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Abstract

This report analyses the role of spatio-temporal focusing in the forma-
tion of freak waves on the open ocean. The mechanism is modelled using
the non-linear Schrodinger(NLS) equation, and it is shown that for this
simple model there are many similarities to fully non-linear simulations. It
is shown that steep wavegroups form a peak resembling a �wall of water�,
matching typical qualitative observations of mariners. The NLS can also
be modi�ed to include a damping term to model energy input and dissipa-
tion. Using the modi�ed equation, it can be shown that a small change in
energy has a large e�ect on the evolution of waves. In particular, evolutions
subject to moderately large energy input form complex wavegroup struc-
ture. After an initial focus, the wavegroup has a tendency to split in the
transverse direction, and further peaks are also formed in the mean wave
direction. Overall, this creates a prominent hexagonal shape that breaks
down to form further complex structure. The results are then related to
the �Three Sisters� phenomenon, where three large waves break in quick
succession. In the context of water wave theory, these results are entirely
new.
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1 Introduction
The last couple of decades have seen heightened public interest in large wave
phenomena. In particular, the Boxing Day Tsunami, and the extremely active
2005 hurricane season have alerted many to the destructive power of water waves.
In such cases, the cause of the event is clear. However, there exist recorded events
of extreme waves with no clear cause, where the wave is much larger than any
of those surrounding it. One famous example is the Draupner �New Year Wave�.
As the wave record shows (�gure 1), one extreme wave was recorded using a
laser range �nder after 15:20 on January 1st 1995, causing minor damage to
the Draupner oil platform[1]. In order to quantify the �freakishness� of a wave,
oceanographers use the �signi�cant wave height�, the mean of the largest third of
waves, to describe the average height of a set of waves. To be classed as rogue, a
wave must be at least double the signi�cant wave height. Some estimates based
on a linear irregular wave model estimate that a freak wave such as the �New
Year Wave� should occur in less than one in 40,000,000 waves[2]. Recent �eld
data from the North Alwyn �xed steel-jacket oil and gas platform suggest that
this is a gross underestimate, as twenty freak waves were recorded during 293×20

minute periods where roughly 45000 waves were measured in total[3].
The engineering application of the study of rogue waves should not be trivi-

alised. Various structures, including oil platforms and ships, regularly deal with
wave loading and an estimate of the largest load likely must be used to ensure

Figure 1: 1520 Wave record at the Draupner oil platform on January 1st 1995
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Figure 2: An oil platform during a typical storm

a safe design. According to BBC's Horizon documentary, ships are currently
designed to withstand 15m wave breaking with no damage[4]. However, as the
Draupner record shows, extreme waves can approach double this �gure. Conse-
quently, it is important to know how often extreme waves arise, and the mecha-
nisms involved in their creation. By doing this, structural engineers can begin to
assess whether freak waves are a signi�cant risk, or alternatively, learn to avoid
conditions or locations where freak waves are likely to occur.

The evidence points toward many possible physical mechanisms responsible
for freak waves. For instance, there are a high number of recorded rogue wave
events occurring o� the coast of South Africa, home to the fast Agulhas Current.
In particular, it has been noticed that the rogue waves occur when the prevailing
wind opposes the current, suggesting that currents play an important role in cre-
ating freak waves. Other physical mechanisms include geometrical superposition,
where physical artefacts help to focus waves in a particular area, and dispersion
enhancement of wave groups, that is, spatio-temporal focusing. A current review
of each of these mechanisms is given by Kharif and Pelinovsky[5].

This study looks at the formation of deep-water rogue waves due to disper-
sion enhancement only, and models the waves using the non-linear Schrodinger
(NLS) equation. The non-linearity in the model is particularly important as it
explains an increased surface elevation at focus compared with a linear model. To
begin with, a thorough investigation into the properties of the one-dimensional
Schrodinger equation (1+1) was performed. The equation was solved using Math-
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ematica, and e�orts were also made to assess the suitability of the inbuilt PDE
solver. Following this, the 2D NLS was investigated in a similar fashion. Finally,
an attempt was made to model excitation and energy dissipation by adding a lin-
ear damping term to the Schrodinger equation. In doing this, the author hopes
to attain further insight into the development of freak waves, and to be able to
show that changing the amount of energy in a system has some e�ect on the
subsequent evolution.
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2 Informal Derivation of NLS
The 1D NLS is a simpli�ed non-linear model that describes the evolution of a
wave envelope. One important simpli�cation is that the equation does not include
the e�ect of a return current beneath the wavegroup. Other models such as the
Dysthe equation allow this[6]. The NLS equation can be derived informally if it
is assumed that sea water can be modelled as an inviscid, incompressible �uid.
Although this is not strictly true, it can be considered inviscid as viscous e�ects
are only e�ective for small-scale motions, which are usually negligible for wave
processes. Slow variations in amplitude, wave vector and frequency will also be
introduced during the derivation. The outlined method that follows is attributed
to Yuen and Lake[7], who also provide an alternative, more thorough derivation.

We start by stating the four governing equations. Equation 1 is the Laplace
equation, which implies the condition of irrotationality, and the Euler equation
(equation 2) models the pressure balance on the �uid surface. The �nal two
equations are boundary conditions, describing that the velocity of the �uid is
the velocity of the surface, and that there is no �uid velocity far below the sea
surface.

4φ = 0 −∞ < z < η(x, y, t), (1)

φ +
1

2
(5φ)2 + gz = p z = η(x, y, t), (2)

ηt +5φ.5 η − φz = 0 z = η(x, y, t), (3)

φz → 0 z → −∞ (4)

φ represents the velocity potential, and η is the free surface. The free surface
is measured using z = 0 as a reference point for the undisturbed surface. The
gradient operator 5 acts in the horizontal x and y directions only, whereas the
Laplacian operator 4 acts in x, y and z. The external pressure and the density
in equation 2 can be assumed to be constant, and are set at zero and one re-
spectively. The derivation continues by deriving the Stokes solution for a steady
unidirectional, periodic wave train. By considering the case when disturbances to
the surface are in�nitesimal, that is, when η and φ are both small, the boundary
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conditions (equations 2 and 3) reduce to

φ + gη = 0 z = 0 (5)

ηt − φz = 0 z = 0 (6)

The Euler equations can now also be simpli�ed and solved, to yield the fol-
lowing solution for the small disturbance problem:

η(x, t) = acos(k.x− ωt) (7)

φ(x, y, t) =
ωa

|k|exp(− |k| z)sin(k.x− ωt) (8)

Back substitution into the boundary conditions gives the relation between
wavenumber and frequency:

ω2 = g |k| (9)

So far it has been assumed that disturbances are in�nitesimal; now the linear
solution is modi�ed to take into account real wave amplitudes. This was �rst
obtained by Stokes[8] for the unidirectional case and is given by

η(x, y, t) = η(x, y) = acos(kx− ωt) +
1

2
ka2cos2(kx− ωt)

+
3

8
a3k2{−cos(kx− ωt) + cos3(kx− ωt)}+ O(a4k4) (10)

φ(x, y, z, t) = φ(x, z, t) =
ωa

k
ekzsin(kx− ωt) + O(a4k4) (11)

ω = (gk)
1
2{1 +

1

2
(k2a2)}+ O(a4k4) (12)

where k is the x-component of the wavevector and the equations have been
simpli�ed for the deep-water conditions. In this case, the solution is no longer
linear, as the frequency ω depends on amplitude as well as wavenumber. At
this stage, we allow small perturbations in the frequency ω and wavenumber k,
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taking a Taylor expansion for the dispersion relation (equation 12) around ko and
keeping terms up to second order. From this, we establish:

ω′ − ωo

2ko

k′ +
ω0

8k2
o

k′2 +
1

2
ωok

2
oa

2 = 0 (13)

It is possible to show that there is a direct correspondence between the disper-
sion relation and the governing equations, giving−iω′ → ∂/∂t and ik′ → ∂/∂x.
This correspondence is valid for weakly non-linear systems, so applying it to the
previous equation yields the operator:

i
∂

∂t
+

ωo

2ko

∂

∂x
− ωo

8k2
o

∂2

∂x2
− 1

2
ωok

2
oa

2 (14)

This can now be applied to a fundamental complex quantity, the wave en-
velope U = aeiθ. Since the wave amplitude a = |U |, this �nally leads to the
non-linear Schrodinger equation:

i(
∂U

∂t
+

ωo

2ko

∂U

∂x
)− ωo

8k2
o

∂2U

∂x2
− 1

2
ωok

2
o |U |2 U = 0 (15)

This report will primarily consider the case where we move in the frame of
reference of the wavegroup. To do this, the substitution X = x − ωo

2k0
t is made,

where ωo

2ko
is the group velocity, cg, giving the result:

i
∂U

∂t
− ωo

8k2
o

∂2U

∂x2
− 1

2
ωok

2
o |U |2 U = 0 (16)

Further simpli�cations can be made by making the substitutions τ = −ωot,
and X = 2

√
2kox

i
∂U

∂τ
+

∂2U

∂X2
− 2

∂2U

∂Y 2
+

1

2
|Uk|2U = 0 (17)

A �nal substitution, u = koU√
2
produces the standard mathematical form:

iut + uxx + uyy + |u2|u = 0 (18)
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The Schrodinger equation can also be extended to two dimensions. The result
is stated below and can be derived by generalising the previous argument in two
space dimensions. As before, the NLS can be simpli�ed when we move with the
wave group (equation 20).

i(
∂U

∂t
+ cgr

∂U

∂x
) =

ωo

8k2
o

∂2U

∂x2
− ωo

4k2
o

∂2U

∂y2
+

wok
2
o

2
|U |2 U (19)

i
∂U

∂t
=

ωo

8k2
o

∂2U

∂x2
− ωo

4k2
o

∂2U

∂y2
+

wok
2
o

2
|U |2 U (20)
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3 NLS modelling in One Dimension (1+1)
To model an extreme wave, an appropriate initial condition must be given to
ensure that the wavegroup will focus. One method is to compute a focusing
solution for the linear part of the NLS equation, and then rewind the solution by
a suitable length of time. The result can then be used as the starting condition for
the non-linear case. This works as it makes the plausible assumption that at many
time periods prior to non-linear focus, dispersion is only due to linear e�ects. The
equation will be solved numerically using Mathematica's NDSolve function, which
applies a pseudospectral scheme. As the name suggests, the scheme calculates
derivatives by using Fast Fourier Transforms(FFT) to reduce computation[9].
The 1D spatial domain is set to 16km, and the boundary condition has been set
so that at the spatial boundaries the solution is equal on both edges, e�ectively
creating a periodic space.

In order for the solution to have practical signi�cance, it is important to pick a
realistic shape for the wave group. Lindgren[10] points out that the average shape
of an extreme in a linear Gaussian process tends to the scaled autocorrelation
function, a result which has come to be known as NewWave in o�shore engineering
[11]. Following Lindgren's theory, it has been shown that large waves in the North
Sea are consistent with the NewWave model[12].

In one dimension, the linearly focused envelope was chosen as

U(x, t = 0) = AExp−
1
2
S2

xx2 (21)

which serves as a good approximation to NewWave. Initially, A, the amplitude
of the wavegroup at linear focus, was chosen as 0.18/ko to represent a wave
envelope of 6.4m. The spectral width, Sx, was selected to be 0.0464, in order
to be consistent with the JONSWAP spectrum, a set of results derived from
�eld measurements. Finally, the time before linear focus, T , was calculated to
represent twenty wave periods prior to linear focus for a typical wave period of
12 seconds (see �gure 1), leading to a value of 240 seconds. Solutions were then
obtained until 240 seconds after linear focus.
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3.1 Analysis of the 1+1 NLS
3.1.1 General Observations

The start condition can be described by three parameters: the bandwidth of the
wavenumber spectrum Sx, the amplitude for a linear evolution A, and the start
time T. An investigation into the e�ect of varying A and Sx was undertaken,
keeping the start time T constant at 240 seconds before linear focus. As an
experimental strategy, ten values of A and ten of Sx were sampled in the range
1.79m to 14.31m, and 0.5× 0.0464m−1 to 1.5× 0.0464m−1 respectively, so that a
sample space of 100 values was recorded. This strategy was continued when A-T
and Sx-T were analysed. The amplitude at non-linear focus, Anlin, and the time
of non-linear focus, Tfocus, were then calculated for each permutation of A and
Sx by maximising the NLS variable U over time, using Mathematica's in-built
function Maximum.

Figure 3: Comparison of linear and non linear evolution for small A

Predictably, Anlin exceeds the amplitude of the corresponding linear event
A. The envelope at focus has a distinctive shape, with a large peak in the centre,
and two distinct troughs at either side. In certain cases where A is large, the
non-linearity causes the ratio Anlin/A to be as much as 3.27. It was also noticed
that for small values of A, the ratio Anlin/A is almost unity, suggesting that the
evolution has become close to the linear solution. A comparison with the linear
evolution shows that this is the case (�gure 3), and it is further noted that the
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Figure 4: Anlin vs A

time of focus for the NLS evolution is also near the linear focal time. From these
observations it seems that the non-linearity becomes more severe with a large
start condition. This result should come as no surprise, as the non-linear term in
the NLS is cubic, so that when U is very small, the non-linearity is insigni�cant.

Figure 4 shows that the rate of increase in Anlin, dAnlin
dA

, depends on Sx, such
that when Sx is increased, dAnlin

dA
decreases. E�ectively, this means that evolutions

with small values of Sx are distinctly non-linear, whereas for large values of Sx

the non-linear peak amplitude Anlin and the whole evolution start to match the
linear event. This makes sense when one considers conservation of energy in the
system. For a �xed A, and for large Sx, the wavegroup at linear focus is already
spatially compact, and so the non-linearity cannot be driven much further. In the
case where Sx is small, the linearly group at focus has the same peak amplitude,
but is more spread out. Thus, it possesses more energy, and can be driven higher
by non-linearities (see �gure 5).
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Figure 5: 1D linear solution at focus for large (red) and small values of Sx,
showing that groups with small Sx possess more energy

A second sample space was created, this time varying A and T. By keeping
T constant over a range of A, the previous result, that Anlin exceeds Alin, was
obtained once again. Instead, by looking at the case where A is held constant
across a range of T, one notices that Anlin does not change a great deal, regardless
of the start time. Conversely, Tfocus varies considerably with T, and has an even
greater variation when A is large. This �nding can be explained empirically by
considering that as the start time is moved further back, the non-linearity in the
equation has more time to propagate through the system.

3.1.2 Amplitude Scaling

For the linear part of the Schrodinger equation, the exact solution for the pro�le
of the wave envelope evolves with time as

u(x, t) =
A

(1 + 1
16

S4
xt

2)
1
4

Exp[
−1

2
S2

x(x− 1
2
t)2

(1 + 1
16

S4
xt

2)
]Exp[i(...)] (22)

One notices that t is always tied with an S2
x term and that A appears alongside

(S−4
x )

1
4 , so it seems sensible to look at the parameter S2

xT and A/Sx. Using the
10x10 sample space in Sx-A, Anlin was plotted against A for the cases where
A/Sx is kept constant (�gure 6). The result is that the plot now almost lies on a
straight line, making it reasonable to continue. The parameter S2

xT was now kept
constant and Anlin was again plotted against A. In this case, �gure 7 summarises
the data. The natural extension of this process was to keep both S2

xT and Sx/A
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Figure 6: A vs Anlin for constant A
Sx

constant. The result is shown in 8, where the points now all lie on a straight
line. By plotting the evolutions for various points on this line, one can see that
each graph shows the same evolution (�gure 9), but with a scaling factor of λ.
This result is in agreement with the approximate mathematical result derived by
Taylor and Haagsma[13]:

Af

A
= {[1−

√
8

(A/Sx)
2

(1 + 1
16

S4
xT

2)1/2
+ 2(A/Sx)

4]1/2 +
√

2(A/Sx)
2} 1

2 (23)
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Figure 7: A vs Anlin for constant S2
xT

Figure 8: Constant A
Sx
and S2

xT
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Figure 9: Identical evolutions for (i)λ =2,(ii)λ = 5
3
,(iii)λ = 1, and (iv)λ = 1

2
.

Note the di�erent timescales (vertical axis) and distance scales (horizontal axis).

By studying the NLS equation, it is possible to deduce the scaling charac-
teristics that have just been shown experimentally. The argument rests on the
fact that each term in the equation must be scaled by the same amount in or-
der to preserve balance between dispersion and non-linearity terms. This makes
sense, as one does not expect either dispersion or non-linear e�ects to be dom-
inant for the case of transient wavegroups like those formed in extreme events.
Let us begin by scaling the amplitude U by a factor λ, so that the non-linear
term is simply scaled by λ3. Looking at the spatial derivative term, one notes
that it is of the order O(ε∆2) where ε is the wave steepness, Ako, and ∆ is the
wave bandwidth[14]. Therefore, the spatial bandwidth must also be scaled by
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lambda so that the order is maintained. If the solution has the Gaussian form
U = AExp[(Sxx)2]Exp[...] then we can see this explicitly, where the spatial deriv-
ative term becomes Uxx = (AS2

x)U . Repeating this process with the �rst term Ut

leads to the rule that time, t, must be scaled by λ−2. So overall the rules are as
follows:

• A → λA

• Sx → λSx

• t → λ−2t

and are entirely consistent with the numerical results. This scaling is particularly
useful as experiments have shown that solutions with larger values of λ are faster
to compute. Figure 10 gives some idea of the time for runs under di�erent scalings.

Figure 10: Computation time taken to solve 2D NLS for various scaling factors

3.1.3 Wavenumber Analysis

Given that the parameters Anlin and Tfocus can be non-dimensionalised by divid-
ing through by A and T respectively, it seems useful to also have an instantaneous
measure of the wavenumber bandwidth, so that we can approximate the spatial
bandwidth, SxLocal. In order to estimate this, a FFT of the instantaneous wave
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Figure 11: SxLocal evolution

envelope is taken to output a wavenumber spectrum. The wave pro�le ought to be
fully recovered �rst, by multiplying the wave envelope U by ej(kx−wt). However,
multiplying by a sinusoid will only serve to shift the spectrum in wavenumber
space so that it centres at k, and thus has no bearing on the �nal result. Using
this spectrum, SxLocal can be estimated by taking the reciprocal of the variance
and remembering that the mean value lies at k = 0.

The code for SxLocal was checked by assuming that the maximum value oc-
curs at the same time as spatial focus is reached. However, after a couple of trials
it was clear that this is not quite true, and that the two measures miss coinciding
by a few seconds. This result matches the result from Gibbs and Taylor[15]. In
their study, the local bandwidth SxLocal was estimated by approximating the
wave envelope to a Gaussian and �nding the covariance matrix. In fact, the
minimum SxLocal and spatial focus only coincide if the wavegroup at focus is a
Gaussian, which is not exactly true for the NLS. In this case, the wavenumber
spectrum of the group is also Gaussian, with a variance that is the reciprocal of
the spatial Gaussian. Now, we know that the linear Schrodinger equation focuses
to a Gaussian as we have assumed this to create our starting condition. This
means that one expects the SxLocal code to bear out the idea that the maxi-
mum bandwidth will occur at the time of linear focus, a feature that was easily
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checked. A closer look at the results for the NLS shows that for the typical start-
ing conditions outlined previously, the wave envelope at focus does not resemble
a Gaussian, thereby explaining the slight mismatch.

3.2 Evolutions of the 1+1 NLS
Varying Sx, T, and A produces di�erent types of solution, which are shown and
described below.

• Single Peak Solution (Sx = 1× 0.00464, T = −240, A = 0.18/ko)
The wavegroup focuses and then disperses away. This evolution is typical
of the linear Schrodinger equation, and in fact does not truly occur in the
NLS, as Zakharov and Shabat[16] have shown that an initial wave envelope
pulse of arbitrary shape will eventually disintegrate into a series of solitons
and an oscillatory tail. Figure 12 only appears to have this characteristic
because of the timescale that the solution is run for.

Figure 12: Single peak solution

• Breather Solution (Sx = 0.95× 0.00464, T = −240, A = 1.39× 0.18/ko)
For a steeper starting condition, the wavegroup focuses as before, but in-
stead of dying away the group disperses and then refocuses (�gure 13).
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Figure 13: Breather solution

• Unstable Solution (Sx = 0.5× 0.00464, T = −240, A = 2.22× 0.18/ko)
The wavegroup starts to focus, before the solution becomes unstable and
the output becomes non-sensical. As the energy in the system is constant,
the unstable solution must be caused by problems in Mathematica's solver.
The following section will show that unsuitable boundary conditions are
likely to be the cause (�gure 14).

Figure 14: Unstable solution
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It is important to realise that some evolutions which appear numerically unstable
may in fact be valid solutions to the NLS. However, these solutions do not bear
physical parallels. For instance, when T = −240, S = 0.7 × 0.00464 and A =

0.36/k0, a maximum wave height of 43.5m is attained, which is clearly ridiculous.
In this case, the early part of the solution may be valid, but wave breaking is
likely to occur before the wave amplitude becomes too large.

3.3 Validity of the NLS Solutions
As the results of this project hinge upon the solutions from Mathematica's PDE
solver, a number of accuracy checks were undertaken for the simple 1D case.
These checks were also used for the 2D and damped cases where possible.

3.3.1 Time Reversal

One important attribute of the NLS is that it is reversible in time, and should
therefore reproduce the starting condition corresponding to the start of the event
after a forward run immediately followed by a reverse run. A short script was cre-
ated in Mathematica to do this, and the NLS solution was tested by running the
simulation for increasing periods of time until the reproduced starting condition
di�ered from the initial starting condition. In total, the solution was tested over
a 640 second period, when the computer ran out of memory. Until this point,
di�erences between the solution and the reversed solution are unnoticeable on a
large scale. However, a plot of the wave envelope, U, at the boundary (�gure
15) shows small di�erences in starting conditions. It can also be seen that U is
increasing over time, a situation that will likely lead to instability (see section
3.3.3).In the second plot, the error increases from right to left as we would expect,
because time has been rewound.

After testing the code for a range of values of Sx, T, and A, one can conclude
that the 1D case is robust for most situations. This test also serves as useful
groundwork for the 2D case, and it will be shown that the same method is directly
applicable.
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Figure 15: U at Boundary

3.3.2 Conserved Quantities

The one-dimensional Schrodinger equation has an in�nite number of conserved
quantities[15]. Two such quantities are:

I2 =
∫

dx′ |u|2 (24)

which is related to the energy in the system, and

I4 =
∫

dx′(

∣∣∣∣∣
∂u

∂x′

∣∣∣∣∣
2

− 1

2
ν |u|4) (25)

Scripts were created to calculate I2 and I4, and as expected these are close to being
conserved for a variety of starting conditions. The quantities are also conserved
for the single soliton solution in section 3.3.3. Using these calculations as a rough
guide, a good conservative precaution was made to only accept results within a
0.1% variation in I2 and I4.

3.3.3 Soliton and Breather Solutions

There exist soliton solutions of the one-dimensional Schrodinger equation that
are self reinforcing solitary waves, made possible because of the non-linear term
in the equation, which appear as waves that do not change shape over time.
Soliton solutions have several applications in water wave theory. For very shallow
water, the Boussinesq and Korteweg-De Vries equations both have soliton wave
solutions that serve as useful benchmarks for modelling tsunamis and tidal bores.
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It is known that the NLS possesses analytic soliton solutions of the form [7]:

aosech[
√

2aok
2
o(x−

ωo

2ko

)]exp[−1

2
iωk2

oa
2
0t] (26)

In order to test the robustness of Mathematica's PDE solver, the analytic soliton
solution can be entered as the starting condition to the NDSolve function. In
a perfect case, one would expect the numerical soliton solution to propagate
inde�nitely. However, as discretisation errors creep in, the solution will break
down. This provides another useful bound on the length of time the solver is
stable for. For the non-dimensionalised equation, the soliton solution was run
from t = −10 to t = 300 with no visible breakdown in the solution (�gure 16).
This is equivalent to a period of 3720s in the dimensional case.

Figure 16: Single soliton evolution

The process was repeated with a two soliton interaction solution. In this case,
the evolution should follow the analytic solution in �gure 17. It is interesting to
note that in the analytic case the two solitons do not superpose, but instead pass
through each other unchanged apart from a phase shift, a well-known charac-
teristic of solitons[7]. The numerical case has been slightly tweaked, with the
wrap-around condition imposed by the PDE solver acting to return the soliton to
the starting position so that there are multiple interactions. Figure 18 displays
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Figure 17: Analytic 2-soliton solution

this result, showing that while the overall structure of the solution turns out as
expected, the details in the interaction begin to distort and become worse in time.

A similar process was performed on the Ma-breather solution, an analytic
solution that recurs in time (�gure 20). The computed solution deteriorates star-
tlingly towards the end of the run, although some of the periodicity is maintained.
If we look at the wave envelope U on one of the boundaries (�gure 21), it is clear
to see that error builds up much faster than for the single soliton solution. From
this, and from previous results, it seems reasonable that discretisation errors are
insigni�cant so long as the solution does not reach the boundary. When this
occurs, the solution becomes unstable as the wrap-around boundary condition
serves to propagates the error back into the solution. While this is a logical
conclusion, work by Taha and Ablowitz[17] suggests that spatial and temporal
discretisation errors within the domain can cause such errors, although this is
di�cult to verify in Mathematica.

Prior to analysing the 2D NLS, a similar problem concerning boundaries was
encountered, where small errors were being detected at the edge of the domain.
However, it was soon noticed that the initial condition itself was running across
the boundary. This was corrected by simply increasing the spatial domain, again
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Figure 18: Numerical 2-soliton solution
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Figure 19: Numerical Ma-breather solution

Figure 20: Analytic Ma-breather solution
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Figure 21: ANlin on boundary of Ma-breather solution

Figure 22: Wavenumber spectra of stable and unstable solutions at �nal time

lending credence to the idea that the solution will be suitable so long as it does
not reach the boundary.

Further analysis was undertaken for the Ma-breather and unstable Gaussian
solutions in order to see how the instability arises in the wavenumber domain. In
each case, the evolution of the wavenumber spectrum was calculated by taking
Fourier transforms at various time intervals. Taking a snapshot of the spectrum at
the �nal time and comparing it with a stable solution shows that the spectrum
has been corrupted with spikes (�gure 22). By observing a typical evolution,
it appears that these spikes contaminate the answer when high-frequency noise
drifts towards the lower frequency end over time so that eventually the noise and
wavegroup spectra merge.
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To get around this problem, sponge layers can be introduced to damp the
solution at the boundaries. This has been avoided for two reasons. Firstly,
creating a suitable matched layer is tricky. Further to this, as energy is being
taken from the system during damping, the conserved quantities would no longer
be applicable. In this situation, running the solution backwards in time would
now also fail, and so it would become di�cult to check the validity of a solution.

Chapter 3 Summary

• The 1D non-linear equation focuses to a height drastically greater than the
linear case.

• Variations in A, T and S have prominent e�ects on the resulting evolution.

• Wavenumber analysis supports the �ndings, and limitations in the method
are noted.

• Results can be veri�ed using the conserved quantities I2 and I4, and the
time reversal property.

• Analytical soliton and Ma-Breather solutions provide further veri�cation.

• Signi�cant errors are likely to occur when the solution is allowed to propa-
gate across the computation space boundaries.
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4 NLS Modelling in Two Dimensions (2+1)
The 2D NLS equation was solved using U = Ae−

1
2
S2

xx2
e−

1
2
S2

yy2 as the exact solution
for the envelope of the linearly focusing wavegroup. The solution was rewound
to create a starting condition in the same way as in Section 3, and again wrap-
around boundary conditions were imposed, this time in both spatial directions.
In this equation, x represents the mean wave direction, that is, the direction in
which the wavegroup is moving. y then represents the transverse direction, the
orientation along the crest of the wave. The total computation space models
a sea area of 6km by 6km, and the spatial discretisation was calculated using
Mathematica's Tensor Product Grid option[9]. Again the initial condition was
derived using NewWave, and consequently, Sx and T are the same as before. A

was chosen as 0.3/ko to represent a wave that would linearly focus to 10.7m. Sy

is a new parameter, and represents the spatial bandwidth in y. It is calculated by
considering that Sy is related to the root mean square spreading angle in radians
by

Sy = σrmsko (27)

In order to evaluate σrms, �eld data from Donelan, Hamilton and Hui, and Ewans
were interpreted by Gibbs to give σrms = 0.2618[15]. Using the previous equation
gives Sy = 15π/180 radians as a realistic spreading parameter for the model.

Once more, it should be remembered that the 2D NLS is a simpli�ed model.
This is highlighted when one looks at the di�erences between the NLS and fully
non-linear simulations at focus. In particular, it is noted that the fully non-
linear simulation does not possess the symmetrical wave envelope seen in the
NLS (�gure 23). However, many of the important features of the wavegroup are
repeated, so the NLS remains acceptable.

4.1 Solutions of 2D NLS
Creating a thorough sample space as in section 3 is unfeasible. Even ignoring
the fact that an extra variable is present, each calculation takes up to ten times
as long to compute as the 1D case. Instead, each variable was sampled at ten
instances, while keeping the other parameters constant so that a total of �fty
cases have been recorded. It is also worth mentioning that the scaling argument
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Figure 23: Simulated Focused Wavegroup using a.) Gibb's fully nonlinear simu-
lation b.) NLS

previously outlined for the one-dimensional case can be extended to the 2D case.
It can immediately be seen that the y-spatial derivative term is of the same
order as the x -derivative term, and by following through the same argument as
in section 3.1.2, it is simple to show that Sy should be scaled by λ in the same
way as Sx. Such a scaling also makes sense as it preserves the aspect ratio of the
starting condition.

Upon inspection of the results, one of the di�erences between the 1D and 2D
equations is immediately obvious. There are no longer distinct evolutions such
as the �breather� type; each wavegroup focuses and then fully disperses away. In
fact, Yuen and Ferguson[18] have shown that some kind of recurrence is possible
in rather special situations, but that this occurs much less frequently than in 1D.

There are other important di�erences from the 1D NLS equation. Firstly, T
now has very little e�ect on Tfocus and Anlin, which is in stark contrast to the
1D case where Tfocus varied a great deal with the start time (section 3.1). This
is a particularly useful characteristic, as one now need not worry what value T
should be set at.

As well as this, Anlin does not diverge away from the linear case as A increases,
as was seen in 1D. Figure 24 shows this clearly, plotting Anlin against A for both
the 1D and 2D NLS with the same starting conditions. The 2D linear solution
has been plotted alongside them. As A is increased, the 2D NLS rate of growth
in amplitude drops, almost falling in line with the linear equation, and for typical
values of A and S the maximum amplitude is Anlin = 13.09m, fairly close to
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Figure 24: comparison between 1D, 2D and linear evolutions for di�erent values
of A

the linear amplitude of 10.73m. Again this is dissimilar to the 1D NLS, which
showed that a non-linear solution could far exceed the linear case. Practically,
this result is signi�cant as it suggests that large non-linear waves are as unlikely
to occur as their linear counterpart.

The features of the focus point are interesting and of particular importance.
Firstly, the shape of the envelope in the mean wave direction is considerably
di�erent to the 1D case, as there are no longer distinct troughs on either side of
focus. Secondly, for all starting conditions, the wave envelope widens in the y-
direction and contracts in the x -direction at focus (�gure 25). The dilation in the
y-direction provides a rough explanation of the observation on wave amplitude,
showing that the wave spreads out instead of gaining height. Quantitatively, the
wave envelope remains greater than half the maximum peak height for a range
of roughly 600m in the y-direction, and 200m in the x -direction. This contrasts
heavily with the 2D linear evolution, which focuses so that the wave contracts
in both the x and y directions (�gure 26), making the non-linear expansion in
crestline appear more dramatic.

As Gibbs[14] notes, this solution may also help to explain the appearance of
�walls of water� that sailing folklore often records with regard to freak waves. The
�wall of water� structure remains a signi�cant feature of the evolution around the

32



Figure 25: 2D non-linear focus

Figure 26: 2D linear focus

focus time, and for a typical case the wall remains larger than the peak of the
equivalent linear evolution for over 2 minutes (�gure 28). This time is consistent
with the observation of the ship master of the QE2 liner, who remarked in a radio
interview seeing walls of water for a �couple of minutes� before the ship was hit
by a freak wave during storm �Luis�. Simple trigonometry allows us to see that
this solution corresponds to a wave that takes up a 30o �eld of vision when it is
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Figure 27: Comparison of peak wave crests for (i) linear and (ii) non-linear
evolutions

Figure 28: Duration of �wall of water�

two minutes away, substantial enough to appear as a wall.
Looking at the evolution of the wave envelope after focus, we notice that the

group disperses peculiarly, so that the envelope becomes square. Fully non-linear
simulations show that this is a real e�ect and it can also be shown that the square
structure does not occur in the linear case. While this is an intriguing aside, it is
not so important for this study, where we primarily consider what happens near
focus.

4.1.1 Wavenumber Analysis

Sxlocal and Sylocal can also be estimated as in section 3.1.3. This task is con-
siderably simpli�ed by remembering that the wavegroup centres at the origin
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because we are moving in the frame of reference of the wavegroup. This means
that Sxlocal and Sylocal can be calculated by using data along the lines y = 0

and x = 0 respectively, rather than dealing with strips across the whole image.
After calculating the evolution of Sxlocal−1 and Sylocal−1 over time, it is no-
ticeable that Sxlocal−1 evolves in much the same way as the 1D case, with the
spectral bandwidth rapidly increasing from Sxlocal−1 = 737, reaching a max-
imum near spatial focus, and peaking at Sxlocal−1 = 25431 before decreasing
again. Sylocal−1, however, has two maxima, once well before (t = −97), and
once well after spatial focus (t = 95), reaching peaks of Sylocal−1 = 2218 and
2176 respectively. At spatial focus, when t = 255, Sylocal−1 is well below these
maxima, consistent with the observation that the wavegroup is spatially spread in
the y direction. In contrast, the linear case shows that both Sxlocal and Sylocal

focus at t = 240s after the start, coincident with spatial focus (see �gure 29).

Figure 29: Wavenumber variance evolutions for x and y for linear and nonlinear
evolutions
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4.1.2 Validity of Solutions in 2D

To check the validity of the solutions, it is wise to perform the time reversal and
conserved quantity checks that have already been established in 1D. However,
in 2D Sulem and Sulem have shown that there are no longer an in�nite set of
conserved quantities[19]. Fortunately, 2D parallels exist for the quantities I2 and
I4:

I2 =
∫

dx′dy′ |u|2 (28)

I4 =
∫

dx′dy′(

∣∣∣∣∣
∂u

∂x′

∣∣∣∣∣
2

− 2

∣∣∣∣∣
∂u

∂y′

∣∣∣∣∣
2

− 1

2
v |u|4) (29)

Each solution was checked against these quantities, where a 0.1% variation was
again the threshold. Creating the time reversal code in 2D proves to be straight-
forward, and once more the starting condition was checked to see whether it was
preserved when a solution was played forward and backwards in time. During a
typical run, the starting condition is recreated almost perfectly (�gure 30), al-
though interestingly the di�erence between the two starting conditions shows an
x-shaped structure that seems to be left over from the end of the forward run.
These errors are an order of 10−4 smaller than the initial condition, so they are
considered negligible for our study. A �nal check for instabilities was made at
the end of each run by looking for any spurious high wavenumber components.
In each case, results were double checked if the spectrum was considered spiky,
and disregarded if the spikes corresponded to noise in the spatial domain.

Chapter 4 Summary

• The 2D equation evolves very di�erently to the 1D case, no longer generat-
ing an unusually large crest.

• Instead of gaining height, the wave group dramatically spreads out along
the crestline - becoming up to three times longer than the linear case for
realistic wavegroups.

• The spread in the crestline is consistent with wavenumber spectral analysis.
However, the source of spurious peaks in the evolution of Sxlocal−1 and
Sylocal−1 is as yet undetermined.
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• This dilation is consistent with mariners' observations of �walls of water�
during a rogue wave event.

• The time reversal and conserved quantity checks performed in 1D can be
applied to the 2D NLS.

Figure 30: Di�erence in initial and �nal starting conditions
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5 Linear Attenuation of Gravity Waves
The second part of this report investigates the damped NLS and the e�ect of
damping in the formation of extreme waves. So far, a simple model for the
formation of freak waves in the open ocean has been thoroughly analysed, and
has been shown to adequately model some qualities attributed to freak waves.
In particular, the appearance of a long ridged crest that could be interpreted
as a �wall of water� has been noted. However, it has also been shown that this
model fails to produce waves that are signi�cantly higher than those predicted
by linear dynamics, a result that is also obtained when waves are modelled using
fully non-linear dynamics[14].

These attributes can be further investigated by making the realistic assump-
tion that energy can be added to the system by wind, and can also be damped
likewise. Energy attenuation in the open ocean occurs by two main methods.
Firstly, weak e�ects of the boundary layer at the free surface act to damp the
wave. This loss of energy occurs mainly in the region of close to irrotational
�ow and can therefore be estimated using velocity potential. Analysis from
Batchelor[20] shows that the energy loss can be modelled by:

d(1
2
ρkA2)

dt
= −2µk3A2 (30)

showing that the wave amplitude A decreases as e−βnt where β = 2νk2/n, and
n = frequency, k = wavenumber, ρ = density, µ= dynamic viscosity and ν = µ

ρ
.

Batchelor goes on to mention a second, more dominant mechanism, stating that
�casual disturbances due to the wind will usually be more e�ective in dissipating
wave motion�. The generation of windwaves on a global scale has been modelled
by Miles[21] and Phillips[22], among others, who propose two di�erent possible
mechanisms. In short, Miles suggests that energy is transferred when the wind
applies shear stresses to the water. The energy transfer is then proportional to
the curvature of the wave, and is only transferred when the speed of the wave is
equal to the windspeed. Alternatively, Phillips proposes a resonance model that
takes into account turbulent pressure �uctuations at the sea surface.

In the �rst instance, the NLS can be modi�ed to crudely model damping by
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including a linear term:

i(αU + Ut) + Uxx − Uyy +
∣∣∣U2

∣∣∣ U = 0 (31)

By inverting the sign of this term, a simple model of wind excitation is also
introduced. This model of excitation allows energy input from the wind to in-
crease with wave height, which is intuitively sensible as larger waves are more
exposed to wind.

5.1 Analytic Properties of the Damped NLS
Using linear damping enables us to make a useful substitution to analyse the
equation. Starting with the damped NLS equation:

i(αU + Ut) + Uxx − Uyy +
∣∣∣U2

∣∣∣ U = 0 (32)

and making the substitution q = Ue−αt, the equation is transformed to:

iqt + qxx − qyy + e−2αt
∣∣∣q2

∣∣∣ q (33)

where the damping term αU has become part of the temporal derivative of q.
This form of the equation shall be known as the q-form in this report.

Both forms of the equation were initially tested using the soliton solution
from section 3.3.3 in order to see if one was more computationally e�ective. As
one would expect, both equations provided the same answer after the suitable
substitution. As there were no observable di�erences, the U-form of the equation
was chosen. However, answers were continually checked against the q-form for
two reasons. Firstly, intuition leads one to the idea that the q-form should be
more stable, as it only modi�es the non-linear term rather than adding a new
term. Secondly, the numerical errors can be checked as the quantity I2 is now
conserved for q-form, but decreases exponentially in the U-form as energy is lost
(�gure 31).

5.1.1 Conserved Quantities in the Damped Case

It has just been established that there is no reason to expect I2 and I4 to remain
constant for the U-form of the equation, and that I2 decreases exponentially in
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Figure 31: Evolution of I2 for the NLS damped with α = 0.001

time. The exact form of this exponential is not obvious from the graphs. However,
it can be shown analytically how I2 changes in time by following the derivation
of I2 for the undamped case.

Starting with the damped Schrodinger equation and its complex conjugate:

i{Ut + αU}+ Uxx + Uyy + |U2|U = 0 (34)

−i{U∗
t + αU∗}+ U∗

xx + U∗
yy + U∗|U2| = 0 (35)

By multiplying the equations by U* and U respectively, and subtracting the
results we get:

(iUtU
∗ + iU∗

t U) + (i2αU∗U) + (UxxU
∗ − U∗

xxU) + (UyyU
∗ − U∗

yyU) = 0 (36)

where the O(U4) terms cancel. In the remaining equation, one sees that the
time derivative terms in the equation can be rewritten as:

i
∂

∂t
(U∗U) (37)

By integrating everything with respect to x and y, the equation becomes:
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∫
i
∂

∂t
|U2|dxdy+i2α

∫
|U2|dxdy =

∫
(UxxU∗−U∗

xxU)dxdy+
∫

(UyyU
∗−U∗

yyU)dxdy

(38)
The terms with spatial second derivatives reduce to zero at ±∞ following

integration by parts, so that the �nal solution is:
∫
{ ∂

∂t
|U2|+ 2α|U2|}dxdy = 0 (39)

Solving for U2, it is easily established that ∫
U2dxdy decays as e−2αt. It turns

out that the q-form of the damped NLS allows us to make a similar statement.
By following the same analysis, one arrives at:

q∗[iqt + qxx + qyy + e−αt|q2|q]− q[−iq∗t + q∗xx + q∗yy + e−αt|q2|q∗] = 0 (40)

This time, there is no separate alpha term, as it is bundled in to the |U2|U
term as a real coe�cient, and thus cancels. This leaves the equation:

i(q∗qt + qq∗t ) + (qxxq
∗ − q∗xxq)− (qyyq

∗ − q∗yyq) = 0 (41)

which is now identical to that when deriving I2 for the undamped case. By
completing the procedure, one is left with:

∫
|q2|dxdy = constant (42)

This is a remarkable result, showing that the linearly damped equation pos-
sesses a substitution such that I2 is constant, and is useful again for checking the
validity of solutions. Segur et al.[23] show that a parallel cannot be drawn with
I4, as its general form:

Hµ = i
∫ ∫

D
[−|∂xµ|2 +

1

2
|∂yµ|2 + 2k2

0e
−2αt|µ|4]dxdy (43)

is not a constant of motion unless α = 0.
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Alpha -0.002 -0.001 -0.0005 -0.0001 0 0.0001 0.0005 0.001 0.002
%loss -4.74 -2.37 -1.19 -0.24 0 0.24 1.19 2.37 4.69

Table 1: Percentage energy loss for various alpha

5.1.2 Scaling in the Damped Case

By extending the scaling arguments recorded previously in section 3.1, it is pos-
sible to derive a scaling relationship for the damped NLS equation. Again, one
assumes that no single term dominates the equation, so that each term is scaled
up by λ3. Then for the damping term αU , it is clear that when U is scaled by
λ, the damping term must be scaled by λ2 to preserve the correct order. This
hypothesis was tested for a variety of starting conditions and found to work in
each case.

5.2 Linear Damping in 1D
In order for the damped equation to be applied to water waves, the physical
signi�cance of the alpha term must �rst be understood so that plausible values
for the coe�cient can be tested. Because alpha a�ects the energy in the system,
one way of assessing the term is to look at the change in total energy by using
the quantity I2 in the U-form. Analysis from section 5.1.1 demonstrates that for
a linearly damped system, the change in energy is exponential in time.

Therefore, we can categorise alpha by calculating the percentage energy lost
per cycle. Table 1 records these values for the two-dimensional case. From these
results, it was decided to only evaluate alpha up to ±0.002. Above this, it is
hypothesised that the energy damping term becomes dominant over the non-
linear physics, and is therefore unrealistic.

5.2.1 Soliton Damping

The damping term, α, was �rst included in the 1D equation in order to check that
a positive value of α caused damping. A soliton envelope was chosen as a suitable
solution because it is easy to see that the soliton should decrease in amplitude
over time for the damped case. Figure 32 shows this to be the case, and further
e�orts were made to observe how the soliton evolved. In order to accomplish
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Figure 32: Damped soliton

this, a number of time snapshots were acquired across �gure 32, so that each
time snapshot produced an almost Gaussian-shaped slice. It was then noticed
that as soliton height decreased, the spatial width of the solution increased over
time. Looking at the analytic form of the soliton solution (equation 26), it can
be easily veri�ed that there is a balance between the height and width of solitons,
and so the logical progression is to compare the time snapshots with solitons of
the same height. It was discovered that the images matched closely (�gure 33).
This suggests that solitons maintain a soliton-like shape as they damp, such that,
if the wavegroup moves from a damped to an undamped medium it continues to
travel as an undamped soliton.

The time reversal property of the NLS also allows us to infer that a soliton
subject to linear energy input will also metamorphose so that it maintains a
soliton shape, which �gure 34 veri�es computationally.

As an aside, one notes that while this result has no obvious application in
extreme wave dynamics it is important for optoelectronics. In optical commu-
nications, light pulses can be sent through optical �bre as solitons in order to
minimise dispersion. Over large distances, imperfections and absorption act to
disperse and damp the light, limiting the bit rate. Historically, optical repeaters
that decode and resend the data were used to work around this problem. However,
it is likely that the properties of the soliton would allow the signal to be directly
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ampli�ed as in the case of erbium repeaters or in Distributed Raman Optical
Ampli�cation, so that the original properties of the signal are regenerated[24].

Figure 33: Comparison of damped soliton with soliton of similar amplitude. Note
that the two envelopes are slightly misaligned for clarity

Figure 34: Excited soliton with α = −0.001
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5.2.2 Gaussian Wavegroup Damping

The 1D Gaussian wavegroup solution seen in section 3 was next input to the
damped NLS. As before, measurements of Sx, Tfocus and Anlin were taken over
a range of starting conditions, and α was observed in the range stated previously.
Unsurprisingly, the damping causes the amplitude at non-linear focus to reduce.
This reduction becomes more severe as α increases, such that when α = 0.005,
the solution damped to the extent that focusing does not occur (�gure 35). The
evolution of wavenumber spectra backs this up, as the maximum of Sxlocal−1

is smaller than the undamped evolution, denoting a less focused group. It was
also noticed that the instantaneous spatial width, Sxlocal, increases with alpha,
a trait that was also true for the soliton.

Figure 35: 1D Gaussian wavegroup x-t plots for various values of alpha

For the negatively damped, energy input case, �gure 36 shows that the global
shape matches that of the negatively damped soliton shown previously. However,
the focusing breather solution remains intact, and in fact the frequency of focus
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Figure 36: 1D Gaussian wavegroup x-t plots for various values of negative alpha

increases. Incidentally, time reversal also infers that the breather oscillations
become less frequent for positive damping. In Section 3.2 it was noted that any
starting condition will disintegrate into a series of solitons and an oscillatory tail,
therefore it comes as no surprise that the Gaussian wavegroup bears distinct
similarities to the soliton solution. For a strongly negatively damped case, �gure
36 shows that errors start to accumulate as the simulation reaches the end of
its run. These occurred in both the q and U forms of the NLS, and their cause
remains undetermined. However, it is clear that these have little bearing on the
overall solution, and can consequently be ignored.
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Chapter 5 Summary

• A linear damping term can been added to the NLS equation in order to
model damping and excitation.

• An alternative form of the damped NLS (the q-form) has been shown, and
the conserved quantity I2 has been derived for this case.

• The damping term causes a soliton to reduce in height over time. The
reduction in height is balanced by an increase in width, so that a soliton
shape appears at any time snapshot during the evolution.

• Furthermore, a soliton can focus spatially when energy is input, an impor-
tant feature for fast optical transmissions.

• The damping term in both 1D Gaussian wavegroup solutions acts to reduce
the amount of focusing, damping the non-linearities so that the solutions
appear similar to the linear case.

• Negative damping has the opposite e�ect, causing the solution to grow ex-
ponentially.
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6 Linear Damping and Excitation in 2D
The experiments performed in 1D were again extended to the 2D case. Two im-
portant cases were observed initially, and the speci�c features of their evolutions
are discussed before general observations are made. In the �rst case, α was set to
0.0001, equivalent to very light damping of 0.25% energy per cycle. As �gure 37
at focus indicates, the wave envelope evolves in a similar fashion to the undamped
case. Many of the characteristics of the undamped envelope are still present, for
instance, the wavegroup at focus still contains characteristics of a �wall of water�.
As well as this, it can be seen that the physical size of the group remains similar
to the undamped case. Of course, an amplitude loss is also detected, with the
envelope peaking at 0.84 metres lower the undamped case.

For a heavier amount of damping, for example when α = 0.001, the envelope
evolves in such a way as to resemble the undamped linear evolution. In this case,
one sees that the wave envelope at focus no longer exhibits qualities of a wall
of water, but instead, the contours at focus are much more circular, and bear
resemblance to the peak at linear focus (see �gure 39 at t = 1.948s). Now, the
width of the group in the y-direction reduces to roughly 600m across. Added to
this, the time of focus is also close to what one would expect for linear evolution,

Figure 37: Comparison between undamped (red) and lightly damped (black) focus
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Figure 38: Maximum amplitude A for various values of α

with a Tfocus of 1.9 seconds compared with a linear focus at t = 0. The amplitude
achieved at focus is now drastically reduced to 6.89m, in comparison with the
undamped case of 13.1m. A chart showing how the maximum amplitude decreases
with alpha is shown in �gure 38. As the evolution continues, it becomes apparent
that the square structure seen previously in section 4.1 as the group disperses has
been suppressed by damping (�gure 39).

Wavenumber analysis also bears out the idea that damping reduces non-
linearity. Keeping in mind �gure 29, it was previously shown that the NLS
evolution of Sxlocal−1 and Sylocal−1 produced spectra with sharp peaks. The
same analysis was carried out on the damped case, and the resulting graphs are
shown in �gure 40. Comparing the two �gures, one sees that both graphs loosely
mimic the linear case. These match our results in the spatial domain, where the
contours at focus in both the x and y directions show a similar shape to the linear
evolution. It can also be seen that the magnitude of I2 is a good deal less for
the damped case, corresponding to the idea that there is less contraction in y at
focus.

The plots of Sxlocal−1 and Sylocal−1 raise further questions, as one sees that
there are anomalous spikes on the wavenumber evolution for Sylocal−1 at t = 82

and t = −50, and for Sxlocal−1 at t = 90, and also that the Sylocal−1 plot in
particular seems to contain some modulation. Upon inspecting the wave envelope
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Figure 39: Contour plots for damped evolution (α = 0.001)

Figure 40: Slocal for the damped case when α = 0.001

at the appropriate times, nothing unusual was discovered, and the causes of the
spikes remain unknown.

6.1 Negative Damping in 2D
Negative values of α were then tested for the 2D damped NLS, using values
between 0.0001 and 0.002, to simulate energy inputs of up to 5% per cycle. The
evolutions for 1% (α = −0.0004) and 5% energy inputs are shown in �gures 41
and 42 respectively. Each run was monitored using the q-form of I2, and e�orts
were made to verify the time reversal property. While a full time-reversed solution
proved too memory intensive, an equivalent result was attained for the amplitude
scaled solution and was deemed satisfactory.
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Figure 41: Evolution of 2D Gaussian for 1% energy input
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Figure 42: Evolution of 2D Gaussian for 5% energy input
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Figure 43: Complex structure formed under 5% energy input
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Let us analyse the lightly excited case �rst. Because a positively damped
evolution diminishes the amplitude at focus, a consideration for time reversal
predicts that a negatively damped evolution should produce a higher peak at
focus. Quantitatively, the `wall of water' reaches a maximum at 15.88m, show-
ing that a small amount of energy input can have a considerable e�ect on the
amplitude. Added to this, the width of the wall of water increases, and is now
sustained for 162 seconds, over half a minute longer than the undamped case.

Given that the positively damped case produced a more linear evolution, it
should be expected that a negatively damped run will introduce some of the non-
linear characteristics more strongly. While the increase in height provides one
example of an exaggerated characteristic, another is the square structure previ-
ously seen for the undamped case in section 4.1. Compared with the negatively
damped case, the structure has been greatly accentuated so that now even the
contours towards focus at tp = −5 appear rectangular. Another feature of non-
linear evolution are the distinct troughs on either side of the focus peak (�gure
42 at tp = 0). These were �rst observed in the one-dimensional case but cannot
be reproduced for the undamped 2D NLS.

In the more heavily excited case, the run begins as one would expect, and
we see at focus the evolution produces a longer and higher wall of water, and
that the contours are squarer still. The maximum height of the wall now exceeds
21m, and the length of the wall that is greater than 21

2
m is now 1km. It is also

noted that the time of focus occurs much earlier than for any previous cases, at
t = −55.4s. Following this initial focus, the wall of water splits in the y direction,
creating two separate peaks. Over the next few periods, further complication in
structure can be seen, with peaks appearing along the mean wave direction, and
splitting in the y-direction. During this stage in the evolution, an interesting
hexagonal formation appears for approximately �ve periods. Finally, complex
structure continues to develop, far removed from the initial condition. A three-
dimensional plot is shown in �gure 43 in order to visualise this more clearly.
Memory constraints prevent the simulation from being run any further in time,
but it appears likely that the structure will continue to spread out. This spreading
can already be seen towards the end of the run, as the `v' shaped structure at
the bottom of the frame at tp = 24 moves away from the origin (�gure 42).

In all of this, it is remarkable that a simple starting condition can give rise
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Figure 44: Ring structure formed under moderate excitation

to such intricate structure. However, it may be argued that the 5% energy input
seems slightly high. This obstacle can be traversed by remembering that the
scaling argument from section 5.1.2 can be applied. By decreasing the group
bandwidth and amplitude, the same structure can be seen with smaller energy
input. Between the two extreme cases, the evolutions tend to focus normally,
before exhibiting some sort of peak splitting. Once this has occurred, the wave
envelope damps down, forming a ring shape in the process (�gure 44). However,
the multiple splitting seen in the heavily excited case does not occur.

In terms of freak wave development, the idea that more than one large peak
can appear in the mean wave direction lends itself as a possible explanation of the
`three sisters' phenomena. The `three sisters' is a mariners' term used to de�ne a
group of rogue waves, often appearing as a group of three. One well-documented
instance is that of the `Endeavor' cruise ship, where the shipmaster Karl-Ulrich
Lange stated �The ship rode the �rst of the giant waves well, and it just managed
the second one. I knew we would not get through the third one unscathed.� This
description �ts in fairly well with what one sees for the heavily excited case at
tp = 0, where two large crests threaten in quick succession along the x -direction.
The presence of structure in the y-direction also reinforces this idea, as mariners'
reports often mention that freak waves appear at an angle to the mean wave
direction.
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Chapter 6 Summary

• The alpha term in the damped NLS equation was inverted to introduce en-
ergy into the system. This line of investigation is novel to the best of the
author's knowledge.

• Energy input to a focusing wavegroup solution reinforces the non-linearity
so that features such as the `wall of water' become much longer and higher.

• Further to this, energy input causes violent wavegroup splitting after focus
in both the x and y directions.

• After this, a complex structure is produced that quickly �lls the whole com-
putation domain.

• For intermediate energy input, fewer splits occur and an interesting ring
structure can be observed.

• The previous observations have been put forward as a possible explanation
of the `three sisters' freak wave phenomenon, and an attempt has been made
to show how a ship could be swamped by three or more waves.
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7 Conclusion and Recommendations

7.1 Conclusion
In this report, one possible mechanism involved in the creation of freak waves
has been investigated. By using the relatively simple non-linear Schrodinger
equation, qualitative observations have been made that bear strong similarities
to fully non-linear simulations. In the 1D case important features such as the
`unusual' amplitude gain were detected, and special cases such as the colliding
soliton solution and Ma-breather solution were also studied. Following this, the
2D case was analysed. Two important traits were discovered and found to match
with Gibbs and Taylor's study[15]. Firstly, the author noted that at the focus
time a structure that bears resemblance to a `wall of water' is visible. It was
also seen that the peaks of the non-linear and linear evolutions were similar
in amplitude; much di�erent from the unidirectional case where the non-linear
evolution provided peaks up to 30% higher than would be expected under linear
conditions. These details were discussed and related to freak wave theory.

The second half of the report considered a damping term that was added
to improve the model. It was shown that damping a�ects the non-linearity so
that for moderate amounts of damping the solution starts to appear similar to
the linear case. The model was then tested for negative damping, e�ectively
imparting energy to the system. It was discovered that this reinforced non-
linearities in the system, so that the �wall of water� structure became even more
pronounced. A wholly unexpected �nding was made, as it was also shown that
in certain situations, the Gaussian wavegroup starting condition can evolve into
a rather complex structure. Each of these results was then brie�y discussed and
related to the formation of freak waves. In particular, the phenomenon of the
`three sisters' was addressed. It is believed that the e�ect of energy damping has
been sparsely studied, but that the cases where energy is input have never been
considered in a water wave context.

In parallel to this, the numerical solutions to the NLS were veri�ed by using
conserved quantities, applying the analytic solutions, and by taking into account
the time reversal property of the equation (section 3.1). The e�ciency of calcu-
lations was improved by using an amplitude scaling argument. An alternative
form of the damped NLS, the q-form, was also tested, but was found to have
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no great computational advantage. In conclusion, while a plethora of di�erent
examples has been studied, particular attention should be brought to the nega-
tively damped equation. Here it has been shown that a small amount of energy
input causes the model to output waves that are more `freakish' in amplitude,
and a hypothesis for the `three sisters' phenomenon has also been proposed.

7.2 Recommendations
This study has opened up numerous possibilities for further research. One im-
mediate extension is to consider the damped and excited cases for the Gibbs'
fully non-linear simulations. In doing so, one would expect to see rather di�erent
structure in the heavily excited case. As the undamped case is known to show
asymmetric structure, one may hypothesise that much of the structure in the
excited case would form behind the front crest.

The results can also be taken further by considering whether the linear energy
input model is satisfactory. As a �rst estimate, it is certainly a good attempt, but
it fails to relate the energy input to the physical mechanism involved. A thorough
look at Kinsman's text on wind waves[25] should provide some ideas for initial
improvements. One more avenue of research involves considering the idea that
the primary loss in wave energy occurs during wave breaking. Therefore, one
wonders whether it is possible to crudely model wave breaking using a damping
term. Of course, a linear term would no longer be appropriate, and instead
one would consider a higher order term so that only taller waves are heavily
penalised. If this is possible, then a combined model can be formed, taking into
account energy input from the wind and wave breaking.
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