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Abstract— There is growing interest in continuous wearable
vital sign sensors for monitoring patients remotely at home.
These monitors are usually coupled to an alerting system,
which is triggered when vital sign measurements fall outside
a predefined normal range. Trends in vital signs, such as
an increasing heart rate, are often indicative of deteriorating
health, but are rarely incorporated into alerting systems. In this
work, we present a novel outlier detection algorithm to identify
abnormal vital sign trends.

We introduce a distance-based metric to compare vital sign
trajectories. For each patient in our dataset, we split vital sign
time series into 180 minute, non-overlapping epochs. We then
calculated a distance between all pairs of epochs using the
dynamic time warp distance. Each epoch was characterised by
its mean pairwise distance (average link distance) to all other
epochs, with large distances considered as outliers.

We applied this method to a pilot dataset collected over 1561
patient-hours from 8 patients who had recently been discharged
from hospital after contracting COVID-19. We show that outlier
epochs correspond well with patients who were subsequently
readmitted to hospital. We also show, descriptively, how epochs
transition from normal to abnormal for one such patient.

I. INTRODUCTION

Monitoring vital signs is commonly used in clinical prac-
tice to assess a patient’s condition. Abnormal vital signs,
those that are outside of a normal range relative to a general
population, often precede adverse events. For instance, in
hospitalised patients, abnormal respiration and cardiac func-
tion commonly occurs in the 24 hours before sudden cardiac
arrest [1]. Abnormal vital signs are also known to precede
deterioration in patients with COVID-19. In particular, there
is strong correlation between low oxygen saturations (SpO2)
and severe cases of COVID-19 requiring hospitalisation [2].

Traditionally, detection of abnormal vital signs is assessed
using Early Warning Scores (EWS) calculated from intermit-
tent, manually-collected measurements [3]. Non-continuous
data collection means that deterioration may go unnoticed
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between measurements. Improvements in continuous, wear-
able vital sign monitors aim to address this issue [4], and
there is some supporting evidence for their feasibility in both
hospital and community settings [5], [6].

Early warning scores are one way of combining informa-
tion from multiple vital signs into a single score to trigger
appropriate clinical intervention. Higher scores identify pa-
tients whose vital signs deviate most from normal.

One key limitation of early warning scores is that they
are typically calculated from only the most recent set of
vital signs [7]. This has traditionally been the case even for
continuous monitoring devices [8]. It is possible that earlier
detection of deterioration can occur when trends in vital signs
are also considered. Previous studies of hospitalised patients
have attempted to include information about vital sign trends.
However, these have used relatively simplistic summaries,
such as difference between current and baseline values [9],
[10], and not been used for out-of-hospital monitoring.

In this exploratory analysis, we assessed whether vital
sign trends, regardless of the absolute value, are potentially
informative for detecting COVID-19 deterioration.

II. METHODS

We propose an approach to outlier detection for vital sign
trends, and consider its performance on continuous vital
sign data collected from COVID-19 patients that had been
discharged from hospital to their own home.

In the following sections we first introduce our overall
approach for identifying outlier trends. We then describe
the vital sign data in more detail. Finally, we apply the our
method to the data and comment on its performance.

A. Outlier Detection

We implement an outlier detection approach based on
distance to nearest neighbours. This family of approaches
is described in detail by Pimentel et al. [11]. Consider a
sequence of data A = [a1, a2, ..., am], in which ai ∈ Rn

is an n-dimensional feature vector. We denote the similarity
between two such sequences, A and B, as some function
F (A,B). One way to define similarity is as a distance.
One possible distance is the Dynamic Time Warp (DTW)
distance:

F (A,B) =

√ ∑
(i,j)∈π

||ai − bj ||2

with 1 ≤ i, j ≤ m, and where π is the optimal alignment
path, defined as the contiguous path through the matrix of
squared element-wise differences between both sequences



that minimizes the cumulative distance between them [12].
The DTW distance can accommodate time series of unequal
length, however all sequences in this work were fixed to the
same length.

The advantage of DTW over the euclidean distance is that
it allows nonlinear alignments, so similar but non-aligned
or out of phase sequences can be meaningfully compared.
Of course, other distance measures are possible and their
suitability depends on the specific context.

A hierarchical clustering approach can be taken to assess
the similarity of a fixed length multivariate time series in
the context of a set of multiple time series. Agglomerative
clustering will calculate the distance between each time
series, then join the pair of time series with the shortest
distance into a single cluster in an iterative process until the
entire dataset is contained in a single cluster. The distance
between clusters is defined as

D(U, V ) =
1

(|U | · |V |)
∑
u∈U

∑
u∈V

F (u, v)

where u and v are elements and |U | and |V | are the
cardinalities of clusters U and V , respectively, and D is
the average-linkage distance. U and V can be a cluster of
multiple time series or a single sequence.

Many real-world clinical problems involve detecting ab-
normal physiological signals in an abundance of normal data.
Patients with stable vital signs will comprise the majority of
the time series segments, and we expect these series to have
low average-linkage distances and thus be clustered together
first. The single time series most dissimilar to the rest of the
data will have the largest average-linkage distance, and it is
these final clusters that may implicate outliers in the data
corresponding to abnormal physiological signals.

B. Data and pre-processing

Data were collected as part of the RECAP pilot
study. The study is listed on the ISRCTN registry
with study ID ISRCTN16601772 (http://www.isrctn.com/
ISRCTN16601772). All study participants provided signed
written consent.

Data were collected from cancer patients who had con-
tracted COVID-19, and had been considered suitable for
outpatient care. All participants wore Isansys™ sensors
which recorded their heart rate (HR), respiratory rate (RR)
and temperature (Temp) each minute for up to three weeks.

Oxygen Saturations (SpO2) was measured via a standard
finger probe and recorded twice daily. Heart rate (PPG-
HR) was also derived and recorded from the underlying
photoplethysmogram (PPG) signal. Only SpO2 data were
used as an intervention to guide clinical care. In total, data
were recorded from eight patients.

The time series for each patient were initially processed
as follows. First, each channel was was normalized on a
per-patient basis to zero mean and unit variance, then low-
pass filtered using a 25-point (i.e. 25 minute) median filter
to remove short-term fluctuations in heart and respiration
rate, likely caused by movement artefacts and sensor noise.
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Fig. 1. (i) A subset of the original heart rate data for one patient. (ii) The
data was normalized and a 25-minute median filter applied, then segmented
into epochs (shaded in red). Data segments that were shorter than the epoch
length were discarded. (iii) One 180-minute epoch of smoothed, normalized
heart rate data.

Second, the signals were segmented into 180-minute epochs.
This process is depicted in Figure 1. The epoch length was
chosen so as not to capture medium-term variations in vital
sign data, such as transitory increases in heart rate due
to short-term physical activity, but still encapsulate overall
changes in physiological condition.

The outlier detection approach was then applied to all
epochs, ranking each epoch by hierarchical average linkage
distance using the DTW distance measure. The 2% of epochs
with the greatest average linkage were considered outliers.

To visualise similarity between epochs, we used multidi-
mensional scaling (MDS), which is a dimensionality reduc-
tion approach that seeks to preserve the distance between
data in the original high-dimensional space, in this case, the
matrix of DTW distances between epochs [13]. We used this
to describe and examine the sequence of contiguous epochs
for representative patients from the dataset.

All data processing was undertaken in Python using
the scipy, sklearn, and tslearn libraries. Code support-
ing this article is available at https://github.com/sara-es/
outlier-detection-RECAP-data.

III. RESULTS

Table I shows the duration of vital sign data recorded for
each patient in the data set, as well as whether the patient
was readmitted to hospital. In total, there were 1561 patient-
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TABLE I
PATIENT-LEVEL OVERVIEW OF AMOUNT OF VITAL SIGN DATA

RECORDED (HOURS) AND CLINICAL EVENTS (HOSPITAL READMISSION)

ID HR RR Temp. SpO2 PPG-HR Events

1 146 146 154 10 10 Hospital
2 2 2 2 0 0 None
3 2 2 17 0 0 None
4 300 300 107 1.7 1.7 None
5 28 28 41 1 1 Hospital
6 280 280 305 1 1 None
7 369 369 402 7 7 None
8 156 156 257 1 1 None

hours of data for the 8 patients; the mean length of data
recording was 230 hours (range: 2.3 to 527 hours)

We excluded SpO2 and PPG-HR from the analysis, as
these variables were sampled infrequently compared to HR,
RR and Temp. We checked the data quality of remaining
three variables by plotting their distributions. Based on this,
we further excluded temperature, as the data contained a
high proportion of physiologically implausible values (20.8%
lower than 34 C). Poor data quality from skin temperature
sensors in wearable devices is a known issue [14].

After segmenting data from each patient into epochs,
we applied our outlier detection approach, using the DTW
distance to hierarchically cluster all epochs. Those with the
greatest average linkage distance are considered outliers, and
are labelled with patient ID in the dendogram in Figure 2. Of
the seven outliers, two belong to patient 5, and one belongs to
patient 1 - the two patients that were readmitted to hospital.

Figure 3 shows the MDS map of time series epochs
from all patients. The sequence of contiguous epochs for
Patient 1 has been highlighted in red. Patient 1’s initial epoch
lies towards the centre of the MDS map, indicating that

0 10 20 30 40

('Patient 1', 9412, 9592)

('Patient 6', 16080, 16260)

('Patient 5', 180, 360)

('Patient 6', 0, 180)

('Patient 7', 5431, 5611)
('Patient 5', 0, 180)

('Patient 8', 360, 540)

Fig. 2. A truncated dendrogram of vital sign time series epochs using
agglomerative hierarchical clustering with average-linkage on the DTW
distance matrix. The epochs to be clustered last, that is, those considered
the greatest outliers, are labelled with the patient ID and (start, end) indices
of the epoch. Notably, the final epoch belonging to patient 1 is the last to be
clustered; two epochs from patient 5 are also visible, despite the relatively
short duration of recorded data (28 hours, or 9 epochs) for that patient. Both
patients 1 and 5 were readmitted to hospital.
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Fig. 3. Distances between epochs are visualised in 2D via a MDS map,
on which an individual point represents a 180-minute segment of heart rate
and respiratory rate data. Epochs from patient 1, who was readmitted to
hospital, have been highlighted in red and connected in consecutive order.
The initial 180-minute epoch is denoted by the text ‘start’, and the final
epoch is denoted by the text ‘end’. The trajectory can be shown to end
outside the central cluster of time series epochs.

it is similar to multiple other epochs. Towards the end of
the monitoring period, the epochs progress away from the
starting location on the map. The final epoch is far away
from all other points on the MDS map, indicating a highly
unusual trajectory.

The raw time series epochs corresponding to the start and
end points of patient 1, as well as one intermediate epoch,
are shown in Figure 4. We observe that the ‘start’ epoch
contains HR and RR trajectories that are both relatively flat.
In contrast, the ‘end’ epoch contains vital signs that have
deviated from their baseline average, and trajectories for both
increase across the epoch. This trajectory is visually very
different to the start and intermediate epochs in the figure,
confirming the validity of the outlier detection approach.

IV. DISCUSSION

We developed a novel method to identify abnormal multi-
variate vital sign time series. Unlike previous methods, which
use categorical variables or change scores to summarise a
trend, our method considers the entire shape of a time series
epoch via the DTW distance. By clustering based on this
distance, we can determine outlying, unusual epochs.

In our small patient cohort, this approach yielded promis-
ing initial results. Of the 2% of most outlying epochs,
4/7 belonged to patients who went on to require hospital
admission. Furthermore, our per-patient visualisation showed
how epochs became progressively more abnormal for a
patient who required readmission to hospital. These results
therefore provide descriptive early evidence suggesting our
approach for assessing vital sign trends may be useful for
predicting COVID-19 deterioration.

While our approach to detect abnormal vital sign trajec-
tories shows promise, there are several limitations. First,
we chose epoch lengths of 180 minutes, based on clinical
judgement. However, there is no guarantee that this epoch
length is optimum. Second, we used DTW distances to



Fig. 4. (i) The raw HR and RR data for patient 1 over the entire duration of monitoring. (ii) The start epoch of normalized and smoothed HR and RR
data for patient 1. (iii) An epoch taken from the approximate mid point of monitoring data. (iv) The end epoch for patient 1, showing visible deviation
from previous baseline measurements.

compare epochs, when other distance measures may be more
appropriate.Both the epoch length and distance measure can
be optimised via cross-validation. The current data set was
insufficient to attempt this, as data were collected from 8
patients and only 2 were readmitted to hospital (positive
events).

Furthermore, we arbitrarily set a threshold of 2% of
segments to be outliers. While this is suitable as a proof
of principle, there may be more principled approaches to
determine thresholds that indicate abnormal trajectories (see
for instance, Clifton et al. [15]).

In conclusion, this work shows how vital sign trajectories
may contain clinically relevant information, predictive of
patient deterioration. Future work should apply our method
to larger data sets with more positive clinical events. Future
iterations of early warning scores, coupled to continuous
wearable monitors, could benefit from including temporal
trends alongside the most recent vital sign measurements.
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