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Abstract— Background - Physiological tremor is defined as an
involuntary and rhythmic shaking. Tremor of the hand is a key
symptom of multiple neurological diseases, and its frequency
and amplitude differs according to both disease type and disease
progression. In routine clinical practice, tremor frequency and
amplitude are assessed by expert rating using a 0 to 4 integer
scale. Such ratings are subjective and have poor inter-rater
reliability. There is thus a clinical need for a practical and
accurate method for objectively assessing hand tremor.

Objective - to develop a proof-of-principle method to measure
hand tremor amplitude from smartphone videos.

Methods - We created a computer vision pipeline that
automatically extracts salient points on the hand and produces
a 1-D time series of movement due to tremor, in pixels. Using
the smartphones’ depth measurement, we convert this measure
into real distance units. We assessed the accuracy of the method
using 60 videos of simulated tremor of different amplitudes
from two healthy adults. Videos were taken at distances of 50,
75 and 100 cm between hand and camera. The participants
had skin tone II and VI on the Fitzpatrick scale. We compared
our method to a gold-standard measurement from a slide rule.
Bland-Altman methods agreement analysis indicated a bias of
0.04 cm and 95% limits of agreement from -1.27 to 1.20 cm.
Furthermore, we qualitatively observed that the method was
robust to differences in skin tone and limited occlusion, such
as a band-aid affixed to the participant’s hand.

Clinical relevance - We have demonstrated how tremor
amplitude can be measured from smartphone videos. In con-
junction with tremor frequency, this approach could be used
to help diagnose and monitor neurological diseases.

I. INTRODUCTION

Hand tremor is a common symptom of multiple diseases,
including Parkinson’s disease, essential tremor, and multiple
sclerosis. Assessment of tremor activity is an important clin-
ical task that can help in diagnosis of disease and evaluating
response to treatment.

Tremor is assessed clinically by considering its frequency
and amplitude. The standard clinical methods of measuring
both tremor amplitude and frequency are subjective. A
clinician visually observes a patient tremor and makes an
estimate of both measures, categorising it with a severity
rating [1], [2]. Such visual estimates of movement disorders
are usually performed in face-to-face consultations, and there
is large inter-rater variability between expert clinicians such
that tremor diagnoses are frequently incorrect [3], [4]
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Objective measurements of tremor frequency is possible
using an accelerometer strapped to the hand [5]. Tremor
amplitude is rarely derived directly, and instead, the am-
plitude of the acceleration signal is taken as a proxy for
the amplitude of the displacement. The practical use of
accelerometers is limited in two respects; it requires non-
standard specialist equipment, and also adds weight to the
hand in a way that may alter tremor characteristics.

Instead, it may be possible to derive tremor frequency and
amplitude measurements directly from smartphone videos.
Analysis of smartphones videos has been used to assess other
biomarkers of neurological conditions [6], [7]. The ubiquity
of smartphones means that such computer vision approaches
have the potential to be used to in multiple contexts. For
example, they could be used for remote consultations or
for monitoring of disease progression. Recently, we have
developed a method for extracting tremor frequency directly
from smartphone video recordings of hand tremor [8].

Here, we propose and demonstrate proof-of-principle for a
method that enables measurement of tremor amplitude from
smartphone videos.

II. METHOD

A. Technical Description

The method consists of four main parts, shown in figure 1.
We assume that data has been collected via a modern smart-
phone that can capture both video and a depth measurement
at the centre of the camera frame. In our work, we used an
iPhone XR to provide both measurements.

1. Extract hand features - Using the video data, we
extracted salient points on the hand using the Mediapipe
hand tracker [9]. This two-stage process identifies the palm
region using a U-net and then fits salient points that are
consistent with pre-specified hand pose model. The hand
tracker returns a tuple of {x, y, t} corresponding to the x and
y pixels, and time. For robustness, we monitored movement
over multiple points, corresponding to the base (metacarpal),
middle (interphalangeal) and tip of thumb and forefinger.

2. Calculate tremor amplitude in pixels - In our con-
trolled scenarios, the primary direction of tremor was hori-
zontal. We therefore used only {x, t} to represent the motion
waveform over time. To filter out the low frequency motion
due to gross arm movements, we processed the waveform by
first extracting peaks and troughs. We used a simple forward-
difference to estimate the gradient and located zero crossings.
The difference in x between adjacent zero crossings was an
instantaneous estimate of the amplitude - this was calculated



Fig. 1: Overview of hand-tremor amplitude measurement using smartphone video analysis

for all adjacent pairs of zero crossings. From this set, we
used the median value to be robust against artificial increase
in tremor due to ‘ramp-up’ of the tremor motion from an
at-rest state.

Camera Property Symbol Value
Physical Lens Focal Length f 2.87 mm

35mm Equiv. Lens Focal Length fe 32 mm
Sensor Aspect Ratio as 0.75 (i.e. 3:4)
Video Aspect Ratio av 0.5625 (i.e. 9:16)

Horizontal Video Resolution rh 1080 px

TABLE I: Specifications of the iPhone XR front facing
camera.

3. Convert amplitude from pixels to distance units:
Finally, we converted the pixel distance into true distance
units.

The conversion relies on the distance between the smart-
phone and the hand. We measured this distance using the
Apple TrueDepth sensor, using the front-facing camera on
an iPhone XR. In controlled experiments, we assessed the
accuracy of the depth sensor by reading the TrueDepth
sensor distance to an object at known depths. In these
experiments, the camera was affixed to a tripod in good
lighting conditions. At a known distance of 40cm, the root
mean squared error (RMSE) over six sensor measurements
was 0.12 cm. At 100 cm, this error increased slightly to 0.38
cm.

The conversion also requires knowledge of physical char-
acteristics of the camera described in Table I. For a video
shot in portrait, the horizontal sensor size of the camera, vw
is given by:

vw =
feav
fas

From this, we can calculate the width of the view in the
scene, w, at a given depth, d:

w = vw
f

d

Finally, the conversion between pixels to distance is:

dist = pix
w

rh

Code for extracting the depth measurement
and for computing the amplitude is available

at https://github.com/jamesbungay/
cv-tremor-amplitude. The output of the entire
process, for two example waveforms, is shown in Figure
2. In figure 2a, the dominant frequency of the tremor is
visible, and the median peak-trough distance is 5.77 cm. In
contrast, Figure 2b shows an example in which there is a
gross change in x over the 12 second video recording, but
there is no high frequency oscillation caused by tremor. In
this case, the method correctly determines that there is no
meaningful tremor (Median tremor amplitude = 0.09 cm)

B. Method Validation

We undertook a methods agreement analysis to assess
the performance of the tremor amplitude algorithm. No
participants were recruited; all data were fully anonymous
self-recordings. Given this, the University of Manchester
advised that local ethics was not required.

Data Collection: We recorded a set of videos of two
members of the study team (JB, OE) Videos were recorded
using an iPhone XR smartphone at 1080p resolution and at
60 fps. The smartphone was attached to a tripod, and we
ensured that the videoed area was lit well using a ring light.

A ruler was placed directly behind the hand. This allowed
us retrospectively measure the tremor amplitude from the
video recording.

We simulated two common types of tremor. Resting tremor
was simulated by the subject resting their forearm on a chair
arm and rotating their wrist to create side-to-side motion
as shown in Figure 3. Postural tremor was simulated by
the subject raising an outstretched arm parallel to the floor,
and with the thumb closest to the camera. The subject
made oscillatory hand movements up and down. The camera
was oriented so that the principal direction of tremor was
horizontal, with respect to a portrait video frame.

For both resting and postural tremor, we simulated tremor
amplitudes according to five categories (No tremor, small
(<1cm), medium (≈2cm), large (≈5cm) and very large
(>10cm), which correspond to the tremor categories used
within both the Unified Parkinson’s Disease Rating Scale and
Essential Tremor Rating Assessment Scale [1], [2]. Videos
were recorded at three depths 50 cm, 75 cm, 100 cm. The two
team members had skin tones of II and VI on the Fitzpatrick
scale. In total 2× 2× 5× 3 = 60 videos were recorded.

We recorded an additional set of 8 videos to assess how
well hand detection worked under various types of occlusion.

https://github.com/jamesbungay/cv-tremor-amplitude
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(a)
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Fig. 2: (a) shows a ’typical’ tremor signal with a consistent
dominant frequency. The median peak-trough distance is
5.77 cm. (b) shows gross translational movement over time
that does not correspond to tremor, which is correctly ignored
when amplitude is calculated.

For both subjects, we recorded videos of each wearing a ring,
a plaster on the dorsum of the hand that simulated having an
accelerometer strapped to the hand, and a hand with fewer
than five fingers showing.

Data Analysis: We compared the gold-standard ruler-
measured amplitude with our computer vision approach us-
ing Bland-Altman agreement analysis [10]. The output of this
is bias, which is the mean difference between the computer
vision and gold standard and 95% limits of agreement (LoA),
which may be regarded as the maximum difference between
the two methods for 95% of future measurements. In sub-
group analysis, we assessed whether there were differences
in the bias and LoA for skin tones II and VI using a t-test.

The additional videos with occlusion were analysed qual-
itatively in two stages. First, we assessed whether the hand
tracker could correctly and reliably identify the salient

Fig. 3: A ‘patient’ in position to measure resting tremor.

points. Second, we compared the calculated tremor ampli-
tude against the ruler-based amplitude measurement. Bland-
Altman plots were not plotted in these cases, as the small
number of videos would mean that the plots would be
meaningless.

III. RESULTS

Bland-Altman analysis showed a mean difference of -
0.04cm, with 95% limits of agreement of -1.27cm to 1.20cm;
the associated Bland-Altman plot is shown in Figure 4. There
was no meaningful or statistically significant difference in
bias and LoA when the cohort was split according to
Fitzpatrick score.

The high limits of agreement can be explained by the
manual measurements having a low precision of ±1 cm.
This low precision resulted from two factors. First, the
resolution of some of the videos was insufficient to be able to
discern the millimetre markings on the ruler. Second, parts
of the ruler were occasionally obscured from view by the
hand. Measurements thus had to be taken by extrapolating
neighbouring ruler markings. Mean difference is not affected
by the low precision of manual measurements.

DISCUSSION

This pilot work shows, for the first time, a smartphone
video method for estimating amplitude of hand tremor.
In our controlled tests on simulated tremor from healthy
individuals, our method showed minimal bias and 95% limits
of agreement -1.27cm to 1.20cm over a wide range of tremor
amplitudes, for two different skin tones. In addition, ad hoc
tests qualitatively showed this approach to be robust under a
range of simulated real world conditions.

Previous research for measuring hand tremor amplitude
has used bespoke sensors. The acceleration signal amplitude
recorded by wrist-worn accelerometers has been used as



Fig. 4: Bland-Altman plot of CV-measured and manually-
measured amplitude range.

a proxy for the true tremor size [11]. In principle, the
acceleration signal can be integrated to provide true distance,
but the resulting signal is likely to be noisy. Electromagnetic
position sensors have been used, and claim a fidelity of
0.45 mm [12]. Our approach differs by using common
sensor modalities that are readily available on most modern
smartphones.

While our results are slightly poorer than some existing
methods, we believe that these are mainly due to limitations
with our experimental setup. Our method contains three
potential sources of error. First, from rounding error due
to discretization of distance in pixels, which, for a modern
smartphone camera with high resolution, we can assume to
be negligible. Second, from errors in depth measurement.
In local tests, we showed an average depth error of 0.38
cm at true distance 100 cm. Using trigonometry, we calcu-
late that this would correspond to a possible error of up
to 0.38/100 = 0.38%. These two sources of errors are
limitations of smartphone camera technology and their sum
can be considered a lower bound on error. In addition, a third
error, caused by rounding rounding the visual gold standard
to the nearest centimeter, leads to an error of ±0.5 cm.

While this pilot work provides proof of principle, it is
limited in a few key respects. First, the tremor amplitude is
only calculated in the plane of the camera image. While this
is sufficient for some clinical scenarios, we know that tremor
can be very heterogeneous, depending on clinical condition.
For instance, tremor associated with Parkinson’s disease
is commonly described as a ‘pill-rolling’ tremor, which is
characterised by rotation of the wrist. Second, the ruler used
to provide a reference amplitude measurement was often
occluded by the hand. This meant that we were unable to
make accurate reference measurements, instead rounding to
the nearest centimeter. This in turn led to unreliable estimates
of the true agreement with the video-based method. Third,
data collection was undertaken using an iPhone only. We note
that most modern smartphones contain at least one method
for measuring depth data, and that our approach should

therefore be generalisable to other devices. An alternative,
where there is no direct method to measure depth, would be
to estimate depth via depth-from-motion methods [13].

To address these issues, we are currently conducting a
larger validation study using data from patients with multiple
types and acuity of tremor. In this study, we will also
investigate whether full 3D depth map videos can improve
estimation of tremor amplitude.

CONCLUSION

We have demonstrated a smartphone video approach for
measuring tremor amplitude. In conjunction with a method
for measuring frequency (see [8]), this method can be objec-
tively and contactlessly measure the key clinical components
of tremor in near real-time The method has potential uses for
diagnosis, and remote monitoring of disease progression or
drug response.
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