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Abstract—Sparsity-assisted signal decomposition based on
morphological component analysis (MCA) for bearing fault
diagnosis has been studied in depth. However, existing algorithms
often use different combinations of representation dictionaries
and priors, leading to difficult dictionary choice and high
computational complexity. This paper aims to develop a fast
sparsity-assisted algorithm to decompose a vibration signal
into discrete frequency and impulse components for bearing
fault diagnosis. We introduce the morphological discrimination
of discrete frequency and impulse components in time and
frequency domains respectively for the first time. To use this
morphological discrimination, we establish a fast sparsity-assisted
signal decomposition (SASD) based on MCA with non-convex
enhancement. We further prove the necessary and sufficient
condition to guarantee the convexity and use the majorization
minimization (MM) algorithm to derive a fast solver. The
proposed algorithm not only has low computational complex-
ity, but also avoids choosing multiple dictionaries as well as
underestimation of impulse features. Furthermore, an adaptive
parameter selection algorithm to set parameters of our algorithm
is designed for real applications. The effectiveness of fast SASD
and its adaptive variant is verified by both simulation studies
and bearing diagnosis cases. The source codes will be released
at: https://github.com/ZhaoZhibin/Fast SASD

Index Terms—morphological component analysis, sparsity-
assisted signal decomposition, convex optimization, enhanced
fault diagnosis.

I. INTRODUCTION

CONDITION monitoring and fault diagnosis are becoming
increasingly popular for modern machinery, such as high-

speed trains, helicopters, and aero-engines [1], [2]. Vibration
signal analysis is one of the most important tools to realize
effective condition monitoring [3]. Modern machinery is often
complex and operates in harsh environment, causing that fault
features are often submerged by strong background noise,
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especially at the early stage of faults. Such that traditional
indicators and spectrum analysis methods perform poorly.

To address this problem, many advanced signal process-
ing methods have been proposed in last twenty years. Fast
spectrum kurtosis (fast SK), as a pioneer of resonance band
selection methods, was originally proposed by Antoni [4], and
improved variants have been widely studied [5]. Meanwhile,
Antoni et al. [6] established the theory and application of
cyclostationary approaches for rotating machinery diagnosis.
Later, they also discussed a particular class of non-stationary
signals called cyclo-non-stationary [7]. Wavelet transform [8]
and time-frequency analysis [9] have also been well studied
in the field of fault diagnosis. However, most of the above-
mentioned methods often limit denoising performance due to
the fact that they lack an iterative noise reduction process. It is
worth mentioning that recently artificial intelligence methods,
especially deep learning models, have attracted increasing
popularity to automatically extract fault information for final
fault diagnosis. Li et al. [10] proposed a novel deep distance
metric learning method to learn fault features with small
intra-class and large inter-calss variations. Zhao et al. [11]
provided a benchmark accuracy of different deep learning
models on seven open-source datasets, and released the whole
code library for reproduction. However, these methods usually
require plenty of labeled samples with different working
conditions, which is beyond the scope of this paper.

Benefitting from excellent denoising performance, sparsity-
assisted methods have shown to be effective for machinery
fault diagnosis [12], [13]. Nevertheless, their applications are
limited by choice of a suitable dictionary and high compu-
tational complexity. In response, He et al. [14] proposed a
Periodicity-induced Overlapping Group Shrinkage (POGS) to
model impulses in the time domain, which avoids choosing
dictionaries and possesses low computational complexity. Ding
et al. [15] extended POGS to internal encoder data. Wang et
al. [16] extended the periodic information into the low rank
representation. Zhao et al. [17] revealed that impulses actually
have Periodic Sparsity Within and Across Groups (PSWAG)
which was extended to the wavelet domain in [?], [18]. In
addition, Hao et al. [19] proposed a step-by-step compound
faults diagnosis method based on MM and constraint sparse
component analysis for rotating machinery diagnosis. These
methods only assume the noise interference, ignoring discrete
frequency components such as pure harmonic (e.g. rotating
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Pure Harmonic(a) Sparsity within each group(b)

Sparsity across each group(c) Single-sided spectrum(d)

Fig. 1. Morphological discrimination of pure harmonic between time domain
(not sparse within and across groups) and frequency domain (sparse in the
single-sided spectrum).

Pure AM-FM(a) Sparsity within each group(b)

Sparsity across each group(c) Single-sided spectrum(d)

Fig. 2. Morphological discrimination of pure AM-FM between time domain
(not sparse within and across groups) and frequency domain (sparse in the
single-sided spectrum).

Pure Impulses(a) Sparsity within each group(b)

Sparsity across each group(c) Single-sided spectrum(d)

Fig. 3. Morphological discrimination of pure impulses between time domain
(sparse within and across groups) and frequency domain (not sparse in the
single-sided spectrum).

frequencies) as well as pure amplitude modulation and fre-
quency modulation (AM-FM).

To remedy this drawback and maintain the excellent de-
noising performance, signal decomposition methods based on
sparse representation and morphological component analysis
(MCA) have been derived. MCA was proposed in image
processing [20], [21] and was used in the field of fault diag-
nosis by Cai et al. [22]. Later, MCA-based methods continued
gaining attention for bearing and gear fault diagnosis. Du et al.
[23] used a union of redundant dictionaries to identify multiple
components for wind turbine gearbox diagnosis. Shi et al. [24]
proposed an iterative oscillatory behavior based signal decom-
position for bearing fault diagnosis. Li et al. [25] considered
the parameter selection of tunable Q-factor wavelet transform
(TQWT) for MCA-based methods. Qin et al. [26] used a new
family of impulse wavelets and Fourier bases based on MCA
(IWF-MCA) for signal decomposition. To promote sparsity
and maintain the amplitude, non-convex regularizers were also
used in [27]–[31] for signal decomposition. However, there
are two disadvantages of these MCA-based methods: choosing
suitable representation dictionaries for multiple components is
often very hard; the computational complexity is even higher
than denoising methods.

In this paper, to avoid choosing multiple dictionaries and to
reduce the computational complexity, we propose an algorithm
called fast sparsity-assisted signal decomposition (fast SASD)
based on the morphological discrimination between time and
frequency domains. We first reveal that pure harmonic and
AM-FM components (also called discrete frequency compo-
nents) are very sparse in the frequency spectrum while they
do not have PSWAG in the time domain shown in Fig. 1 and
Fig. 2. Inversely, pure periodic impulses (also called impulse

components) have PSWAG in the time domain while they
are not sparse in the frequency spectrum shown in Fig. 3.
Then, according to this morphological discrimination between
PSWAG in the time domain and sparsity in the frequency
domain, we construct a fast SASD model with non-convex
enhancement for maintaining the amplitudes. After that, we
prove the necessary and sufficient condition of the convexity of
fast SASD and its extended variant. It is worth mentioning that
we directly model the discrete frequency components in the
frequency domain and model periodic impulses in the time do-
main, leading to determinate representation dictionaries (unit
dictionary and Fourier dictionary). That is, we do not need to
choose suitable representation dictionaries via tuning related
parameters. MM is used to decouple multiple components and
deduce a fast solver with low computational complexity. Be-
cause it is important to choose suitable penalty parameters in
the decompositon performance, we establish a straight-forward
strategy based on deterministic rules, the Golden ratio, and
Trichotomy to set these parameters adaptively. Finally, a series
of simulation studies and experiment cases are performed to
verify the effectiveness and speed of the proposed algorithm.

In summary, the main contributions of this paper are listed
as follows:
1) To the best of our knowledge, we introduce the morpho-

logical discrimination between PSWAG in the time domain
and sparsity in the frequency domain for the first time and
make use of this morphological discrimination to construct
a fast SASD model which avoids choosing dictionaries and
has low computational complexity.

2) We use non-convex regularizers to maintain the amplitude
of impulse components, investigate the convexity of our
constructed model, and prove the necessary and sufficient
condition to guarantee the convexity. We further deduce a
fast solver based on the MM algorithm.

3) A fast and adaptive algorithm to set the trade-off parameter
of our method is also designed to allow the proposed
approach more applicable. Furthermore, the effectiveness
of fast SASD and its adaptive variant is verified by both
simulation studies and bearing diagnosis cases.

The rest of this paper is organized as follows: In Section II,
the basic concepts of MCA and enhanced sparse period-group
lasso are introduced. Section III constructs the SASD model,
gives the convexity condition of the model, and deduces the
algorithmic solver. After that, simulation studies and param-
eters setting are investigated in Section IV followed by the
experimental verification. Section VI concludes this paper.

II. PRELIMINARIES

A. Signal decomposition based on MCA

Suppose that the vibration signal y ∈ Rn can be modeled
as:

y = y1 + y2 + n, (1)

where y1 ∈ Rn represents discrete frequency components,
y2 ∈ Rn represents periodic impulse components, and n ∈
Rn is Gaussian noise. MCA aims to decompose y into two
components accompanying with noise removal.
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For the signal model (1), MCA assumes that components y1

and y2 have morphological discrimination under two specific
dictionaries D1 ∈ Rn×m1 and D2 ∈ Rn×m2 . Then, y1 and
y2 can be recovered via calculating the following optimization
problem:

{x̂1, x̂2} = arg min
x1,x2

1

2
‖y −D1x1 −D2x2‖22

+ λ1P1(x1) + λ2P2(x2),
(2)

where x1 and x2 are representative coefficients corresponding
to two dictionaries D1 and D2, P1(·) and P2(·) are two
regularizers of the representative coefficients, and λ1 > 0
and λ2 > 0 are two penalty parameters. After solving the
optimization problem (2), two specific components can be
estimated via ŷ1 = D1x̂1 and ŷ2 = D2x̂2.

The most common MCA model used in vibration signal
decomposition is the sparsity-assisted method which assumes
that y1 has a sparse representation with D1 while having
a dense representaion with D2, and vice versa for y2. The
regularizers are all set as l1-norm, e.g. P1(x1) = ‖x1‖1 and
P2(x2) = ‖x2‖1 where ‖x‖1 =

∑
i |xi|. Also, the most used

dictionary is the TQWT dictionary due to its flexibility and
efficiency in designing a suitable oscillatory waveform via
tuning the Q-factor and the redundant factor r.

B. Enhanced sparse period-group lasso

The regularizer of enhanced sparse period-group lasso pro-
posed in [17], [32] which possesses the PSWAG property is
defined as follows:

P (x) =
∑
i∈Ω

φ
(
‖b� x{i,n2}‖2; a

)
+ ρMn1‖x‖1,W, (3)

where Ω is a set of groups x{i,n2} =

[x(i), ..., x(i+ n2 − 1)]
T ∈ Rn2 , b is a binary periodic

sequence with the length of an estimated impulse n1 and
the number of impulses M (n1 = 4 and M = 4 have
been verified as an effective combination [17], and we
simply follow this setting), � represents the element-wise
multiplication, ρ = 9.235×10−4 [17] is a trade-off parameter
between sparisty within and across groups, φ(·; a) is a penalty
function defined in [33] (a > 0 is a parameter controlling
the non-convex degree and we use the minimax convex
penalty (MCP) [34] due to good properties in the unbiased
estimation), and ‖x‖1,W is defined as:

‖x‖1,W = ‖Wx‖1, (4)

where W = diag(w) is the diagonal matrix with wi = 1
|xi|+ε

(ε > 0 is a small constant value).

III. FAST SPARSITY-ASSISTED SIGNAL DECOMPOSITION

A. Model construction

Discrete frequency components are sparse in the frequency
spectrum while they do not have PSWAG in the time domain
shown in Fig. 1 and Fig. 2. Inversely, periodic impulse
components have PSWAG in the time domain while they
are not sparse in the frequency spectrum shown in Fig. 3.
As a consequence, discrete frequency and periodic impulse

components have the morphological discrimination between
PSWAG in the time domain and sparsity in the frequency
domain. Based on MCA, we let D1 = D be the Fourier
dictionary and D2 be a unit matrix I and construct a fast
SASD model as follows:

J(x1,x2) =
1

2
‖y −Dx1 − x2‖22 + λ1P1(x1) + λ2P2(x2),

P1(x1) = ‖x1‖1 +
η

2
‖x1‖22,

P2(x2) =
∑
i∈Ω

φ
(
‖b� x2{i,n2}‖2; a

)
+ ρMn1‖x2‖1,W,

(5)
where η ≥ 0 is a trade-off parameter and is set as η = 1
(P1(x1) is an elastic net penalty [35]), and a non-convex
penalty, P2(x2), models PSWAG in the time domain to
maintain the amplitude of periodic impulse components.

The main difference between our proposed fast SASD
model (5) and traditional MCA-based methods is the setting of
representation dictionaries. For traditional MCA-based meth-
ods, wavelet and time-frequency dictionaries are often used
to model the sparsity, which suffers from choosing suitable
dictionaries and high computational complexity. Conversely,
fast SASD directly models PSWAG in the time domain and
sparsity in the frequency domain, which avoids choosing mul-
tiple dictionaries and possesses low computational complexity.

B. Theoretical analysis of convexity condition

To establish the convex condition of the optimization prob-
lem (5), we first split the model (5) into two independent parts:

J(x1,x2) = J1(x1,x2) + J2(x2). (6)

J1 and J2 are defined as follows:

J1(x1,x2) =
1

2
‖y −Dx1 − x2‖22 + λ1P1(x1)− γ

2
‖x2‖22,

J2(x2) =
γ

2
‖x2‖22 + λ2P2(x2),

(7)
where γ is intermediate and positive variable connecting two
parts. It follows that J is convex, if J1 and J2 are both convex.

We can use Proposition 1 in [17] to establish the convex
condition of J2 directly. Therefore, we just need to prove the
convex condition of J1.

Proposition 1. (Given in [17]) Assume φ is one of the penalty
functions satisfying the properties in [33]. Then J2(x2) is
convex if a ≤ γ

Mn1λ2
.

Theorem 1. J1(x1,x2) is convex if and only if γ ≤ λ1η
λ1η+1 .

Proof of Theorem 1. We first introduce P1(x1) and rewrite J1

as:

J1(x1,x2) =
1

2
‖y −Dx1 − x2‖22

+ λ1(‖x1‖1 +
η

2
‖x1‖22)− γ

2
‖x2‖22

=
1

2
‖Dx1 + x2‖22 +

λ1η

2
‖x1‖22 −

γ

2
‖x2‖22

+
1

2
‖y‖22 − yT (Dx1 + x2) + λ1‖x1‖1.

(8)
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In (8), 1
2‖y‖

2
2 − yT (Dx1 + x2) + λ1‖x1‖1 is convex

in (x1,x2). Hence, J1 is convex if and only if the former
quadratic term, denoted as L, is convex.

L =
1

2
‖Dx1 + x2‖22 +

λ1η

2
‖x1‖22 −

γ

2
‖x2‖22

=
1

2
(x2; Dx1)T

(
I− γI I

I I + λ1ηI

)(
x2

Dx1

)
.

(9)

If H =

(
I− γI I

I I + λ1ηI

)
is positive semidefinite, e.g.

H � 0, then J1 is convex. According to [36], there exists
a permutation matrix Q ∈ R2n×2n, such that

QHQT = H′ = diag(H′1, . . . ,H
′
n), (10)

where H′i ∈ R2×2 is defined as:

H′i =

(
1− γ 1

1 1 + λ1η

)
, i ∈ 1, . . . , n. (11)

Similar to [37], since H′i is a real symmetric matrix, we
can use the eigenvalue decomposition to further simplify the
expression:

H′i = UT
i LiUi, i ∈ 1, . . . , n, (12)

where Li = diag(l
(1)
i , l

(2)
i ) (l(1)

i and l
(2)
i are two real eigen-

values of H′i ) and Ui is an orthonormal matrix consisting of
eigenvectors of H′i. If we introduce two matrices U and L as
follows:

U = diag(U1, . . . ,Un) ∈ R2n×2n,

L = diag(l
(1)
1 , l

(2)
1 , . . . , l(1)

n , l(2)
n ) ∈ R2n×2n,

(13)

then H can be represented as:

H = (UQ)TLUQ = VTLV, (14)

where V is a full-rank matrix. Therefore, H � 0 if and only
if the matrix L is positive semidefinite, e.g. all the diagonal
elements are non-negative. Due to the fact that all the diagonal
elements come from matrices H′i, i ∈ 1, . . . , n, H � 0 if
and only if all the matrices H′i, i ∈ 1, . . . , n are positive
semidefinite. Following Sylvester’s criterion, this statement is
satisfied if and only if 1− γ ≥ 0

1 + λ1η ≥ 0
(1− γ)(1 + λ1η)− 1 ≥ 0

⇒ γ ≤ λ1η

λ1η + 1
. (15)

Theorem 2. Assume φ(·; a) is one of the penalty functions
satisfying the properties in [33]. Then J(x1,x2) is convex if
and only if a ≤ τ λ1η

Mn1λ2(1+λ1η) , where τ ∈ [0, 1].

Proof of Theorem 2. If we introduce another variable τ ∈
[0, 1], we can simply rewrite the parameter γ = τ λ1η

1+λ1η
. Then,

combining with inequalities in Proposition 1 and Theorem 1,
J(x1,x2) is convex if and only if a ≤ τ λ1η

Mn1λ2(1+λ1η) , where
τ ∈ [0, 1].

In addition, to make Theorem 2 more complete, we also
give the Corollary 2.1 of the convex condition, when the

l1−norm regularizer in P1(x1) is also replaced with the non-
convex penalty function φ (·; a′).

Corollary 2.1. Assume φ(·; a) and φ(·; a′) belong to the
penalty functions satisfying the properties in [33]. Then
J(x1,x2) is convex if and only if λ1a

′+Mn1λ2a ≤ τ λ1η
1+λ1η

,
where τ ∈ [0, 1].

From Corollary 2.1, it can be observed that two non-
convex penalty functions φ(·; a) and φ(·; a′) form a trade-
off condition. Due to the good statistical properties of the
elastic net [35], we mainly discuss J(x1,x2) with P1(x1) =
‖x1‖1 + η

2‖x1‖22 in the following part. In addition, the trade-
off parameter η is simply set as 1, and the non-convex degree
a of P1(x2) is set as a = 0.9 λ1η

Mn1λ2(1+λ1η) .

C. Model solving
Based on Theorem 1, we can preserve the convexity of

the optimization problem (5), that is we can use convex
optimization algorithms to achieve the optimal solution. Since
the original optimization problem (5) is coupled, we use the
MM algorithm to minimize the upper bound of (5) which
means that the original optimization problem can be decoupled
into two simple problems.

We first rewrite the data fidelity in (5) as:
1

2
‖y −Dx1 − x2‖22 =

1

2
‖y −Ax‖22, (16)

where A = [D, I] and x = [xT1 ,x
T
2 ]T . According to the

descent lemma of the quadratic function, the majorizer of the
data fidelity can be set as:

G1(x,u) =
1

2
‖y −Au‖22 + (Au− y)TA(x− u)

+
1

2µ
‖x− u‖22

=
1

2µ
‖x‖22 −

1

µ

(
u− µAT (Au− y)

)T
x + C

=
1

2µ
‖x‖22 −

1

µ
pTx + C,

(17)
where u = [uT1 ,u

T
2 ]T is the iterative variable in MM, C is a

value independent of x, and µ ≤ 1
LA

= 0.5 is the step size of
MM (LA is the maximum eigenvalue of the matrix ATA).

The sufficient conditions of MM for this data fidelity are
satisfied as:

G1(x,u) ≥ 1

2
‖y−Ax‖22, G1(u,u) =

1

2
‖y−Au‖22. (18)

For regularizers, P1(x1) is already uncoupled and we just
need to construct the majorizer of P2(x2). According to [17],
the majorizer of P2(x2) can be constructed as:

G2(x2,u2) =
∑
i∈Ω

φ′
(
‖b� u2{i,n2}‖2

)
‖b� u2{i,n2}‖2

‖b� x2{i,n2}‖
2
2

+ ρMn1‖x2‖1,W + C

=
∑
i

1

2
r(i; u2)x2

2(i) + ρMn1‖Wx2‖1 + C

=
1

2
xTRx + ρMn1‖Wx2‖1 + C,

(19)
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where R = diag (r(·; u2)) and r(·; u2) is defined as:

r(·; u2) =

n2−1∑
j=0

b(j)
φ′
(
‖b� u2{·−j,n2}‖2

)
‖b� u2{·−j,n2}‖2

. (20)

The sufficient conditions of MM for this regularizer are also
satisfied as:

G2(x2,u2) ≥ P2(x2), G2(u2,u2) = P2(u2). (21)

To sum up, the overall majorizer of the problem (5) can be
constructed as:

G(x,u) = G1(x,u) + λ1P1(x1) + λ2G2(x2,u2). (22)

Therefore, the optimal solution of the optimization problem
(5) can be solved by iterating the following step:

xk+1 = arg min
x
G
(
x,xk

)
. (23)

Since the iterative step (23) is separable between x1 and x2,
(23) is equivalent to the following two steps:

xk+1
1 = arg min

x1

1 + µηλ1

2
‖x1‖22 − p1x1 + µλ1‖x1‖1,

xk+1
2 = arg min

x2

1

2
xT2 (I + µλ2R)x2 − p2x2

+ µρλ2Mn1‖Wx2‖1,

(24)

where p1 = xk1−µDT (Axk−y) and p2 = xk2−µ(Axk−y).
Two optimization problems (24) both can be separated into

series of single variable optimization problems which have the
closed-form solutions, and hence we can directly calculate the
solutions as:

xk+1
1 =

1

1 + µηλ1
soft(p1, µλ1)

xk+1
2 = Σ−1soft(p2, µρλ2Mn1w)

(25)

where Σ = diag
(
1 + µλ2r(·; xk2)

)
and the soft-thresholding

operator soft(·, ·) for one scalar is defined as:

soft(x, t) = sign(x) max(|x| − t, 0), (26)

where sign(·) is a sign function.
In conclusion, the algorithmic process of the proposed fast

SASD is formed in Algorithm 1.

D. Computational complexity

To proof the rapidity of fast SASD, we perform a line-by-
line analysis of computational complexity. It should be men-
tioned that operations D and DT can be realized effectively
by iFFT and FFT with computational complexity O(n log n).
Therefore, for line 6 and line 7 in Algorithm 1, computational
complexity is to perform FFT and iFFT, which approximates
O(n log n). For line 9, the computational cost mainly contains
two convolutional operations, which approximate O(n2n). The
other lines mainly consist of simple additions and multiplica-
tions, and computational complexity approximates O(n). To
sum up, the total computational complexity of the proposed
fast SASD (I is the iteration number) is:

CC = O(I(2n log n+ n log n+ n+ 2n2n+ n+ n))

= O(In(3 log n+ 3 + 2n2))

≈ O(In(log n+ n2)).

(27)

Algorithm 1 Fast SASD
1: Input: The vibration signal y ∈ Rn, λ1, λ2 > 0, ρ =

9.235 × 10−4, µ ≤ 1
LA

= 0.5, M = 4, n1 = 4, η = 1,
and Iteration number iter.

2: Initialization: x0
1 = DTy,x0

2 = y
3: Procedure:
4: a = 0.9 λ1η

Mn1λ2(1+λ1η)

5: for each k ∈ [0, iter] do
6: p1 = xk1 − µDT (Axk − y)
7: p2 = xk2 − µ(Axk − y)
8: w = 1/(

∣∣xk2∣∣+ ε)

9: r(·; xk2) =
∑n2−1
j=0 b(j)

φ′(‖b�xk
2{i−j,n2}

‖2)
‖b�xk

2{i−j,n2}
‖2

10: Σ = diag
(
1 + µλ2r(·; xk2)

)
11: xk+1

1 = 1
1+µηλ1

soft(p1, µλ1)

12: xk+1
2 = Σ−1soft(p2, µρλ2Mn1w)

13: end for
14: Output: x̂1 = xk+1

1 and x̂2 = xk+1
2

IV. SIMULATION STUDY AND PARAMETER SELECTION

To verify the performance and set parameters of the pro-
posed fast SASD, we perform a series of simulation studies.

A. Simulation construction

As defined in (1), the vibration signal y consists of discrete
frequency components y1, periodic impulse components y2,
and Gaussian noise n, which are defined as follows:
• Discrete frequency components:

y1 = (0.5 + 0.25 cos (2π × 180t))× cos(2π × 1000t

+ 0.5 cos (2π × 35t)) + (0.25 + 0.25 cos (2π × 360t))

× cos (2π × 2000t + 0.5 cos (2π × 70t))

+ 0.5 cos(2π × 180t) + 0.5 cos(2π × 360t),
(28)

where carrier frequencies (CF) are 1000 Hz and 2000 Hz,
amplitude modulation frequencies (AMF) are 180 Hz and
360 Hz, frequency modulation frequencies (FMF) are 35
Hz and 70 Hz, and pure harmonic frequencies (PHF) are
180 Hz and 360 Hz.

• Periodic impulse components:

y2 =
∑

k
Imp (t− kT − τk) , (29)

where T = 0.01 s represents the period of impulse
components (we simulate the outer race fault whose char-
acteristic frequency is denoted as BPFO). τk represents
the slip effect, and Imp(t) is a single impulse defined as:

Imp(t) = e(−1000t) sin(4000π × t + 20), (30)

where the initial phase is 20, the resonant frequency is
2000 Hz, and the decay factor is 1000.

• Gaussian noise:
n = N (0, σ2), (31)

where σ is the standard deviation of Gaussian noise.
As shown in Fig. 4, the sampling frequency and length of

the simulated signal are 16000 Hz and 8000 respectively, and
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Fig. 4. The simulated vibration signal y and its spectra: (a) time waveform,
(b) frequency spectrum, (c) square envelope spectrum, and (d) enlargement
of SES.

the standard deviation of n is 0.5. We can observe that BPFO is
completely submerged by the discrete frequency components
in the square envelope spectrum (SES). Furthermore, because
the resonant band couples with carrier frequencies, filter-
based methods, such as SK, will fail to locate the impulse
components.

All simulation and experiment studies were carried out
under macOS Catalina 10.15.2 and MATLAB 2017b running
on a personal computer with an Intel Core i7 6-CPU at 2.6
GHz and 16 GB RAM.

B. Parameter setting strategy

Parameters of fast SASD consist of λ1, λ2, and iter.
We first consider the setting of two penalty parameters λ1

and λ2, separately. Here, we consider three scenarios. First,
the vibration signal contains discrete frequency components
and Gaussian noise. Due to the orthonormality of the FFT
dictionary D, we can use the universal estimation proposed
by Donoho and Johnstone [38] to set λ1 as:

λ1 = σ
√

2 lnn, (32)

where n is the length of the input signal. Second, the vibration
signal contains periodic impulse components and Gaussian
noise. Under this condition, we can directly use the fitting
function in [17] which is defined as:

λ2 = 0.272σ + 0.044. (33)

Finally, we consider the combination of all three different
parts, and redefine the penalty parameters λ1 and λ2 as:

λ1 = ασ
√

2 lnn,

λ2 = (1− α)(0.272σ + 0.044),
(34)

where 0 ≤ α ≤ 1 is a trade-off parameter controlling the
weight of discrete frequency and periodic impulse compo-
nents.

To investigate the influence of α, we performed a series of
numerical simulations with different σ to test the sum over
the root mean square error (RMSE) of discrete frequency and
periodic impulse components. In these simulation studies, α
varies from 0 to 1 with the step 0.01 and σ varies from 0.1
to 0.9 with the step 0.2. To avoid randomness, 50 random
tests are performed and the average RMSE is used as the
metric. The results, in which the best α under different σ lies
in a small interval, are shown in Fig. 5 (a). It means that the
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Fig. 5. (a) Average RMSE versus the trade-off paramter α, (b) the cost values
versus the iteration number, and (c) comparison of non-convex and convex
penalties.

best α mainly depends on the weight of discrete frequency
and periodic impulse components, which corresponds to the
construction of the parameter selection strategy.

For real application, we further design a fast and adaptive
algorithm described in Algorithm 2 to search the optimal α
via the Golden ratio and Trichotomy. It aims to maximize the
value of fault characteristic energy ratio (FCER) defined as
follows:

FCER =

∑floor( fs
2fc

)−1

i=1 Ai×fc∑n
j=1Aj×∆f

, (35)

where fs represents the sampling frequency, floor(·) is to
round down the value, and Ai×fc and Aj×∆f represent
amplitudes of the i−th order fault characteristic frequency fc
and the j−th spaced frequency ∆f in the square envelope
spectrum. In addition, fast SASD embedding Algorithm 2
with the adaptive parameter setting strategy is denoted as fast
adaptive SASD.

To further prove the superiority of the proposed method,
we use another quantitative indicator called envelope kurtosis
(EK) [4] to evaluate the impact in the time domain, and the
defination can be formulated as follows:

EK =
E(h−Mean(h))4

Var(h)2
, (36)

where E(·) denotes the calculation of mathematical expecta-
tion, h is the Hilbert envelope of extracted signals, Mean(·)
denotes the calculation of mean, and Var(·) denotes the
calculation of variance. To sum up, FCER and EK can be
used to describe the fault characteristic energy in the square
envelope spectrum and in the time domain, respectively.

For the iteration number iter, we perform similar simulation
experiments with different σ to test the cost. In this simulation
study, σ varies from 0.1 to 0.9 with the step 0.2. Fifty random
tests are performed and the average cost is used as the metric.
As shown in Fig. 5 (b), our algorithm has fast convergence,
and thus we simply set iter as 100 for more robust results.

C. Comparisons

To verify the performance adequately, we compare our
algorithm with three methods including our proposed method
with a convex penalty, the MCA-based method (IWF-MCA)
[26], and the filtered-based method (fast SK) [4] with two
quantitative indicators defined in (35) and (36).

Impulse extraction performance: The results of fast SASD,
IWF-MCA, and fast SK are shown in Fig. 6, Fig. 7, and Fig. 8,
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Algorithm 2 Adaptive and fast search algorithm of α
1: Input: Lower L and upper U bounds of α, ε = 0.01.
2: Symbol: xα means impulse features obtained by fast

SASD with α.
3: Procedure:
4: α1 = L+ 0.382(U − L), α2 = L+ 0.618(U − L)
5: v1 = FCER(xα1

), v2 = FCER(xα2
)

6: while |U − L| > ε do
7: if v1 > v2 then
8: U = α2, α2 = α1, v2 = v1

9: α1 = L+ 0.382(U − L), v1 = FCER(xα1)
10: else
11: L = α1, α1 = α2, v1 = v2

12: α2 = L+ 0.618(U − L), v2 = FCER(xα2
)

13: end if
14: end while
15: Output: α = (U + L)/2
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Fig. 6. The extracted impulses of fast SASD and its spectrum: (a) time
waveform, and (b) enlargement of SES.

respectively. First of all, our proposed method can achieve
highest FCER and EK among different methods. Because the
resonance band and discrete frequency components overlap,
the filtered-based methods, such as fast SK, cannot separate
these two parts. As shown in Fig. 8 (b), the fault charac-
teristic frequencies are still submerged by discrete frequency
components. Although IWF-MCA can also extract BPFO and
its high order frequencies, the extracted impulses in Fig. 7
(a) still contain lots of interference, which leads to unknown
frequencies and amplitude attenuation of fault characteristic
frequencies shown in Fig. 7 (b). Inversely, The impulses
extracted by fast SASD show good periodicity in Fig. 6 (a)
and Fig. 6 (b) also shows clean BPFO and its high order
frequencies. In addition, as shown in Fig. 6 (a), fast SASD
with a non-convex penalty can maintain the amplitude more
effective than that with a convex penalty, which indicates the
enhancement ability of our proposed method. To further verify
the effectiveness of non-convex enhancement, we perform
numerical studies with different noise intensities σ injected
into the clean simulation signal, and σ varies from 0.1 to 1.0
with the step 0.1. Fifty random tests are conducted and average
RMSE is also used to evaluate the performance of non-convex
and convex penalties. The results are shown in Fig. 5 (c), and
we can observe that the performance of the non-convex penalty
is always better than that of the convex penalty with the noise
intensities ranging from 0.1 to 1.

Computational complexity: To avoid the randomness, we
run each method 10 times, shown in Fig. 4. The average times
of four methods are listed in Table I. From these results, we
can see that fast SASD and fast adaptive SASD are much
quicker than IWF-MCA and fast SASD is slightly slower
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Fig. 7. The extracted impulses of IWF-MCA and its spectrum: (a) time
waveform, and (b) enlargement of SES.

0 0.1 0.2 0.3 0.4
Time (s)

-1

0

1

A
m

p

FCER=0.21804; EK=3.8787(a)

0 200 400 600 800
Frequency (Hz)

0

0.05

A
m

p BPFO

(b)

Fig. 8. The extracted impulses of Fast SK and its spectrum: (a) time
waveform, and (b) enlargement of SES.

TABLE I
COMPARISON OF COMPUTATION TIMES

Method Fast SASD Fast adaptive SASD Fast SK IWF-MCA

Time (s) 0.1036 1.3120 0.0483 77.5799

than fast SK due to the fact that our proposed method is an
iterative optimization approach and fast SK is just a filter-
based approach. Meanwhile, fast adaptive SASD finding the
optimal α adaptively only adds a little computational time
compared with fast SASD, which indicates that Algorithm
2 is very efficient for searching a suitable parameter in real
application. It also worth mentioning that we can use other
tricks to accelerate fast adaptive SASD, such as warm start
and a smaller interval.

V. EXPERIMENTAL VERIFICATION

In this section, to verify the effectiveness and adaptation of
our proposed algorithm, we apply it to different bearing fault
diagnosis cases and compare with the MCA-based method
(IWF-MCA) [26], and the filtered-based method (fast SK) [4].
What we expect is that the proposed method can separate
periodic impulses as well as discrete frequency components
effectively and enhance the fault information.

A. Case1

1) Experimental description: We performed a motor bear-
ing fault experiment on the mechanical failure simulator
of Spectra Quest, Inc. (SQI), which consists of the testing
motor, the speed controller, the shaft, disks, the belt drive
system, and the gearbox system, shown in Fig. 9 (a). During
the experiment, two PCB accelerometers were mounted on
horizontal and vertical directions of the testing motor shown
in Fig. 9 (b). The CoCo80 data acquisition system was used to
collect the vibration signal with the sampling frequency and
the rotating frequency (RF) equivalent to 6400 Hz and 23.88
Hz, respectively. According to geometric parameters and RF,
fault characteristic frequencies of the inner race (BPFI), the
outer race (BPFO), rolling elements (BSF) and the cage (FTF)
of the fault bearing in the testing motor are 117.8 Hz, 73.2Hz,
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Fig. 9. (a) mechanical failure simulator, (b) the testing motor, and (c) pitting
fault on the inner race.
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Fig. 10. The vibration signal and its spectrum: (a) time waveform, and (b)
enlargement of SES.
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Fig. 11. Results extracted by fast adaptive SASD and its spectra: (a)
time waveform of impulse components, (b) enlargement of SES of impulse
components, (c) time waveform of discrete frequency components, and (d)
enlargement of SES of discrete frequency components.

48.5 Hz, and 9.2Hz, respectively. After dismantling the testing
motor, we found a pitting fault on the inner race described in
Fig. 9 (c).

Fig. 10 shows the vibration signal on the vertical direction
with 6400 points. From Fig. 10 (a), we can observe that the
vibration signal is obviously coupled with discrete frequency
components, and meanwhile, BPFI and its high order frequen-
cies are submerged by those interference components shown
in Fig. 10 (b).

2) Results: We first apply fast adaptive SASD to decom-
pose the vibration signal into periodic impulse and discrete fre-
quency components. The results, in which fast adaptive SASD
can decompose two components successfully, are shown in
Fig. 11. From Fig. 11 (a) and (b), impulse components are
tremendously highlighted in the time domain, and BPFI in
SES is much clearer than that in Fig. 10 (b).

To further verify the performance of our proposed algo-
rithm, we also apply IWF-MCA and fast SK to analyse the vi-
bration signal, and performance indicators defined in (35) and
(36) are introduced to accurately compare their performance
against each other. It is worth mentioning that we search the
optimal trade-off parameter for IWF-MCA in the interval [0,
1] with the step 0.01, and the final optimal parameter is 0.01.
First of all, our proposed method can achieve highest FCER
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Fig. 12. Results extracted by IWF-MCA and its spectrum: (a) time waveform,
and (b) enlargement of SES.
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Fig. 13. Results extracted by fast SK and its spectrum: (a) time waveform,
and (b) enlargement of SES.
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Fig. 14. (a) the main body of the test rig, (b) the fault on the outer race, and
(c) the area of the fault.

and EK among different methods. The results of IWF-MCA
and fast SK, in which both of them fail to extract periodic
impulse components, are shown in Fig. 12 and Fig. 13. In
addition, from Fig. 12 (b) and Fig. 13 (b), only RF and its
high order frequencies are highlighted.

B. Case2

1) Experimental description: We performed a high-
precision bearing fault experiment on the aero-engine bearing
fault test rig, which was controlled by industrial personal
computer (IPC) to simulate the load, temperature, and rotation
spectra. Fig. 14 (a) shows the main body of the test rig, which
is driven by the high-speed motor. The axial and radial loads
were applied to the test bearing via the lubrication system. Two
accelerometers were mounted on the horizontal and vertical
directions of the bearing seat. The sampling frequency and the
rotating speed are 20 kHz and 2000 r/min. Thus the calculated
BPFO of the fault bearing is 275.9 Hz. As shown in Fig. 14 (b)
and (c), the outer race of the test bearing had a local spalling.

As shown in Fig. 15 (a), we can observe that there are no
obvious periodic impulses in the time domain. There exists
complex low frequency interference and RF predominates in
the enlargement of SES shown in Fig. 15 (b). Meanwhile,
the twice order BPFO is submerged by the background noise,
which makes diagnosis difficult and unreliable. It is necessary
to apply advanced signal processing methods to remove the
background noise and low frequency interference.

2) Results: We also first apply the fast adaptive SASD
to extract impulse components, and the results are shown in
Fig. 16. We can observe that periodic impulses are highlighted
obviously in the time domain shown in Fig. 16 (a). BPFO and
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Fig. 15. The vibration signal and its spectrum: (a) time waveform, and (b)
enlargement of SES.
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Fig. 16. Results extracted by fast adaptive SASD and its spectrum: (a) time
waveform, and (b) enlargement of SES.
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Fig. 17. Results extracted by IWF-MCA and its spectrum: (a) time waveform,
and (b) enlargement of SES.
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Fig. 18. Results extracted by fast SK and its spectrum: (a) time waveform,
and (b) enlargement of SES.

its high order frequencies in SES shown in Fig. 16 (b) are
much chearer than those in Fig. 15 (b). Meanwhile, the low
frequency interference has a high degree of removed.

Similarly, we also apply IWF-MCA and fast SK to an-
alyze the original signal to verify the performance of the
proposed algorithm. We can observe that IWF-MCA fail to
highlight the fault information and remove the background
noise completely, as shown in Fig. 17. In addition, the quan-
titative indicators, FCER and EK, are smaller than that of the
proposed method. Fast SK can also partially extract the fault
information, but the low frequency interference in SES still
predominates, and FCER as well as EK are also one half of the
proposed method. It is also worth mentioning that the absolute
amplitude of fault information extracted by IWF-MCA and fast
SK in SES is much smaller than that extracted by the proposed
method.

C. Case3

To evaluate the rate of false diagnosis and diagnose the
rolling element fault, we further apply the proposed method
to the open-source dataset from the Case Western Reserve
University (CWRU) Bearing Data Center [39], which contains
both normal and fault bearings.

1) Experimental description: The CWRU dataset was gen-
erated using a 2 hp Reliance Electric motor, and motor
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Fig. 19. The vibration signal and its spectrum of the normal bearing from
CWRU: (a) time waveform, and (b) enlargement of SES.
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Fig. 20. The vibration signal and its spectrum of the fault bearing from
CWRU: (a) time waveform, and (b) enlargement of SES.

bearings were seeded with faults using electro-discharge ma-
chining (EDM). Local faults ranging from 0.007 inches to 0.04
inches in diameter were implanted in different components
of bearings, including the inner race, the outer race, and
rolling elements, respectively. In this paper, according to the
benchmark study of CWRU data [40], we used two data
files numbered 97.mat (denoted as the normal bearing) and
118.mat (denoted as the rolling element fault with 0.007 inches
in diameter at the drive end bearing). 118.mat cannot be
diagnosed with any of applied methods in [40]. These two data
files were collected for the motor load of 0 horsepower and the
motor speed of 1797 r/min by the accelerometer, mounted on
the drive end of the motor housing. The sampling frequency is
12000 Hz, and the BSF is 141.2 Hz. More detailed information
can be found in the dataset website [39].

For signals from the normal bearing, as shown in Fig. 19,
we can observe that there only exist RF and its high order
frequencies in the enlargement of SES. Meanwhile, Fig. 20
reveals that the SES structure of the fault bearing is more
complex than that of the normal bearing. However, the BSF
and its high order frequencies are still submerged by other
interference, that is why none of applied methods in [40] could
diagnose this rolling element fault.

2) Results: To evaluate the rate of false diagnosis, we first
apply the proposed fast adaptive SASD to the signal measured
from the normal bearing, and the extracted results are shown in
Fig. 21. In Fig. 21 (a) and (b), there is no fault characteristic
frequency in the enlargement of SES, which shows that the
proposed method has a relatively low rate of false diagnosis.
Besides, from Fig. 21 (c) and (d), the proposed method can
successfully separate the discrete frequency components.

Similarly, we further apply the proposed method to analyse
the signal measured from the bearing with rolling element
fault. As shown in Fig. 22 (a) and (b), we can observe that
the impulses from the time domain are obviously enhanced,
and BSF as well as its high order frequencies are much clearer
than that in Fig. 20 (b). Therefore, we can easily judge the
existence of rolling element fault.

D. Computational Time
To further explain the low computational complexity of

the proposed method, we list the computational time of four
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Fig. 21. Results extracted by fast adaptive SASD and its spectra for the normal
bearing: (a) time waveform of impulse components, (b) enlargement of SES
of impulse components, (c) time waveform of discrete frequency components,
and (d) enlargement of SES of discrete frequency components.
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Fig. 22. Results extracted by fast adaptive SASD and its spectra for the fault
bearing: (a) time waveform of impulse components, (b) enlargement of SES
of impulse components, (c) time waveform of discrete frequency components,
and (d) enlargement of SES of discrete frequency components.

TABLE II
COMPARISON OF COMPUTATION TIMES

Method Fast SASD Fast adaptive SASD Fast SK IWF-MCA

Case1 (s) 0.081 1.087 0.031 83.869
Case2 (s) 0.485 6.231 0.081 457.358

methods in Table II, and the listed time is the average of ten
random tests. First of all, the proposed method is much faster
than the traditional MCA-based method (IWF-MCA), which
indicates the superiority of our method. In addition, fast SK is
the fastest method among four methods due to the fact that it
does not need the process of iterative optimization, resulting
in worse denoising performance.

VI. CONCLUSIONS

In this paper, we propose a fast sparsity-assisted signal de-
composition method with non-convex enhancement for bearing
fault diagnosis. This method possesses three advantages: with-
out choosing multiple dictionaries for signal representation;
low computational complexity; using non-convex enhance-
ment while preserving the overall convexity of the model.
Additionaly, we prove the necessary and sufficient condition
to guarantee the convexity of our proposed model and derive a
fast solver to solve the constructed model. Complete numerical
simulations and experimental studies are performed to verify
the effectiveness and practicability of our method. Further
applications need to be exploited using the proposed method.
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