amj. In our problem, we consider only one input dimen-

sion, so that d, xn and P are all scalar quantities. Then the covariance matrix for the

noisy model is simply:

covyij(d) = covzij + δσ2
1 (6.6.15)

Noting that there is no linear �lter H1,2 = H3,1 = 0, then vmivmj is only non-zero when

m = 2, which gives:

covy11(d) = covu11 + covv11 + δabσ
2
1 (6.6.16)

covy22(d) = covu22 + covv22 + δabσ
2
2 (6.6.17)
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covy21(d) = covu21 (6.6.18)

covy12(d) = covu12 (6.6.19)

where the distance between two points is d = xa − xb, and δab is the Kronecker delta

function. Using these 4 equations, the full covariance matrix can be assembled. In total,

there are now nine Gaussian process hyperparameters: v1, v2, w1, w2, P1, P2, Q1, Q2, µ and

two further unknowns which represent the measurement noise, σ2
1, σ

2
2. We can estimate

values for the hyperparameters in the same way as for the 1-D case, by minimising the

negative log likelihood. The negative log likelihood is exactly analogous to Equation 6.3.3:

L =
1

2
log|K|+ 1

2
yTK−1y − n1 + n2

2
log2π (6.6.20)

where K is the full covariance matrix for the dependent Gaussian processes.

Now that a dependent Gaussian process model has been created, regression can again be

calculated as a conditional slice through the joint distribution described by the covariance

matrix. If we want to regress onto a new point x∗, then the regression equations are:

mean(x∗) = CTB−1y

variance(x∗) = κ−CTB−1C
(6.6.21)

where C and B are the sub-matrices de�ned in Equation 6.3.6, and κ = v2i + w2
i + σ2

i .

The model was tested on the synthetic data set shown in Figure 6.6.3. The �rst channel

of data is composed of equally-spaced points from the sine wave Y1 = sin(5x) with additive

Gaussian noise (with variance σ2
1 = 0.125). The second channel of data was also composed

of a noisy sine wave, but had been phase shifted by x = 0.5, so Y2 = sin(5x− 0.5). The

dependent Gaussian process model described in Figure 6.6.2 was then used to estimate

values for the second channel of data between 0.6 < x < 1.5. The hyperparameters were

selected using gradient descent methods. The result of the Gaussian process regression is

shown by the black and blue lines, which take the same meanings as before. In comparison,

the univariate regression is also shown on the same �gure in light red.
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Figure 6.6.3.: An example of a bivariate Gaussian process model for two single channels
of data, Y1 and Y2. In this example, Y1 is known for the duration of the
time series, and we attempt to predict the missing values of Y2. The de-
pendent Gaussian process model performs better than the univariate case,
as additional information regarding correlations between the vital signs is
included in the model.

The dependent Gaussian process was able to predict the underlying sinusoidal shape

due to the common input process w0. In this case, the Y1 and Y2 are entirely dependent,

and as such, the maximum a posteriori estimate for the hyperparameters that model

the magnitude of the independent part of the Gaussian processes were w1 = w2 = 0.

In contrast, the univariate Gaussian process is able to correctly predict the short-term

increase in Y2, based on the previous few values of data, but unable to identify the longer-

term sinusoidal trend.

6.6.4. Summary

We have demonstrated how the principles for Gaussian processes can be extended from

the 1-D to the 2-D case and shown how dependencies between two Gaussian processes

can be modelled. In the 2-D case, the covariance functions used previously were no longer

adequate for providing a positive-de�nite covariance matrix in the case of dependent

Gaussian processes. Instead, we considered Gaussian processes as linear �lters with a

Gaussian white noise as input. This makes it possible to generate covariance functions
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and cross-covariance functions, parameterised in terms of the �lter impulse response, and

the variance of the input noise.

The resulting 2-D model was tested on synthetic data, from which it was clear that

modelling the dependencies between the two channels allowed for a more accurate esti-

mate of missing data. Although we have only demonstrated the case for 2 dependent

processes, the extension to N dependent processes is straightforward, requiring one ad-

ditional Gaussian �lter to model the independent component of each additional output,

and two additional Gaussian �lters for each dependency between the outputs that are

analogous with �lters k1 and k2 in Figure 6.6.2.

6.7. Gaussian Processes for Data Loss

Until now, we have used Gaussian processes to infer missing vital sign data, but we have

not been concerned with how this may be used within a patient monitoring system. We

now present a full framework for dealing with data loss within the baseline model. The

baseline model, introduced in Chapter 4, uses the Parzen windows algorithm to generate

a Patient Status Index (PSI). Although we describe the framework for one particular case,

it is easily generalisable to the other data fusion methods described in Chapter 4. The

description below is accompanied by Figure 6.7.1, which provides a 2D visualisation of

each stage.

1. Infer the missing vital sign data - Infer the posterior distribution for the missing

vital sign using dependent Gaussian processes, following the procedure outlined in

Section 6.6, for four dimensions. The Gaussian Process estimate will be dependent

on both the previous values of the missing channel, and correlations with the other

vital signs, and the posterior distribution will be a N-D Gaussian if N channels of

data are missing. In the 2D example in Figure 6.7.1(a), one vital sign is missing,

which produces a univariate Gaussian posterior.

2. Calculate the PSI score distribution - The output from the Gaussian processes model

can now be interpreted within the context of our data fusion model of choice. For

now, we consider only the baseline Parzen windows model, but the method de-
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scribed here can be generalised to other data fusion models. In the Parzen windows

model, a 4D distribution is used to estimate the probability of a vital sign vector,

[V1, V2, V3, V4]
T . If all of the vital signs are known exactly, then a single point on the

distribution can be de�ned. The resulting probability, P (VN) can then be converted

into a PSI value through a negative log transformation, as described in Equation

4.1.7.

Let us now consider the case in which only three vital signs, V1, V2, V3, are known to

have the values v1, v2, v3 at one particular instant in time. The missing vital sign,

V4, takes a value according to a normal distribution P(v4) ∼ N (µ, σ2), in which

the mean, µ, and variance, σ2, are determined by the output of a Gaussian process

regression, as described in step 1.

If we interpret the vector [V1, V2, V3, N(µ, σ2)]T using the Parzen windows proba-

bility distribution, we observe that the value of the distribution in the V1, V2 and

V3 dimensions are �xed, while the remaining dimension in the V4 direction is con-

strained by the normal distributionN ∼ (µ, σ2). An analogous 2D example, showing

V1 and V4, is shown in Figure 6.7.1(b). Here, the probability P (VN) is no longer

a single value, but a 1D distribution that can be described in terms of conditional

probability:

P (VN) = P (V1, V2, V3, V4|v1,v2, v3, µ, σ2) (6.7.1)

where the joint distribution P (V1, V2, V3, V4) is merely the Parzen windows model.

More generally, if n of the vital signs are not known exactly, then the output of the

Parzen windows model will be an N-D distribution over a subspace of the space

enclosed by P (V1, V2, V3, V4). A closed-form solution for the conditional probability,

P (VN), is not possible as, in the limit, the Parzen windows model that generates

P (V1, V2, V3, V4) can model any possible distribution [28]. Instead, we can generate

a set of samples from P (VN), by sampling points from the joint distribution that
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meet the constraints on each of the vital signs, V1 = v1, V2 = v2, V3 = v3. The

set of samples can then be converted into a discrete probability distribution that

approximates P (VN). By using a negative log transform, the P (VN) distribution

can be converted into an 1-D cumulative probability distribution over PSI scores,

P (PSI) by:

P (PSI < x) =

ˆ ∞
e−x

P (VN)dVN (6.7.2)

3. Determine whether an alert should be generated - In steps 1 and 2, we have de-

scribed a novel method of dealing with uncertainty in the vital sign measurements

by propagating the uncertainty through a data fusion system, providing a prob-

abilistic output. We now consider how this probabilistic output may be used to

generate alerts. In the original baseline model, we decided to alert if 4 out of the

previous 5 minutes of data, that is, 80% of the data, were above a pre-determined

alerting threshold. For each vital sign vector input to the baseline model, a single

PSI score is generated, which lies either above or below the alerting threshold (see

Figure 6.7.1(c)).

In our novel method, we allow the vital signs to be distributions rather than single

values, and hence the PSI for each vital sign vector can now be described as a dis-

tribution, P (PSI) (see step 2).

Consider �rst the 1D case, which is shown in Figure 6.7.1(c). In this case P (PSI) is

a 1D distribution over PSI scores which may not lie entirely above or below the alert-

ing threshold, but may contribute some probability mass to both sides, as shown

in the Figure. In keeping with precedent, we still alert if 80% of the probability

mass of the PSI scores is above the threshold. Mathematically, an alert should be

generated if:

∑T≤M
T=0 P (PSI > ζ)T∑T≤M
T=0 P (PSI <∞)T

=

∑T<M
T=0

´∞
e−ζ

P (VN)TdVN

M
≥ 0.8 (6.7.3)
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where ζ is the alerting threshold, and there are a total of M vital sign input vectors

within a 5 minute period. In the case that all of the vital sign variables are known

and the PSI is a single value, then P (PSI < ζ) is simply a Dirac delta function

centred on the PSI score. For the N -dimensional case, the above method is entirely

applicable as the cumulative distribution function P (PSI < x) is 1-D in all cases.

So far, we have considered the use of Gaussian processes in cases for which there is

a single channel of missing data. However, there is no reason why we cannot infer

more than one variable at a time using the same methodology.

6.7.1. Trend Analysis

In the limit, it is possible to estimate posterior distributions for all of the vital sign

parameters at a future point in time. Having predicted the future distribution of each of

the vital signs, we can also predict a corresponding PSI value distribution.

We can use the framework outlined in the previous section to generate the PSI score

distribution. This time, unlike the 2D example in Figure 6.7.1, we sample from the

Parzen windows model in a region de�ned by a 4D Gaussian, which represents uncertainty

in all four vital signs, rather than a 1D slice. The output of this process is also a 4-

D distribution of P (PSI). By sampling from this distribution, and remembering that

PSI ∼ −logP (PSI), we reduce the 4-D distribution to a 1-D distribution of PSI values.

Alerts can then be generated as we described previously.

The e�ectiveness of the proposed framework has not yet been tested, and is left as

an opportunity for future work. Figure 6.7.2 shows one preliminary example, in which

a simple (non-dependent) Gaussian process model was used to estimate the posterior

distribution of the missing heart rate data at times between 37 and 70 minutes into the

record. 1000 samples from each posterior distribution were then taken in order to calculate

a PSI distribution. The mean of the distribution is indicated by the magenta line, and

its 5th and 95th percentiles are shown in blue. Unlike local median, or the population

mean methods of dealing with missing data, the PSI distribution does not introduce

arti�cial jumps in the PSI score. This can be seen at 37 minutes into the record, when

breathing rate data is �rst unavailable. In addition to producing a consistent estimate,
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Figure 6.7.1.: Pictorial description of the Gaussian Process framework for generating miss-
ing data within an alerting-system framework.
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the Gaussian process-assisted PSI is able to generate appropriate alerts when data is

missing. In Figure 6.7.2, we see that the mean of the PSI distribution, and the 5th and

95th percentiles, exceed the PSI alerting threshold of 3 at 50 minutes into the record,

when the SDA drops to 63 mmHg and would therefore generate an alert.

In contrast, the alternative approach of collapsing the missing data dimensions or using

the population mean would be less likely to produce an alert. Both of these methods

attempt to make the missing data channel uninformative and have no way of interpreting

the historical heart rate trend of bradycardia. For instance, by setting the Heart Rate

to the population mean of 83.7 bpm, the patient's PSI will appear to much more normal

than their true underlying state.

It is likely that in many instances, the single channel posterior becomes largely unin-

formative within a few minutes (for instance, see the examples in Figure 6.5.2). This will

in turn lead to a wide distribution of PSI values, so that a PSI alert based on future data

is unlikely to occur. However, a PSI alert may be generated in some instances when there

are clear trends in the data (for instance, see the example in Figure 6.4.2). On these

occasions we can expect the Gaussian process to have a tighter posterior distribution,

denoting a higher con�dence in the estimate, which results in a narrower distribution of

PSI values.

6.8. Discussion

In this chapter, we have highlighted how Gaussian processes may be used to infer missing

single channels of data, and also how we may extrapolate to estimate a whole vector of

vital sign data. The Gaussian process model provides a posterior distribution so that

the level of certainty in the inferred data can be estimated, a task which has not been

previously attempted in this context. We compared the Gaussian process model to two

other techniques; a short-term median �lter; and an i.i.d. model, which does not use

time-series information, but does provide a posterior distribution.

By calculating the RMS error between the model predictions and the test data, we

showed that Gaussian processes were superior to the i.i.d. model, and comparable to the

median-�lter method. The Gaussian process model predicted the test data most accu-
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Figure 6.7.2.: Preliminary results using the Gaussian process model framework to generate
PSI distributions as a means of dealing with missing channels of vital sign
data. The outer green lines show the mean of the estimated HR posterior
distribution±2 s.d. The uncertainty in the HR estimate is carried over
into the PSI calculation, where the outer blue lines indicate the 5th and
95thpercentiles of the PSI distribution.

rately (along with the median �lter method), and also provided a posterior distribution

of vital sign values. The median �lter and i.i.d. approaches were shown to have poor

predictive capabilities wherever there are rapid changes in the time series, whereas the

Gaussian process model failed when there were two separate regimes underlying the data

generation, as shown for example in Figure 6.5.2. A suitable choice of covariance function

may be able to correct for this problem, though a non-Gaussian approach may be more

appropriate. We also showed in this chapter how an estimate of a single vital sign may

be improved by modelling dependencies from other vital signs within a multiple output

Gaussian process model.

In Section 6.7, we outlined a framework for applying Gaussian processes within the

baseline data fusion model. The value of this framework is twofold. Firstly, it allows

the PSI to be calculated, and alerts to be generated during periods of missing data,

avoiding the problems associated with switching to a lower-dimensional data fusion model.

Secondly, it provides a method of estimating PSI values in the future. If the PSI is above
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the alerting threshold at a future time, then we may alert with some degree of early

warning. This is an improvement on the methodologies considered in the rest of this

thesis, which only examine the most current vital sign vector.

In conclusion, we have shown that the Gaussian process framework provides a way

of dealing with missing channels of data and o�ers the possibility of providing early

warning of deterioration by using a PSI distribution based on future estimates of the vital

sign data. The work presented in this chapter has a number of limitations, however; in

particular, the choice of covariance function was generic to many types of time series, and

better performance may be gained by tailoring the covariance function to match prior

knowledge about the vital signs, such as the presence of circadian rhythms.
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7.1. Summary of Results

Physiological observations in the Emergency Department (ED) are a required part of

patient care, and are used to monitor the condition of patients in the Department. Manual

observations by nursing sta� are routinely recorded at approximately hourly intervals, and

clinical decisions based on the observations are facilitated by a Track and Trigger (T&T)

system. Under this system, observations are converted into a T&T score, in which a

higher score re�ects greater physiological abnormality. Once the score reaches a critical

threshold, a medical intervention is triggered.

The e�ectiveness of T&T in the ED has been investigated only once previously to

the best of our knowledge [61]. In Chapter 2, we described a study of the (T&T) system

within the ED that was carried out at the John Radcli�e hospital, Oxford during 2009. 500

patients attending the Majors, Resus, and CDU areas of the department were recruited

to the study. The aim of the study was to investigate how well integrated the use of T&T

was within the ED and to quantify how e�ective the system was at identifying escalation

events. Escalation events were de�ned as any documented instances requiring intervention

by clinical sta�. In addition, we aimed to identify some possible errors made in the use

of the observation charts for recording vital signs.

The study showed that T&T completion was poor, with only 34.3% of overall scores

calculated. In the instances where T&T scoring had been completed, 20% had been

calculated incorrectly. Incorrect T&T scores primarily occurred when a vital sign was

assigned an incorrect T&T score. In a small number of cases, 14 out of 202, the total

T&T score was not added up correctly. We also showed instances of illegible observation

charts and demonstrated that errors may also be caused by an over-reliance on bedside
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monitoring equipment. The T&T system, as used by nursing sta� in the Department, had

a sensitivity of 0.47 and speci�city of 0.87 for identifying escalation events. Subsequent

to the end of the study, the observation charts were redesigned to minimise human error

and to improve their legibility.

To investigate the e�ect of improved T&T completion and calculation, we computed a

retrospective T&T score that was calculated without error from the manually-recorded

observations. Using this score, the errors due to incorrect assignment and incorrect ad-

dition were eliminated. The sensitivity and speci�city of this retrospective system were

0.94 and 0.70 respectively, a very clear improvement.

In addition to nurse observations, higher acuity patients such as those in the Major and

Resus sections of the Department also have their vital signs monitored continuously by a

bedside monitor. The bene�t of continuous monitoring is that a patient's condition can

be monitored in real time, and in principle, deterioration can be detected as soon as it

occurs, even if this is between nurse observations. Single-channel alerts from the monitors

bring nurses to the bedside when the given vital sign is outside of normal limits. However,

a high percentage of these alerts are false (up to 86%) [115], and consequently the alerts

are routinely ignored.

In Chapter 3, we initially investigated a method for monitoring continuous vital signs

based on the T&T scoring system. The T&T scoring criteria were applied to the con-

tinuous data to simulate the e�ect of observing them at one-minute intervals. Using this

system, we detected most of the physiological escalations, but in doing so, also generated

a very large number of false alerts. We estimated that a continuous T&T system would

generate one alert every 5 minutes in a 20-bed Emergency Department. A partial solution

is the introduction of a persistence criterion to limit the e�ect of transient observations.

In Chapter 4, a baseline data fusion system was introduced, which showed how a thresh-

old for physiological abnormality can be derived from the integration of vital sign data

using a probabilistic data fusion model, rather than from a heuristic set of criteria (such

as the T&T criteria). Two improved data fusion methods, weighted Parzen windows and

Support Vector Machines, were then reviewed. The best data fusion models had a sen-

sitivity of 58.6% and a speci�city of 83.4% on the ED test set. It was not possible to
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select the optimal model, due to the di�culty in assessing the relative importance of False

Positives and False Negatives on the initial data set.

The sensitivity and speci�city values were lower than those reported for the computer-

assisted, intermittent, T&T system. However, the sensitivity was biased towards the T&T

method as a result of the method for the determination of escalation events. Furthermore,

the speci�city for the data fusion systems tended to be relatively low, as false alerts are

more likely to be generated when data are monitored continuously. It is also possible that

there are periods of patient instability that resolve by the time of the next observation.

In addition, it was clear from inspection of the vital sign records that the models

performed sub-optimally as a result of using a training data set that was not optimal

for vital sign monitoring within an ED environment, and an inappropriate choice of the

Systolic-Diastolic Average blood pressure feature. Heuristic changes to the pre-processing

of the blood pressure and oxygen saturation data improved the baseline model, leading

to a sensitivity and speci�city of 69.0% and 69.6% respectively, on the ED test set.

Two further limitations of the data fusion models were highlighted in Chapter 6. Firstly,

we noted that the method of dealing with missing data in the baseline model leads to

sudden changes in the Patient Status Index that are unrelated to patient physiology. Sec-

ondly, we observed that the existing data fusion models do not make any use of temporal

information.

One method of incorporating historical data into a data fusion model, Gaussian pro-

cesses, was considered in Section 6.3.1. With this method, previous data are used to

derive a Gaussian posterior probability estimate of a missing data point. The mean of the

Gaussian can be considered as the maximum a posteriori estimate, and the variance of the

Gaussian provides an indication of the con�dence in the estimate. Using this method on

single-channel heart rate data, it was shown that the Gaussian process method performs

at least as well as a short-term median �lter, when assessed with a root-mean-squared

error metric.

We then described how a Gaussian process-based model can be improved by including

dependencies between vital signs. We showed how a method of achieving dependencies,

devised by Boyle and Frean [14], could be applied to two channels of input data. Finally,

184



7. Conclusion

we showed how Gaussian processes could be used within a data fusion system so that

Patient Status Indices could be represented as a distribution when one or more vital signs

are unknown. In a similar way, alerts may be generated using posterior distributions.

In conclusion, we have shown that manual vital sign observations are limited by human

factors, and showed how computer systems could be used to improve the completion

rate and documentation accuracy of observations. Continuous monitoring systems can

be used to detect deterioration in real time, which provides early-warning with respect

to the nurse observations. The false alert rate of each data fusion systems tested in this

thesis was much lower than continuous T&T, but a modi�ed model was shown to match

the sensitivity of continuous T&T. However, the true performance of data fusion systems

cannot be properly assessed on the 402 patients in the ED test set, since only 29 patients

had physiological escalations post-arrival.

Time-series techniques could provide further improvements to the data fusion mod-

els, especially with respect to the prediction of patient deterioration, rather than simply

detecting it.

7.2. Future Work

The future direction of the work described here should be split into two themes. Firstly,

the conclusions regarding the e�ectiveness of T&T and continuous vital sign monitoring

shall be further evaluated in an intervention study, rather than the retrospective study

described in this thesis. Secondly, outstanding theoretical concerns also need to be ad-

dressed. We discuss these themes in more detail in the next two sections.

7.2.1. Design of an ED Intervention Study

The study described in Chapter 2 was limited by three main factors. Firstly, all of the

analysis was performed retrospectively; a more powerful study design would involve a

clinical intervention that could be assessed prospectively. Secondly, the outcome measure

in the ED study, escalations, was usually triggered by the T&T alerting thresholds being

met, and were therefore biased towards T&T scores. Finally, the study was conducted on a

relatively small sample size of 500 patients. From these, only a small number of patients,
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29, had physiological escalations that occurred after arrival, meaning that results are

subject to wide con�dence bounds.

A new study is currently being planned with the following aims: (i) to determine

whether the rate of T&T completion limits the system's e�ectiveness at identifying pa-

tient deterioration; (ii) to determine whether continuous monitoring leads to earlier in-

terventions, and (iii) to quantify the added bene�t of a continuous monitoring system.

The new study will include all patients attending the Majors section of the ED over the

course of 6 months. Internal �gures give an estimate of 400 patients entering the Majors

section of the ED each week, which leads to a conservative estimate of 9000 patients to

be included in the 6-month study.

Each phase of the study will last for two months, with a two week training period in

between each phase. In the �rst phase, all patients will continue with standard care.

Observations and T&T scores will be recorded manually on the new T&T charts.

In the second phase, an electronic T&T system, known as VitalPAC [89], will be in-

troduced on the ward, and paper observation charts will be withdrawn. VitalPAC is a

system designed to facilitate the completion of accurate and prompt observations. It uses

a central station to record the locations of each of the patients on the ward, and indicates

when the next set of observations are due. Nurses will use handheld devices (an Apple

iTouch) to record the vital sign observations electronically, and the T&T score will auto-

matically be calculated by the iTouch. If the T&T score exceeds the alerting threshold,

a visual alert is displayed on a central station which shows the status of all patients in

the Department. The introduction of this system to the ED is an attempt to eliminate

some of the human errors associated with T&T scores, and to increase the promptness

and completion of observations.

In the third phase of the study, nurse observations will continue to be recorded electron-

ically. In addition, the modi�ed baseline algorithm will process the continuous vital sign

data from the bedside monitors, and audible alerts will be generated when it detects vital

sign abnormality. From a scienti�c viewpoint, the order of the three study phases should

be randomised. However, practically, it was deemed impractical to return to paper-based

observations after the introduction of an electronic system.
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Outcome Measures

In the clinical study described in this thesis, we attempted to match vital sign data to

�escalation� events. As well as being biased, the process was extremely laborious, requiring

independent, retrospective interpretation of each set of patient notes by two members of

the senior clinical team. In the new study, the outcome measure will be the change in

30-day mortality, 24-hour mortality, and the number of cardiac arrests within the ED

before and after the interventions.

An additional outcome measure will aim to determine whether there is a reduction

in the frequency and duration of periods of physiological abnormality after each inter-

vention. Physiological abnormality will be deemed to occur whenever the values of the

continuously-measured HR, RR or SpO2 and intermittently-measured blood pressure give

rise to a single-channel T&T score of 3 or greater. We hypothesise that real-time alerts

triggered by a data fusion system will result in prompter intervention. This in turn could

lead to faster treatment and a reduction in the duration of patient physiological abnor-

mality.

7.2.2. Improvements to Data Fusion Models

Selection of Optimal Vital Sign Variables

In Chapter 5, we adapted the baseline model to be more sensitive to hypotension events by

adjusting the Systolic-Diastolic Average (SDA) scaling factor. However, in Section 5.4.2,

we observed that under certain circumstances, the SDA blood pressure cannot accurately

model the change in a patient's condition. Furthermore, we noted that the SDA has no

precedent in physiological vital sign monitoring.

We postulate that one further improvement to the model would be the use of a clinically

validated blood pressure parameter in the place of SDA. As well as the Systolic and

Diastolic blood pressures, there are at least two blood pressure variables that combine

the Systolic and Diastolic blood pressure in a clinically relevant way. These are the

pulse pressure, BPPP = SBP − DBP , and the Mean Arterial Pressure, BPMAP ≈
1
3
(SBP − DBP ) + DBP . In particular, the Mean Arterial Pressure (MAP) may be a

useful feature as it is commonly considered as the average blood pressure in an individual

187



7. Conclusion

[19] and automated blood pressure monitors measure the MAP directly.

Gaussian Processes

In Chapter 6.3, we introduced Gaussian process regression as a tool for modelling vital

sign data. Unlike the other models considered in this thesis, the Gaussian processes

approach takes into account correlations in time between successive vital sign values, and

we showed that such an approach was more accurate than making an i.i.d. assumption.

The Gaussian process methodology also allows us, in principle, to predict the patient's

state in the future, and allows us to deal with missing data.

The quality of the output of the statistical methods shown here depends on the quality

of the data input to the model. Despite the inclusion of rudimentary algorithms for

determining data loss within the Philips monitors themselves, a good quality of data

cannot be assumed. For instance, Figure 6.7.2 shows physiologically suspicious drops and

recovery in SpO2 at 45 and 50 minutes into the record. At the very least, some sort of signal

quality index would provide con�dence over whether short-term trends were artefactual

or genuine. A rudimentary signal quality index could be built by determining common

temporal trends for probe disattachment (for instance, see Hann [41], for one method

for estimating thermistor probe disconnection). This could be further enhanced by using

information from multiple data channels. The most e�ective signal quality indices can

be achieved only with access to the underlying waveform data; signal quality algorithms

using raw waveforms is already an area of active research (see, for example, [68]).

Even if good data quality can be ascertained, it is unclear whether the sampling rate

used in Chapter 6, 30 s, is su�cient for estimating short-term trends. In this respect, we

were limited by the data output by the bedside monitors. However, a principled lower-

bound on the sampling rate can be simply derived using a data set that contains the raw

waveform data, such as the MIMIC waveform database [38, 74]. By using the analysis

presented in Section 6.5, in which a test segment of data was estimated from previous

training data, for a range of sampling frequencies, it should be possible to determine at

what point the performance of the Gaussian Process estimate diminishes by using an

appropriate metric (such as the Huber metric) to quantify the quality of the estimate.
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Gaussian process regression also requires a covariance function which determines the

temporal relationship between vital sign measurements. The choice of the covariance

function is critical, as it represents our prior knowledge of the vital sign trends. In the

initial investigations in Section 6.5, we chose to use the squared exponential covariance

function, which makes the valid, but weak assumption that observations closer together

in time are more highly correlated than those far apart in time.

Future work should consider whether the squared exponential covariance function is

appropriate. Stegle et al. [102] used visual inspection to determine that there were both

short-term and long-term interactions within their heart rate data set, and consequently

chose to model the vital sign record with a sum of standard covariance functions. While

their heuristic approach led to positive results, an alternative approach which may lead

to better results would be to run a number of gaussian process models in parallel for a set

of covariance functions. An objective estimate of the best model can then be selected by

maximising the marginal likelihood over the covariance function set and their respective

hyperparameters for each vital sign record. The most selected covariance function over

all vital sign records can then be considered as the optimal function.

It is possible that a single covariance function may not be optimal in all cases, partic-

ularly for a heterogeneous patient population, when the vital signs may be dependent on

an underlying physiological condition. An alternative method of determining a covariance

function would be to cluster �similar� groups of vital sign records. Similarity may either

be de�ned with respect to the clinical diagnosis, or else using metric based directly on

the data, such as cross-correlation. An optimal covariance function could then be derived

for each group using the methods described above. For each patient to be monitored,

the covariance function could be selected by assigning the vital sign record to the most

similar group.

Gaussian processes may also be used to develop a personalised early warning system,

by using the posterior distribution to assess whether new measurements are abnormal.

For instance, one simple way to de�ne abnormality would be to assess whether the new

measurements are more than three standard deviations away from the posterior mean,

over a given length of time. We can imagine how this may work in practice by considering
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Figure 6.5.2(4). In this example, the heart rate starts at 80 bpm and jumps to 100

bpm after 20 minutes. Although the heart rate is slightly elevated, a single-channel

measurement of 100 bpm would be unlikely to cause clinical concern by itself, based on

the population statistics. However, the step-change in heart rate indicates an unexpected

change in the patient state that may be of clinical interest. The corresponding Gaussian

process model was able to determine that the change in heart rate was unexpected, as

indicated by the fact that the 100 bpm measurements were well above the dashed line

denoting the Gaussian process mean + 2 standard deviations.
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A. Updated Track and Trigger Chart

Figure A.0.1.: T&T chart used the John Radcli�e Hospital, Oxford from June 2011
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Abstract

This paper proposes a modification on the
Sammon map algorithm for data visualisa-
tion. The modification, known as the Sparse
Approximated Sammon Stress(SASS), allows
mappings to be produced for very large data
sets of the order of 106 points. While the
technique may be useful in a variety of ap-
plications, the results presented here will
demonstrate its usefulness for visualising pa-
tient deterioration in vital sign data collected
from step-down unit hospital patients. A fi-
nal result demonstrates an application of the
SASS visualisation for drug safety analysis.

1. Background

In the field of patient monitoring in critical care, re-
searchers are often overwhelmed with large quantities
of high-dimensional data. The data typically consist of
simultaneous readings of vital signs such as breathing
rate, blood pressure, temperature and arterial-oxygen
saturation. The new generation of automatic patient
monitors and hospital IT systems enable data to be
collected quickly and efficiently, so it is no longer un-
usual for researchers to deal with data sets containing
millions of data points.

Initial exploration and analysis of such high-
dimensional data is a difficult task. Any analytic tools
or algorithms must deal with the data in a coherent
and intuitive manner in order to provide useful insight,
but must also be usable with large volumes of data.

Appearing in Proceedings of the Workshop on Machine
Learning for Health Care Applications, 25 th International
Conference on Machine Learning, Helsinki, Finland, 2008.
Copyright 2008 by the author(s)/owner(s).

One important aspect of high-dimensional data anal-
ysis is visualisation. This involves transforming the
original data to a visualisation space with fewer dimen-
sions. Typically, two or three dimensions are chosen
so that the results can be plotted for visual inspection.
The transformation is chosen in such a way as to main-
tain key aspects of the data distribution; for example,
topology may be preserved between the dimensions.

A variety of visualisation algorithms have been pro-
posed, including Kohonen’s (1997) Self Organising
Maps (SOMs) and kernel Principal Component Analy-
sis (PCA) (Schoelkopf et al., 1997). SOMs use a neural
network to map data onto a 2D grid such that similar
data (i.e. data close to each other in the original high-
dimensional space) are grouped together on the grid.
This provides insight into the spatial relations within
the data. In kernel PCA, the appropriate choice of
kernel allows the data to firstly be mapped to a higher
dimensional space so that a standard PCA in kernel
space has the effect of producing a non-linear map-
ping between the original data space and visualisation
space.

One popular alternative to these methods is the Sam-
mon Map algorithm (Sammon, 1969). This produces
a mapping which attempts to keep the Euclidean dis-
tances between all pairs of data points in the 2-D visu-
alisation space as close as possible to those in the high-
dimensional data space. Mathematically, this is equiv-
alent to minimising the so-called Sammon STRESS
objective function for N data samples:

STRESS =
1

∑N
i=1

∑N
j>i d

∗
ij

N∑

i=1

N∑

j>i

(dij − d∗ij)2

d∗ij

where the Euclidean distances between patterns i and
j in the data space are denoted by d∗ij , and the corre-
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sponding distances in visualisation space are denoted
by dij . The objective function is minimised by a gradi-
ent descent technique that adjusts the position of the
points in visualisation space.

Unfortunately, there are two major drawbacks to the
method. Firstly, the process of creating a Sammon
Map is intractable for large data sets, as the STRESS
calculation involves order O(N2) point comparisons.
On a typical desktop PC, a few thousand data vec-
tors is the practical limit. Secondly, the Sammon Map
cannot accommodate new data, and must be retrained
each time.

A number of authors have attempted to circumvent
these problems. For instance, the Neuroscale algo-
rithm developed by Lowe and Tipping (1997) uses a
neural network trained on the data to derive an explicit
non-linear transformation between data space and vi-
sualisation space that allows new points to be visu-
alised using the interpolation properties of the trained
neural network. However, this method also suffers
from the same drawback of being unsuitable for large
data sets, necessitating either a sub-sampling of the
data used for training, or pre-clustering to a smaller
set of exemplar vectors using a clustering algorithm
such as k-means. At present, the authors are unaware
of any method described in the literature that creates
a true Sammon map for large (> 104 point) data sets
in reasonable time.

2. Method

We propose a novel alternative to the original Sammon
Map algorithm which we have named the Sparse Ap-
proximated Sammon STRESS(SASS). SASS reduces
the problem to one of order O(N) by sub-sampling
from the complete set of inter-point distance pairs to
approximate the Sammon STRESS. In practice, it has
been discovered that many of the inter-point distances
can be removed from the STRESS calculation, with
little effect on the Sammon Map output. The method
used to sub-sample is critical for obtaining an accu-
rate mapping and is discussed further in the following
section. Formally, if we define S to be a sparse sub-
set of the index pairs (i, j) for which the Euclidean
distance is calculated, then the modified STRESS ob-
jective function to minimise is:

SASS =
1∑

i,j∈S d
∗
ij

∑

i,j∈S

(dij − d∗ij)2

d∗ij

For very large data sets consisting of at least N = 106

points, a sparse distance matrix with an average of 50

distance comparisons for each point has been tested
and shown to work successfully. In this case, only
one distance comparison is computed using SASS for
every 20,000 comparisons calculated for the original
STRESS. By reducing the computational complexity
in this way, the initial problem of large data sets is
overcome. Furthermore, data storage is reduced by
using memory saving techniques for sparse matrices.
Further increases in speed are made by using an effi-
cient optimisation algorithm, scaled conjugate gradi-
ents, in preference to gradient descent.

2.1. Initialisation of dij in Visualisation Space

In the preliminary tests, points in the visualisation
space, dij , were initialised with random values, follow-
ing the precedent set in Sammon’s original paper. Dur-
ing these tests, it was clear that as the size of the data
set increases and the STRESS calculation increases ac-
cordingly, it becomes likely that the STRESS optimi-
sation procedure will get stuck in a local minimum.

SASS can be initialised in a more principled manner
by using a two-stage approach. Firstly, SASS is ap-
plied to a subset of the data to produce a preliminary
mapping. In this pre-mapping, the points in the visu-
alisation space are initialised randomly. The Sammon
map generated by this process creates a sparse outline,
or a skeleton, of the data and so the second stage of the
initialisation is to approximately map the remaining
points into visualisation space using the skeleton. In
this case, the distance mapping technique introduced
by Pekalska et. al. (1999) was used, which creates an
explicit linear transformation between the data and vi-
sualisation spaces. This provides an approximation to
the transformation created by the Sammon mapping,
which is generally non-linear. The result of this pro-
cess is that all vectors in the data set are initialised to
the correct region of the visualisation space.

In preliminary tests on a data set with with 106 points,
a 4800 point skeleton was created to initialise dij . The
SASS algorithm was then run using the new initial-
isation values for dij . In general, it was found that
the final SASS error was smaller than for random ini-
tialisation of the dij values, and that the optimisation
stage converged in fewer iterations.

2.2. Initialisation of Subset S

The SASS method can fail when a subset of the
data, by chance, only possesses inter-point compar-
isons within the subset. A pictorial representation of
this problem is presented in Figure 1. It is unsurpris-
ing that such an initialisation results in an incorrect
visualisation, as the algorithm will treat the subsets as
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Figure 1. The graph shows an example of the connectivity
between data points for the original Sammon algorithm
(grey) and for the SASS algorithm (red). Each node repre-
sents a data point, and each edge represents an inter-point
distance. In this example, the data has formed two un-
connected subsets and SASS will fail to produce a correct
mapping.

two separate data sets.

Fortunately, the probability of such an event occurring
is very small. For instance, the probability of two sub-
sets forming, where one of the subsets contains only
one vector (which is equivalent to one point having
no connections to any other point in the data set), is
given by:

P (one point disconnected) = N(1− 2

N
)
λ
2N

where λ is the average number of connections per point
such that λ

2N is the number of elements in set S, and
N is the number of data points in the whole data set,
as before. For a data set with over 106 points and and
average of 50 connections per point, the probability of
one point being disconnected is of the order of 10−16.
To prevent this problem from occurring at all, we en-
sure that the connections within the data set form a
minimum spanning tree. The simplest way to do this
is to initially connect each data vector to its neigh-
bours, so that the nth data vector in the set of N data
vectors has distance comparisons to the n − 1th and
n+ 1th vectors.

SASS can be further enhanced by considering the man-
ner in which the subset S of inter-point connections is
chosen. In order to test the effectiveness of alternative
choices of S, a unit-cube synthetic data set was cre-

ated. This consisted of a 3D unit-cube with normally
distributed data at each of the corners, so that there
were 20 × 104 3D vectors in total. Furthermore, the
(1, 1, 1) data vector was added twice to the set as two
distinct data points to test whether data are mapped
consistently.
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Figure 2. A Sammon Map for the unit-cube data set, con-
taining 2 × 104 points. The SASS Sammon map is shown
in red, and the output from the original method is shown
in grey. In both instances, the separate data clusters are
clearly visualised

In the initial tests, elements in S were chosen by select-
ing two data vectors at random. Figure 2 shows the
result from SASS on the cube data set in red compared
to results created directly from Sammon’s algorithm in
grey. The eight clusters corresponding to the corners
of the cube are correctly mapped, and it is clear that
SASS works satisfactorily. Although the results are
acceptable, in order to maintain accurate local and
global structure, the proportion of local and distant
inter-point connections is of critical importance.

One natural way to do this is to force each data point
to have an equal number of connections to both near
and far points in the data set. Local and distant points
can be defined for any data set as follows. Firstly,
the data set is clustered using a technique such as K-
means. Once the points have been grouped, half of
the total inter-point connections that form set S are
selected such that the two connected points are within
the same cluster. These are defined as ‘local’ connec-
tions. The remaining inter-point connections are cho-
sen so that any two connected points are from different
clusters. Alternatively, for time series data where vari-
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ation is slow compared to the data collection rate, one
would expect consecutive samples to appear locally in
visualisation space. Therefore, local connections can
also be defined by appropriately partitioning a time
series data set.

The unit-cube data set was retested using this method
to define local and distant connections. Again, Figure
3 shows that the global structure was adequately cap-
tured. The duplicate points are highlighted in red, and
visual inspection shows that they were mapped con-
sistently. To quantify the accuracy of the mapping,
the dataset was visualised 200 times for both a ran-
domly initialised set S, and for the alternative method
described above. In each of the 200 Sammon maps,
the Euclidean distance between the mapped duplicate
points was recorded, and the mean of these was cal-
culated. For the randomly initialised set, the mean
distance was 0.05, while the mean distance in the al-
ternative method was 0.02. This indicates that it is
important to ensure a sufficiently high proportion of
local connections, and that selecting S at random is
sub-optimal.

Figure 3. A Sammon Map for the unit-cube data set, con-
taining 2 × 104 points. The SASS Sammon map is shown
in grey. In the left-most cluster, the visualisation of the
duplicate points at [1,1,1] are highlighted in red. The sub-
figure shows the left-most cluster in greater detail so that
the duplicate points can be distinguished easily.

3. Results

We have used the SASS method as a tool for ini-
tially exploring extremely large data sets. Results so
far have been encouraging, and have provided insight
into ways of improving data fusion models for patient
monitoring. The data set used to generate Figures
4 and 5 is taken from a clinical trial on a hospital
step-down unit at the University of Pittsburgh Med-
ical Centre(UPMC), and contains vital sign record-
ings taken over an eight week period for a total of 300
patients (Hravnak et al., 2008b). For each patient,
four vital signs, the heart rate, breathing rate, arterial-
oxygen saturation and blood pressure, were recorded
simultaneously in a 4D data vector. In total, 961,031
vital sign vectors were recorded which corresponds to
28,782 hours of data collection.

Figure 4. A time-lapse Sammon map showing the deteri-
oration in health of patient C during the last 10 minutes
of the patient’s vital sign record. The points in light grey
depict the vital sign distribution from the entire data set,
while the points in white show the vital signs for the pa-
tient’s entire stay on the ward. The lines in red mark the
progression of the patient’s vital signs over a one minute
period.
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One application of SASS allows one to see deterio-
ration in patient health as time progresses. For the
UPMC data, a time-lapse SASS map of patient C was
created to depict the final ten minutes of the patient’s
record (Figure 4). The vital sign record for patient C
is coloured in white for reference, and the entire record
of vital signs recorded during the trial are plotted in
light grey. Each point in the figure is a 2D represen-
tation of a 4D vital sign vector, and the vital signs
recorded over one minute intervals are highlighted in
red. The maps clearly show how the patient begins
with relatively normal readings, which lie towards the
centre-left of the population’s distribution. As time
progresses, the patient’s vital signs become increas-
ingly erratic as the blood-oxygen saturation readings
become dangerously low. The bottom row of plots cor-
respond to the last three minutes of the patient record
where it can be seen that a number of abnormal vital
signs are recorded, denoted by the points towards the
edge of the grey (whole population) vital sign cluster
and far away from the white (single patient) cluster,
and it can be seen that there is a general trend away
from normality. The fact that deterioration in patient
health can be detected so clearly suggests that it is
possible to use trends in time to improve patient mon-
itoring devices.

Another SASS example is given in Figure 5. This Sam-
mon Map depicts the vital signs for patient A and
patient B from the same study in red and blue respec-
tively. It is noticeable that the vital signs for each
patient are confined to small regions of the whole dis-
tribution, indicating that there is considerable patient-
to-patient variation within the bounds of vital sign
normality. This is not an entirely unexpected result,
as external factors such as patient age, physical fitness
and reason for admission will have an effect on vital
signs. However, given that in the Figure the patients’
recordings do not overlap, the Sammon map provides
important qualitative evidence that vital sign variation
is significant enough to motivate the design of person-
alised data fusion models for vital sign monitoring.

A final result is presented in Figure 6, and shows the
application of the SASS visualisation technique to an
application in safety analysis of new drug compounds.
This requires 12-lead electrocardiograms (ECGs) to be
recorded from human volunteers, from which the ef-
fect of the drug on the timing of intra-beat intervals
of waveform morphology are assessed. Each point on
the plot represents the visualisation of the wavelet co-
efficients from single-beat ECG waveforms (Strachan
et al., 2008; Hravnak et al., 2008a), sampled from the
first eight hours of a 24 hour recording during a clinical
study of the drug D-sotalol (Sarapa et al., 2004).The

Figure 5. A Sammon Map for UPMC vital sign data. The
whole data set, consisting of 961,031 4D vectors is vi-
sualised in grey. Points corresponding to vital signs for
Patient A and patient B are plotted in red(left) and
blue(right) respectively

blue points represent the ‘baseline day’ where no drug
was administered, and the red points represent the
drug dosage day for the same subject.

The SASS visualisation was constructed from a set of
8867 beats, roughly half of which were from each day.
The distance calculation for the effective Euclidean
distance between two beats is more time consuming
for this application because the heart rate varies, so
the beats are of different lengths. Hence, before a dis-
tance calculation can be made, the beats are stretched
using Dynamic Time Warping, so they lie on a com-
mon axis that minimises the Euclidean distance of the
two time sequences.

The visualisation clearly shows a big effect from the
drug. It is known that D-sotalol produces large
changes in the morphology of the ECG wave, par-
ticular in the region of Ventricular repolarisation (T-
wave). This would give rise to large differences in the
Dynamic Time Warping distance measure. As can be
seen, the blue (baseline) cluster is relatively compact,
whereas the red (drug) points show two distinct clus-
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Figure 6. A Sammon map showing the effect of the drug D-
sotalol on ECG waveform morphology. The ‘baseline’ day
when no drug was taken is mapped in blue, and the red
points represent readings recorded following the adminis-
tration of the drug.

ters; one which is similarly compact to the baseline,
and the other which is widely spread out, indicating a
morphology change effect some time after administra-
tion of the dose has taken place.

The two more compact clusters are slightly displaced
from each other. This is to be expected, as placements
of the ECG leads can vary slightly from day to day,
and this would be reflected in a small change to mor-
phology.

4. Conclusions and Future Work

The SASS visualisation technique successfully deals
with the problem of large data sets. Results in the
preceding section show that sets with up to 106 points
can be accommodated on a standard desktop PC, com-
pared to around 104 points that can be mapped using
standard Sammon mapping.

Visualisation of the unit-cube data set also confirms
that for a medium sized data set, the SASS metric ap-
pears to be as accurate as the standard Sammon Map.

The similarity between the plots in Figure 2 is encour-
aging, and one would expect the SASS mapping to also
be accurate for larger data sets. This is not directly
testable due to the Sammon algorithm limitations dis-
cussed previously.

While SASS overcomes the issue of large datasets, it
continues to possess some of the other drawbacks of
Sammon Maps. In particular, incorporating new data
remains a problem. This is an area of current research,
and we are investigating the effectiveness of methods in
the literature including triangulation (Lee et al., 1977)
and the distance mapping technique used previously
(Pekalska et al., 1999). One promising idea is a modi-
fication to distance mapping which only assumes that
local regions in data space can be accurately mapped
by a linear transformation. In this way, each new data
to point to be incorporated can be mapped according
to its own unique, local distance map.

In the patient monitoring context, the results using the
SASS technique have been especially useful for facili-
tating the design of ‘smart’ patient monitors by allow-
ing us to compare a single patient’s vital sign data to
vital signs from a whole population (in a trial). Pre-
viously, such a large visualisation was computation-
ally infeasible. Two examples have been presented.
Firstly, Figure 4 showed that in some cases, deterio-
ration of patient health through time can be clearly
seen with respect to the vital sign readings of the
trial population. This confirms that effective moni-
toring, such as the methods developed by Tarassenko
et. al.(2006), can be used to provide early warning for
certain adverse events and motivates the use of tem-
poral information to improve the monitoring scheme.
The second result (Figure 5), highlights the fact that,
under certain circumstances, patient-specific models of
vital sign data may be more appropriate than a global
model of normality.
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C. Derivation of the Conditional

Gaussian Distribution

We seek the conditional distribution P (b|a) when we know that the relevant joint distri-

bution is:



a

b


 ∼ N (0, K)

The covariance K can be split up into the form:



A CT

C B




so that A contains the covariance for the unknown data, a, B is the covariance for the

known data, b, and C contains the cross-terms. Thus, the form of the joint distribution

is:

p(y, y∗) ∝ exp
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The inverse covariance matrix can be decomposed into the Schur complement, which

may be derived using Gaussian elimination to provide:
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C. Derivation of the Conditional Gaussian Distribution

by substituting this into the general form of a multivariate Gaussian and expanding

the exponential term by term, the joint distribution can be described as the product of

two Gaussians:

p(a, b) ∝ exp(−1

2
(a− CTB−1b)T (A− CTB−1C)−1(a− CTB−1b))exp(−1

2
bTB−1b)

Note that if there is no cross-variance (i.e. if C is set to zero), then the joint distribution

becomes the product of two independent Gaussians. To determine the distribution condi-

tioned on b, we assume that b is a known constant. In this case, the second exponential

term is also just a constant. Therefore, the conditional distribution has the form:

p(a|b) ∼ N(CTB−1b, A− CTB−1C)
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