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Abstract—Vibration signal denoising is one of the most im-
portant steps in condition monitoring and fault diagnosis, and
SVD-based methods are a vital part of advanced signal denoising
due to their non-parametric and simple properties. The relation-
ships between SVD-based denoising and other advanced signal
processing methods are very significant and can help speed up the
development of SVD-based denoising methods. There is limited
prior work into the sparse and low-rank meaning of SVD-based
denoising. In this paper, we build the relationships among SVD-
based denoising, sparse l0-norm minimization, sparse weighted
l1-norm minimization, and weighted low-rank model, when the
dictionary is designed by left and right singular matrices in sparse
minimization. Using the derived conclusion, we establish weighted
soft singular value decomposition (WSSVD) for vibration signal
denoising. Finally, we perform one experimental study to verify
the effectiveness of WSSVD considering impulse interference and
amplitude fidelity.

Index Terms—Sparse and low-rank, SVD-based denoising,
vibration signal processing

I. INTRODUCTION

Condition monitoring and fault diagnosis are becoming
increasingly popular in modern rotating machinery due to their
complex structure and poor operating environment. Vibration
signal monitoring is one of the most important monitoring
methods for rotating machines since vibration signals are
more sensitive to faults at the early stage than sound and
temperature. Indicators in the time domain and frequency
domain are often used to track the health condition of ro-
tating machines. However, because the fault features are often
submerged by heavy background noise and discrete frequency
interference, advanced signal processing methods [1], such as
Wavelet Transform (WT), Spectral Kurtosis (SK), Empirical
Mode Decomposition (EMD), sparsity-assisted methods, and
Singular Value Decomposition based (SVD-based) methods,
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have been continuously proposed to realize vibration signal
denoising and fault feature extraction.

Among these advanced signal processing methods, SVD-
based denoising methods have received much attention be-
cause SVD is a non-parametric and simple technique to de-
compose the original signal into orthogonal subspaces. One of
the most popular methods is called the truncated SVD (TSVD)
which consists of four steps: constructing a matrix through the
measured signal; decomposing the constructed matrix using
SVD; choosing the first t largest singular values to realize
the denoising step; reconstructing the denoised signal from
the denoised matrix. The main studies in this domain can be
classified into two categories: how to construct a matrix, and
how to set the threshold to choose singular values. In [2], SVD
and ratios of neighboring singular values were applied to the
vibration signal processing and extracted features were used
to train the hidden Markov model for fault recognition. In [3],
SVD and a Hankel matrix was successfully used as a denoising
step for ball bearing fault feature extraction. In [4], the
authors proposed a reweighted singular value decomposition
(RSVD) for vibration signal denoising and weak fault feature
extraction. However, minimal prior research establishes the
relationship between SVD-based denoising methods and other
advanced signal processing methods. Pioneering work aiming
to bridge this gap was done by Zhao et al [5]. They verified
the similarity between Hankel-SVD and wavelet transform
by theoretical analysis and experimental verification. Based
on this similarity, they proposed the method called singular
value decomposition packet which embedded the advantages
of wavelet packet transform [6].

Recently, the sparse and low-rank physical meaning has
been successfully applied to vibration signal denoising and
fault diagnosis [7], [8]. Du et al [9] proposed a weighted
low-rank sparse model for bearing fault diagnosis. Zhang et
al [10] extended this model to the fault diagnosis of high-
speed aero-engine bearings by improving the construction of



the matrix using k-means clustering. In [11] and [12], the
sparse and low-rank model was used to denoise the vibration
signal and perform bearing fault diagnosis. However, to best
of our knowledge, no one has studied the sparse and low-rank
interpretation of SVD-based denoising.

In this paper, we aim to bridge this gap and discuss
the sparse and low-rank meaning of SVD-based denoising
methods thoroughly. On the one hand, we conclude that TSVD
is equivalent to the sparse l0-norm minimization when the
dictionary is constructed by left and right singular matrices.
On the other hand, the sparse weighted l1-norm minimization
is a more general condition, and TSVD and weighted low-rank
model are the special cases of weighted l1-norm minimization.
Meanwhile, based on the discussion of relationships, we
apply the weighted soft thresholding to establish weighted
soft singular value decomposition (WSSVD). Compared with
RSVD, WSSVD can maintain the amplitude more efficiently
due to the fact that WSSVD is based on the theory of weighted
l1-norm minimization and has the corresponding amplitude
fidelity term. Lastly, we use an open dataset to verify the
performance of WSSVD in terms of impulse interference and
amplitude fidelity.

This paper is organized as follows: In Section II, we briefly
introduce the basic steps of SVD-based denoising methods.
Section III gives the sparse and low-rank interpretation of
SVD-based denoising methods. Section IV performs the ex-
perimental verification.

II. REVIEW OF SVD-BASED DENOISING METHODS

Commonly, the measured signal from the rotating machin-
ery consists of the fault components and the other components,
and the basic signal model can be described as follows:

y = x+ e (1)

where y ∈ Rm×1 (m is the dimension of the vector) is the
measured signal, x ∈ Rm×1 is the fault features which we
need to extract, and e ∈ Rm×1 is the discrete frequency
interference and background noise. SVD-based methods aim to
extract the fault features from discrete frequency interference
and noise. In this section, we briefly introduce the basic
procedures of SVD-based denoising methods and these basic
procedures are also called TSVD.

A. Construction of the matrix

Many different methods for constructing a matrix for SVD
have been proposed in the past studies, including the Hankel
matrix which is the most commonly used, the Toeplitz matrix,
and the cycle matrix. However, in this part, we will use a more
general way to describe the construction of Hankel matrix.
First, we need to define one operator Rk(·) which represents
to extract k−th patch from the time series and the inverse
operator is defined as RTk (·) to put the corresponding patch
back to the time series. Meanwhile, R(·) and RT (·) represent
conversion between the time series and the matrix form, and
this step can be implemented via a MATLAB function “buffer”
directly. For example, yk = Rk(y) ∈ Rl×1 and xk = Rk(x) ∈

Rl×1 represent the patches from the measured signal and the
fault signal with the patch length l respectively. Therefore, for
the measured signal y, its constructed matrix can be formed
as

Y = [y1, y2, . . . , yn]

= [R1(y), R2(y), . . . , Rn(y)] = R(y)
(2)

where Y ∈ Rl×n is the matrix version of y, n is the number of
total patches, l is the length of each patch. The value n depends
on l, m which is the length of the measured signal, and the
overlap, s which is the overlap between every two adjacent
blocks. If the overlap, s, is equal to l − 1, the constructed
matrix is equivalent to the Hankel matrix.

B. Decomposition

When we have the constructed matrix, we can perform the
signal decomposition (SVD). For the measured signal y, its
constructed matrix Y can be decomposed into the sum of
subspaces by SVD

Y = UΣV T =

min(l,n)=N∑
i=1

σiuiv
T
i (3)

where U ∈ Rl×l is the left singular matrix whose columns are
set as ui, Σ ∈ Rl×n is the diagonal matrix whose diagonal
elements are set as the singular value σi, and V ∈ Rn×n is the
right singular matrix whose columns are set as vi. It should
be mentioned that the singular value series σi is decreasing
(σ1 ≥ σ2 ≥ . . . ).

C. Denoising

In most SVD-based denoising methods, we often assume
that the fault features are lying in the corresponding sub-
space with larger singular values. Thus, how to select a
threshold to shrinkage the singular values is important, and
many researchers have proposed subtle methods embedding
the physical meanings. If the threshold τ is used to shrink
singular values, only the first t largest singular values remain,
i.e.

X̂ =

t∑
i=1

σiuiv
T
i (∀σi > τ) (4)

where X̂ is an approximation of the desired matrix X .

D. Reconstruction

When we get the denoised matrix X̂ (if Hankel matrix is
used as the constructed matrix, the direct or anti-diagonals
averaging methods mentioned in [4] can be used to reconstruct
the time series), we can recover the fault signal using a simple
least square estimation

min
x
||RT (X̂)− x||22. (5)

This optimization problem can be solved by letting the deriva-
tive of (5) equal to zero, and the close-form solution is

x̂ =

n∑
k=1

RTk (X̂)./

n∑
k=1

RTk (1) (6)



where 1 ∈ Rl×n is a matrix whose elements are all equal to
one, x̂ is the optimal solution of the optimization problem (5),
and ./ represents element-wise division.

III. SPARSE AND LOW-RANK INTREPRETATION

To make the intrepretation clearer, we first define a dictio-
nary D and its representation coefficients α as follows:

D = [u1v
T
1 , . . . , uiv

T
i , . . . , uNv

T
N ] ∈ R(l×n)×N ,

α = [α1, . . . , αi, . . . , αN ]T ∈ RN×1.
(7)

where αi is a scalar. Then if we further define a representation∑N
i=1 αiuiv

T
i = D ·α, we can define the following optimiza-

tion problem to find a approximation of the matrix X .

min
α

1

2
||Y −D · α||2F + λP (α) (8)

where ||·||F is the Frobenius norm, λ is the trade-off parameter,
and P (α) is the regularization of α. If the optimization
problem (8) does not have the regularization, the optimal
solution is directly the singular values of Y due to the fact
that D is a combination of singular matrices of Y .

In addition, We give Lemma 1 [13], which is the key of the
derivation

Lemma 1:

||D · α−D · α̂||2F = ||α− α̂||22 (9)

Proof 1:

||D · α−D · α̂||2F = ||
N∑
i=1

αiuiv
T
i a−

N∑
i=1

α̂iuiv
T
i ||2F

= ||Udiag(α)V T − Udiag(α̂)V T ||2F
= ||diag(α)− diag(α̂)||2F
= ||α− α̂||22

(10)

where diag(·) means to generate the singular value matrix. The
second equation to the third equation is due to the fact that U
and V are all orthonormal matrices.

A. Case 1: P (α) = ||α||0
If the regularization P (α) = ||α||0, the optimization prob-

lem (8) can be reformulated as the sparse approximation
problem

min
α

1

2
||Y −D · α||2F + λ||α||0 (11)

where || · ||0 is the l0-norm representing the number of non-
zero values. According to the SVD of Y and Lemma 1, the
optimization problem (11) can be simplified into

min
α

1

2
||D · σ −D · α||2F + λ||α||0

⇒min
α

1

2
||σ − α||22 + λ||α||0

(12)

where σ = [σ1, . . . , σi, . . . , σN ]T is the vector of singular
values.

Lemma 2: The optimal solution of (12) is the hard thresh-
olding α̂i = hard(σi,

√
2λ) ∀i ∈ [1, N ].

Proof 2: The problem can be separated into N sub-problems
which are defined as follows:

α̂i = arg min
αi

1

2
(σi − αi)2 + λ|αi|0 (13)

where |αi|0 = 1 when αi 6= 0. Otherwise, |αi|0 = 0.
From the optimization problem (13), there are only two

options for the value αi. In the first condition, αi = σi sets the
cost value as λ. In the second condition, αi = 0 sets the cost
value as 1

2σ
2
i . Therefore, we just need to compare these two

cost values, and if |σi| ≤
√

2λ, αi = 0 is the optimal solution.
Otherwise, αi = σi is the optimal solution for |σi| >

√
2λ.

The final solver can be concluded as:

α̂i = hard(σi,
√

2λ) = sgn(σi)max
{
|σi|,
√

2λ
}

(14)

where sgn(·) extracts the sign of a real number, max {·, ·}
extracts the larger value in the curly braces.

According to Lemma 2, we can directly find an approxima-
tion of X , e.g. X̂ =

∑t′

i=1 σiuiv
T
i , ∀σi >

√
2λ. Based on

Lemma 2, we can have the following theorem.
Theorem 1: TSVD is equivalent to the sparse approximation

problem (l0-norm minimization) in (11), when the threshold
τ is equivalent to

√
2λ.

B. Case 2: P (α) = ||α||1
If the regularization P (α) = ||α||1, the optimization prob-

lem (8) can be reformulated as the sparse approximation
problem (l1-norm minimization)

min
α

1

2
||Y −D · α||2F + λ||α||1 (15)

where || · ||1 is the l1-norm representing the sum of absolute
values. Similar to the derivation in (12), the optimiation
problem (15) can be simplified into

min
α

1

2
||σ − α||22 + λ||α||1 (16)

Lemma 3: The optimal solution of (16) is called the soft
thresholding [14] α̂i = soft(σi, λ) ∀i ∈ [1, N ].

Proof 3: Additionally, it is very easy to deduce the optimal
value based on sub-gradient method [15]. The sub-gradient of
|αi| is defined as follows:

∂ (|αi|) =


1 αi > 0

[−1, 1] αi = 0

−1 αi < 0

(17)

Thus, we can let the first derivative to be zero, and the
equality (18) can be used to find the optimal value of the
optimization problem (16).

αi − σi + λ∂(|αi|) = 0. (18)

Then, the final solver can be concluded as:

α̂i = soft(σi, λ) = sgn(σi)max {|σi| − λ, 0} (19)

According to Lemma 3, the approximation of X can be set
as X̂ =

∑t′

i=1 α̂iuiv
T
i . Based on results in [16], the above



approximation is equivalent to the following optimization
problem (also called low-rank approximation based on nuclear
norm)

min
X

1

2
||Y −X||2F + λ||X||∗ (20)

where ||X||∗ is the nuclear norm of X which represents the
sum of singular values.

Although TSVD is not strictly equivalent to the l1-norm
minimization and the low-rank approximation (20), there are
significant similarities. The only difference exists in hard
thresholding and soft thesholding, and hard thresholding is
cruder than soft thresholding.

C. Case 3: P (α) = ||α||1,w
In this case, we will discuss a more general version of l1-

norm minimization. If the regularization P (α) = ||α||1,w, the
optimization problem (8) can be reformulated as the sparse
approximation problem (weighted l1-norm minimization)

min
α

1

2
||Y −D · α||2F + λ||α||1,w (21)

where || · ||1,w is the weight l1-norm representing the weighted
sum of absolute values (|α||1,w =

∑N
i=1 wi|αi| ). Similar to

the derivation in (12) and (16), the optimiation problem (21)
can be simplified into

min
α

1

2
||σ − α||22 + λ||α||1,w (22)

Lemma 4: The optimal solution of (21) is called the
weighted soft thresholding α̂i = soft(σi, λwi) ∀i ∈ [1, N ].
In addition, the proof of Lemma 4 is similar to Lemma 3, so
we will not repeat it here.

Meanwhile, we introduce the weighted low-rank model di-
rectly to discuss the relationships between these three methods.

min
X

1

2
||Y −X||2F + λ||X||∗,w (23)

where ||X||∗,w =
∑N
i=1 wiαi and αi represents i−th singular

value of the matrix X .
Theorem 2: TSVD is equivalent to the weighted l1-norm

minimization in (11) and weighted low-rank model in (23),
when the weight w = [0, ..., 0︸ ︷︷ ︸

t

, 1, ..., 1]T .

Proof 4: If the weight w satisfies w1 ≤ w2 ≤ · · · ≤ wN , the
optimal solution of weighted low-rank model is the weighted
soft thresholding α̂i = soft(σi, λwi) ∀i ∈ [1, N ] [17].
Therefore, these three methods are equivalent to each other
when w = [0, ..., 0︸ ︷︷ ︸

t

, 1, ..., 1]T .

In fact, the method called reweighted SVD (RSVD) pro-
posed by Zhao [4] is also similar to the weighted l1-norm
minimization. The core idea of reweighted SVD is to design
an information indicator vector called periodic modulation
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Fig. 1. RMS of vibration signals.

intensity (PMI) p to rescale singular values. The weight w
is defined as follows:

wi =

{
0, pi < 1
pi∑
i pi
, pi ≥ 1 (24)

And the result α̂i is set as wiσi. However, this step will destroy
amplitude information of fault features, which is not suitable
for condition monitoring. Based on the above discussion about
Theorem 1 and Theorem 2, we use the weighted soft thresh-
olding to calculate the desired singular values. Meanwhile, the
weight w is defined as follows

wi =
1

ci
, where ci =

pi
max(p)

(25)

So, we construct the model called weighted soft singular
value decomposition (WSSVD) and its desired singular values
is calculated using αi = soft(σi, λwi) (Lemma 4). Meanwhile,
the approximation of X can be set as X̂ =

∑N
i=1 α̂iuiv

T
i .

IV. EXPERIMENTAL STUDY

In this section, we use an open dataset to verify the
performance of WSSVD considering the impulse interference
and the amplitude fidelity.

A. Experimental Description

In this experimental study, we use the measured data
from NSF I/UCR Center for Intelligent Maintenance Systems
(www.imscenter.net) [18]. This experiment is a lifetime exper-
iment collecting acceleration data every ten minutes, and the
sampling frequency is 20 kHz. The bearing in the test rig had
an outer race fault, and the fault characteristic frequency is
236.4 Hz according to geometric parameters of this bearing.

Root Mean Square (RMS) of the whole life cycle is shown
in Fig. 1. The early stage in file No.558 and the medium stage
in file No.703 are labelled in the curve. For verification of the
impulse interference ability of WSSVD, we add some random
impulses in the measured data as shown in Fig. 2 (a). It can be
observed from Fig. 2 (b) that the first order fault characteristic
frequency is submerged in the background noise and random
impulses.
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Fig. 2. (a) The measured data in time domain, and (b) its corresponding
square envelope spectrum.
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Fig. 3. (a) The extracted results of vibration signals at the early stage via
WSSVD, and (b) its corresponding square envelope spectrum.

B. Results

The trade-off parameter in WSSVD is set as 2 by trial
and error. As shown in Fig. 3 (a), the random impulses are
denoised by the proposed method completely. In addition, the
first three order fault characteristic frequencies are enhanced
in the square envelope spectrum shown in Fig. 3 (b) and these
amplitudes are close to 10−3. Compared to RSVD, we first
tune the weight in it finely, and the modified weight is defined
as

wi =

{
0, pi < 0.1
pi∑
i pi
, pi ≥ 0.1 . (26)

As shown in Fig. 4, RSVD can also extract the fault infor-
mation due to the fact that RSVD also has the function of
choosing the useful subspaces. However, the amplitude (10−5)
extracted by RSVD is much smaller than that (10−3) extracted
by WSSVD.

Besides, we also use TSVD to copy with this dataset and
the threshold in TSVD is calculated by the difference spectrum
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Fig. 4. (a) The extracted results of vibration signals at the early stage via
RSVD, and (b)its corresponding square envelope spectrum.
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Fig. 5. (a) The extracted results of vibration signals at the early stage via
TSVD, and (b)its corresponding square envelope spectrum.

which is used to capture the abrupt change. The extracted
results are shown in Fig. 5, and it can be observed that TSVD
can only extract the random impulses and ignore the fault
information.

V. CONCLUSION

This paper aims to discuss the sparse and low-rank meaning
of SVD-based denoising methods. The core conclusions are
classified into two categories when the dictionary is designed
using left and right singular matrices. The first one is that
TSVD is equivalent to sparse l0-norm minimization, and the
second is that TSVD and weighted low-rank model are the
special cases of sparse weighted l1-norm minimization. Based
on the description of weighted soft thresholding, we form a
model called WSSVD which can maintain amplitude more
efficiently than RSVD. Also, further studies can adopt other
advanced theories and methods existing in sparse and low-rank
fields to make SVD-based denoising methods more efficient.
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