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Abstract— Vital-sign monitoring of patients within a hospital 

setting is a big component in the recognition and treatment of 

early signs of deterioration. Current vital-sign monitoring 

systems, including both manual early warning systems, and more 

sophisticated data fusion systems, typically make use of the most 

recently recorded data, and are unable to deal with missing data 

in a principled manner. The latter is particularly pertinent in the 

field of ambulatory monitoring, in which patient movement can 

result in sensor disconnections and other artefact. This paper 

presents a Gaussian process regression technique for estimating 

missing data and how it can be incorporated within an 

automated data fusion monitoring system. The technique is then 

demonstrated using vital-sign data from a recent clinical study 

conducted at the John Radcliffe Hospital, Oxford. 
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I.  INTRODUCTION 

Abnormalities in vital-signs such as heart rate, respiratory rate, 

blood pressure, and oxygen saturation have been shown to 

precede adverse events such as cardiac arrest [1]. For this 

reason, regular vital-sign observations by nurses are 

recommended for in-hospital patients, and are analysed using 

a manual early warning score (EWS) system [2]. This involves 

the clinician observing the vital-signs, applying univariate 

scoring criteria to each vital-sign, and then escalating the 

patient to a higher level of care if pre-determined criteria are 

met. The disadvantage of most EWS systems is that the 

escalation criteria are often determined heuristically, 

according to clinical opinion. Evidence-based systems, such as 

the centile-based EWS and VitalPac EWS attempt to address 

this issue [3, 4]. 

 Another disadvantage of EWS systems is that they 

are typically used after routine observations of the patient 

vital-signs have been made, which may occur only twice per 

day in some ward settings. Continuous monitoring using 

automated devices may allow for a greater quality of care by 

prompting earlier clinical intervention between nurse 

observations. Traditionally, these automated devices have 

been used in conjunction with a bedside monitor. However, 

ambulatory monitoring, in which vital-sign data are 

transmitted wirelessly, is becoming increasingly popular due 

to perceived benefits in patient comfort and mobility [5], 

which may in turn affect the total recovery time. 

To quantify the level of vital-sign abnormality, we have 

previously developed a data fusion technique which uses 

multiple channels of continuous vital-sign data, and which 

calculates a single score, the patient status index (PSI). The 

latter attempts to summarise the overall patient condition as a 

single value, such that a high PSI value indicates abnormality 

[6].  

The systems listed above are sub-optimal in the event of 

missing vital-sign data; in each case, the algorithm assumes 

that the missing data channel is uninformative. In the case of 

continuous monitoring, this assumption is enforced by setting 

the missing variable to the population mean (or using a lower 

dimensional model) whereas [3] and [4] simply omit the 

missing variable from the calculation of the resultant score. 

While these methods may seem reasonable, they can lead to 

artefactual step-changes in score (shown in Fig. 1) that are 

unrelated to the underlying physiology. 

Results from our clinical study (given in Section IV) have 

shown that, in the case of bedside monitors, data loss due to 

sensor disconnection is of the order of 20% (as shown in Table 

1). Although we are unaware of any similar studies of 

ambulatory equipment, it is reasonable to assume that data 

loss would be even higher in such a setting due to the greater 

activity of the patient. 

We present a method which estimates a distribution of 

values over the missing data channel by using previous values 

of the vital-sign. The distribution can then be used within a 

data fusion model to provide a probabilistic PSI score that is 

robust to periods of sensor artefact. 

II. EXISTING WORK 

Intelligent data fusion algorithms for continuous patient 

monitoring are necessary because of the high false-alert rate 

generated by simple single-channel threshold alerts. Tsien and 

Fackler [7] showed that approximately 86% of alerts from a 

bedside monitor in an intensive care unit (ICU) setting were 

false alerts. 

Oberli et al. proposed an expert systems approach to the 

data fusion problem [8]. In their system, the vital-signs are 

first converted into a set of quantitative classes which describe 

a physiological condition, such as “bradycardia” or “normal 

heart rate”, based on training information given by a set of 

clinicians. The classes overlap, and were described using 

fuzzy logic. A patient diagnosis, and resulting alerts, can then 
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be arrived at via a set of fuzzy logical rules derived from 

expert knowledge. 

Schoenberg et al. [9] took an alternative approach, creating 

a customizable “logic engine” in which a set of vital-sign 

features was determined by expert knowledge. Thresholds 

were set for each feature, again on expert advice, and the sum 

of the scores was compared to a threshold, which triggers an 

alert if exceeded. 

Zhang [10] proposed a personalised model that attempts to 

increase alert specificity by automatically tuning alert 

thresholds on a per-patient basis. Both neural networks and 

classification trees were tested, with the former found to 

perform consistently better. 

The inclusion of temporal information, which is useful for 

predicting data drop-out, has been attempted in [11]. Their 

system uses semi-quantitative temporal vital-sign features, 

such as “heart rate increasing”, within a rule-based system 

that triggers alerts when the trend is deemed to be sufficiently 

persistent and severe. 

Temporal information can also be used to detect artefacts 

and thereby reduce the number of false alerts. Hoare and 

Beatty analysed the time series of a set of physiological 

features, and attempt to predict the next values using Kalman 

filtering and ARIMA models [12]. A new observation was 

then classed as artefactual if its value was outside a 

predetermined range. 

Williams et al. extend this theme by using a factorial 

switching Kalman filter (FSKF) to model vital-sign data in 

neonatal intensive care [13].  The FSKF extends a standard 

Kalman filter by using different linear dynamic models that 

are selected by a switching variable, allowing “normal” and 

“artefactual” conditions to be modeled. The value of the 

switching variable changes depending on a number of factors 

such as the presence of bradycardia or recognition of probe 

disconnection. Given a set of observations, the FSKF is then 

used to calculate the most likely switching state. 

Tarassenko et al. developed a patient monitoring system 

based on a novelty-detection principle, called “Visensia”, in 

which the vital-signs from a normal patient population are first 

modeled, and alerts generated when a set of vital-signs differ 

significantly from that of the training population [14]. We now 

consider the Visensia model in more detail, which will be used 

to derive the PSI scores featured within the results presented 

here. 

The model was trained using 3,500 hours of continuous 

vital-sign data collected from 150 high-risk patients at the 

John Radcliffe Hospital, Oxford, between 2001 and 2003 as 

part of an observational study. The method defines a PSI by 

first calculating the joint distribution      of vital-signs 

    . The vital-signs measured were: heart rate (HR), 

respiratory rate (RR), peripheral oxygen saturation (SpO2), 

and systolic and diastolic blood pressures. The input to the 

model was a vector containing the instantaneous observation 

of each of the vital-signs, apart from the systolic and diastolic 

blood pressures, which were summarized by their arithmetic 

mean so that blood pressure did not have undue influence on 

the model. Each vital-sign was normalized with respect to its 

own mean and variance,   
            . 

The joint distribution was estimated using a Parzen 

windows kernel density estimate, using 400 kernels. The 

kernels were selected by summarizing the training data set 

using K-means clustering; this step was necessary due to the 

large size of the data set. The likelihood of a test data-point is 

then evaluated with respect to the p.d.f.       , and the 

corresponding PSI is defined to be 

 

              (1) 

  

An alert is generated by the system if the PSI exceeds a 

given threshold,  , for n-minutes out of any m-minute window 

of data. Following previous work, we use     minutes and 

    minutes. 

 
Fig. 1.  Vital-sign data for an Emergency Department patient. The heart rate 

channel is lost      minutes into the record. The last seen value of HR is 

then internally held for five minutes (from      to      minutes), at 
which point, the missing variable is replaced by the training population mean. 

This leads to an artefactual drop in PSI score at      minutes. 

 

III. METHOD 

We now propose an adaption of previous work, into the 

probabilistic, non-parametric framework provided by 

Gaussian process regression. 

The process of generating a probabilistic PSI during a period 

of missing data involves two stages. Firstly, the posterior 

distribution of the missing vital-sign data must be estimated at 

a given point in time. Samples from the posterior distribution 

can then be used as inputs to the deterministic data fusion 

model. This will provide a range of PSI scores, from which the 

empirical distribution of the PSI during the period of missing 

data may be derived. 



A. Gaussian Process Fundamentals 

A Gaussian process is defined as a stochastic process for 

which any finite combination of variables has a joint 

multivariate Gaussian distribution. To estimate the missing 

vital-sign data, we assume that the time-series may be 

adequately modelled using a Gaussian process. 

A simple visual example of a time series modelled using a 

Gaussian process is shown in Fig. 2, which depicts a two-

dimensional Gaussian distribution with a mean [0 0]
T
 and a 

covariance of  
    

    
 . 

Any point on the distribution,        , represents the joint 

probability          of two samples. For instance, the red dot 

in (a) represents the probability of the two points y1=1.5, y2 = 

-0.2. 

Fig. 2 also demonstrates how the points y1 and y2 can be 

depicted as a two-point time series between x-axis values of    

and   . The figure also shows example time series for two 

other points selected from the Gaussian in (a). Let us suppose 

that these are observed at arbitrary times x1 and x2. As the time 

series grows with more points y3,y4,…,yn it can continue to be 

modeled as a Gaussian process, in which the dimensionality of 

the joint Gaussian is increased to 3, 4, …, n, respectively. 

 
Fig. 2.  A simple example of a Gaussian process for two points. The left figure 

shows the joint probabilities of all possible points as a bivariate Gaussian 
distribution. The right figure shows the equivalent time series plots for the 

three points on the Gaussian distribution highlighted in blue, black and red. 

 

B. Covariance Functions 

We now consider how the values on the time axis may be 

determined. 

A covariance function is used to define the covariance matrix 

of the joint Gaussian distribution over the values   . A 

covariance function is a function of the times (xi, xj) 

corresponding to any two values (yi, yj). The form of the 

function is free, but must lead to the production of a valid 

covariance matrix (i.e. a matrix that is positive semi-definite). 

In our application, we expect local temporal behavior to be 

highly correlated, and the correlation to decrease as data 

samples become increasingly separated in time. Furthermore, 

in many cases we may also expect the function to be 

stationary, so that only the difference between xi and xj is used, 

and not their absolute values (i.e., absolute times). 

The squared exponential covariance function is often used, 

which takes the form: 

 

 
                      

   
 

 

       
 

 
  

 

(1) 

 

The covariance function contains two hyperparameters. The 

amplitude hyperparameter,   , defines the maximum 

allowable variance, and is large for variables with a high 

dynamic range. The length-scale parameter,  , controls how 

long in time an observation will be correlated to future 

observations. 

While the hyperparameters may be set using prior 

knowledge, their “optimal” value may be learned from some 

training data by maximizing the log likelihood over the 

hyperparameters. The likelihood, which may be derived from 

Bayes’ theorem, is           , which is a normal distribution 

with covariance matrix, K. The log likelihood, for N time 

series observations, is therefore: 

 

  
 

 
       

 

 
       

 

 
      

(2) 

 

In the case where further information about the structure of the 

data is known, other covariance functions may lead to greater 

accuracy (e.g., see [8]). The results in the remainder of this 

article use the squared exponential covariance function to 

derive covariance matrices. 

C. Gaussian Process Regression 

The example in Fig. 2 is now used to demonstrate how 

regression onto previously unseen data can be computed. 

Consider the case when the value of y1=1.5; the selection of 

the value of y1 constrains y2 to a one-dimensional slice, 

denoted by the dotted red line in Fig. 2. This line represents 

the conditional distribution p(y2 | y1=1.5). From the contours 

of         , we can see that y2 is likely to have a value 

between -0.3 and 2. Therefore, by conditioning on y1, the 

uncertainty in the value of y2 can be reduced. 

In general, for an n-dimensional Gaussian, and for a vector 

of y known points, and y* unknown points, the relevant 

conditional distribution is given by: 

 

                           (3) 

 

where the covariance matrix, K, for [y, y*] has been 

divided into components that describe the correlations 

between the known points y, the correlations between the 

unknown points y*, and the cross-terms. These are labeled A, 

B and C, respectively, so that K is: 

 

      

  
  

(4) 

D. Data Fusion Framework 

The posterior distribution for the missing vital-sign data is 

generated using Gaussian process regression. By extending the 

techniques outlined in Section II, an N-dimensional Gaussian 

process (for N vital-signs) will allow both inter- and intra-

channel dependencies to be modelled. If more than one 



channel of data is missing, the posterior distribution output by 

Gaussian process regression will be a z-dimensional Gaussian 

for z missing data channels. Fig 3(a) shows an instance in 

which one vital-sign is missing, which will lead to a univariate 

Gaussian posterior over the missing variable. 

The output from the Gaussian process regression can now be 

interpreted within the context of the data fusion model. For 

this example, we assume that the data fusion model is the 

Visensia model described in Section II. However, the process 

should be easily extendible to other early warning score 

systems. 

Fig. 3(b) shows a 2-dimensional representation of the pdf 

   ) model described previously. If the vital-signs V1 and V2 

are known exactly, then a single point on the model can be 

defined, which can be converted into a PSI using eq. (1). If 

only one vital-sign is known exactly (for example, V1 = 20), 

and V2 has been estimated by Gaussian process regression, as 

in 3(a), then the resulting output from the Parzen windows 

model is constrained to: 

 

                     
    

 ) (5) 

 

Where          is merely the pdf from Section II,    is the 

value of   , and    
 and    

 are the mean and variance, 

respectively, of the Gaussian process estimate of   . For the 

general case, the Parzen windows posterior cannot be 

calculated analytically, and a discrete estimate of the 

distribution can be generated by sampling from    
     

    
  as the input to the Parzen windows model. As 

before, the PSI can again be calculated using eq. (1), but will 

now result in a distribution rather than a single value. 

It now remains to show how alerts can be generated using 

the probabilistic PSI distribution. In the original data fusion 

model, we decide to alert if n out of the previous m minutes of 

data were above an alerting threshold (as shown in Fig 3(c)). 

Under this scheme, the alerting condition for a PSI score is 

binary: it is either above or below the threshold. 

The framework introduced here outputs a distribution over 

PSI scores, rather than a single value (as shown in Fig 3(d)). 

An alert may now be generated if 
 

 
% of the probability mass 

of a PSI distribution is above the alerting threshold. An alert 

should thus be generated if: 

 

  

   

   

         
 

 
 

 

(6) 

 

Where   is the alerting threshold, and there are a total of I sets 

of vital-sign inputs within an m-minute period. In the case that 

the PSI is a single value (i.e. all variables are known), then 

         is simply a Dirac delta function centred at the PSI 

score. More generally, the univariate cumulative probability 

distribution over PSI scores, P(PSI), is given by: 

                 

 

   

 

 

(7) 

 
Fig. 3.  A 2-dimensional pictorial description of the main stages of the 
Gaussian process framework for producing probabilistic PSI scores. (a) 

Firstly, V2 is estimated (shown by blue dashed lines) using a multivariate 

Gaussian process, from information in the    and    time series. (b) shows 

how a PSI distribution is then generated. The surface plot represents the 

training population joint probability over   ,  , on which the data fusion 
model is based. The red Gaussian slice indicates the allowable values of 

        , given that    is fixed, and the estimate for    is Gaussian distributed 
according to the result from (a). (c) shows the PSI against time, demonstrating 

that, under the original system, a the score is fully above or below the alerting 

threshold of PSI = 3, even when there is uncertainty in the vital-sign values. 
(d) shows how this is addressed in the Gaussian process framework, which 

allows for PSI probability distributions 



I. THE CLINICAL STUDY 

The data fusion framework was tested using data collected 

from a clinical study conducted at the John Radcliffe hospital, 

Oxford. During the study, both intermittent observations and 

continuously monitored vital-sign data were acquired from 

Emergency Department patients. The study was conducted 

with the approval of the UK National Research Ethics Service, 

reference number 08/H1307/56. 

Continuous data was acquired using a Phillips Intellivue 

bedside monitor, and measurements of RR, HR, and SpO2 

were recorded at a sampling rate of 30 seconds. These 

measurements required the physical connection of ECG 

electrodes, and a finger pulse-oximeter. 

Intermittent measurements of blood pressure (BP) were 

recorded at intervals related to the condition of the patient. 

The most acute patients had BP recordings taken every 5 

minutes, whereas recording could be as infrequent as once per 

hour for patients with less serious conditions. 

In total, 476 patients were recruited to the study. The mean 

age of the patients was 61 years, and 52% of the patient 

population was male. Further patient demographics and 

information regarding data collection are reported in [16]. 

 

 HR RR SpO2 SBP 

Time (hours) 1,645 1,629 1,664 1,776 

Data loss (%) 24.2 24.9 23.3 18.2 

     
Table 1.  Data quantity and data loss during clinical study data acquisition 

II. RESULTS 

We present two examples of Gaussian process regression 

for heart rate data, first showing an example of regression, and 

then showing a regression estimate is interpreted by 

probabilistic PSI. 

 

 
Fig. 4.  An example of Gaussian process regression for heart rate data. The 
data was selected at random from the patients consented to a clinical study at 

the John Radcliffe hospital, Oxford. The black circles were used to train the 

Gaussian process model. The mean of the resulting regression estimate is 

shown in black, and    standard deviations from the mean are shown in blue. 
The red circles indicate unseen test data. 

 

 
Fig. 5.  Vital-sign data for an Emergency Department patient. The heart rate 
data channel is lost at t = 37 minutes into the record. This time, the value of 

the missing heart rate data is inferred using Gaussian process regression, 

leading to a consistent PSI score. As a consequence, the PSI score remains 
relatively high, and would indicate an alert (for an alert threshold of 3) at  

t = 50 minutes, due to the drop in blood pressure. 
 

In Fig. 4, 15 minutes of data were selected at random from 

an arbitrary patient consented to the clinical study. These data 

were then partitioned into a set of 10 minutes of training data, 

which are depicted as black circles, and a set of 5 minutes of 

test data, which are shown in red. Gaussian process regression 

was implemented using the training data, and the mean of the 

resulting estimate is shown as a black line, with    standard 

deviations from the mean in blue. 

The method correctly predicts the slight overall upward 

trend in the heart rate values. In addition, the estimate 

becomes less certain as time progresses and the points become 

further away from the last observed data 

The second example, shown in Fig. 5, uses the same patient 

data as for Fig. 1, and demonstrates how Gaussian process 

regression may be used within the data fusion framework 

described in Section IV. In comparison to Fig. 1, there are 

now no artificial step changes in the PSI at      minutes. 

Instead, the PSI remains at approximately 3, with a rapidly 

growing uncertainty. 

In addition to producing a consistent estimate, the Gaussian 

process-assisted model is able to generate appropriate alerts 

when data are missing. At      minutes into the record, the 

blood pressure drops to an unusually low figure of 87/39 

mmHg. This leads to an increase in the PSI, such that the 5
th
 

and 95
th

 percentiles of the PSI distribution are greater than 3. 

In the case where the alerting threshold is set at PSI = 3 (its 

normal value from [18]), this would lead to an alert. In 

contrast, Fig. 1 shows a corresponding PSI of approximately 



1.5, and the patient would be incorrectly deemed to be 

“normal”. 

 

III. DISCUSSION 

In this paper, Gaussian process regression has been 

introduced as a method for inferring vital-sign data in the case 

of data drop-out. The Gaussian process model provides a 

posterior distribution for each unknown data channel, the 

variance of which may be used to quantify the certainty in the 

vital-sign estimate. 

Following this, a description of how Gaussian process 

regression may be incorporated into an existing data fusion 

model was provided. The probabilistic framework has the 

advantage of providing a PSI distribution which is consistent 

with all previous data. This is most clearly seen by comparing 

Fig. 5 to Fig. 1, in which the original data fusion model reverts 

to a normal state once the pertinent channel of data is lost. 

This in turn means that the probabilistic PSI has a greater 

chance of detecting vital-sign deterioration, and providing 

relevant alerts. 

The methods presented in this chapter are limited by the 

data quality. For instance, it is unclear whether the sampling 

rate, 30 seconds, of the continuous data presented here is 

optimal for estimating short term trends. A principled lower-

bound on the sampling rate may be derived using raw 

waveform data. Indeed, Gaussian process regression may be 

used for “smart sampling” in which a measurement of a vital-

sign is made when the uncertainty in the model has reached 

some threshold value. 

Furthermore, improvements may also be made by careful 

selection of the covariance function. While [15] chose 

covariance functions heuristically, it may be possible to obtain 

an objective estimate of the covariance from a set of 

covariance functions by maximizing the marginal likelihood 

over the covariance function set and their respective 

hyperparameters for each vital-sign record. The most selected 

covariance function can then be considered as the optimal 

function. 

The approach can be further improved using the dependent 

Gaussian process methodology derived by Boyle and Frean 

[17], which more accurately models cross-correlation between 

dependent channels of data. 
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