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Abstract 

Remaining useful life (RUL) prediction plays a vital role in prognostics and health management (PHM) for 
improving the reliability and reducing the cycle cost of numerous mechanical systems. Deep learning (DL) 
models, especially deep convolutional neural networks (DCNNs), are becoming increasingly popular for RUL 
prediction, whereby state-of-the-art results have been achieved in recent studies. Most DL models only provide a 
point estimation of the target RUL, but it is highly desirable to have associated confidence intervals for any RUL 
estimate. To improve on existing methods, we construct a probabilistic RUL prediction framework to estimate the 
probability density of target outputs based on parametric and non-parametric approaches. The model output is an 
estimate of the probability density of the target RUL, rather than just a single point estimation. The main advantage 
of the proposed method is that the method can naturally provide a confidence interval (aleatoric uncertainty) of 
the target prediction. We verify the effectiveness of our constructed framework via a simple DCNN model on a 
publicly available degradation simulation dataset of turbine engines. The source codes will be released at 
https://github.com/ZhaoZhibin/Probabilistic_RUL_Prediction. 
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1. Introduction 
 

The quantity and range of condition monitoring 
data is increasingly rapid, with data collected from a 
wide range of sensors and from different industrial 
systems. This, in combination with modern big data 
techniques, has led to the popularity of Prognostics 
and Health Management (PHM) both in the research 
community and within industry [1]. One important 
ingredient of PHM is Remaining Useful Life (RUL) 
prediction – the estimate of how long a system or 
machine may continue to operate unhindered. RUL 
plays a vital role in preventing unexpected system 
downtime, which may result in a huge cost or even 
casualties [2]. 

According to a systematic review paper published 
by Lei et al. [3], the RUL prediction methods can be 
classified into three categories: data-driven model-
based methods, physics model-based methods, and 
hybrid methods. Given the complexity of modern 
industrial systems, and the quantity of associated 
monitoring data, data-driven model-based methods 
have become increasingly popular and shown 
successful results in RUL prediction.  

Traditional machine learning algorithms, such as 
support vector machine [4] and tree-based 
approaches [5], need hand-crafted features as their 
inputs, which limits the performance improvement in 
the big data era. Alternatively, deep learning (DL) 

[6], which allows automatic feature extraction 
without extra domain knowledge, has become one of 
the most promising data-driven model-based 
approaches. 

Many DL models have been applied to the RUL 
prediction, such as deep autoencoders (DAEs) [7], 
deep convolutional neural networks (DCNNs) [8], 
and deep recurrent neural networks (DRNNs) [9]. 
However, most of these DL models only provide a 
point estimation of the RUL, which means that the 
prediction uncertainty is often neglected. 

In reality, any RUL prediction is subject to 
uncertainty caused by factors such as input 
uncertainty imported by errors of measurements or 
operating conditions also called aleatoric 
uncertainty, and model uncertainty introduced by the 
representation capability of models, also called 
epistemic uncertainty [10]. 

The quantification of the prediction uncertainty is 
important for assisting decision making, including 
identifying alternatives in PHM systems. Without 
prediction uncertainty, it would be impossible for 
decision-makers to quantify the trustworthiness of 
DL model results. 

Despite the importance of prediction uncertainty 
quantification, there is limited research covering this 
drawback of DL-based RUL prediction methods. 
Recently, Liu et al. [11] and Jason et al. [12] applied 
the bootstrap method to different neural networks for 
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uncertainty quantification. However, this method 
requires the original training dataset to be repeatedly 
resampled and is time-consuming. Peng et al. [13], 
Wang et al. [14] and Mathias et al. [15] introduced 
the Bayesian DL framework based on probabilistic 
programming and used variational inferences to 
estimate the model parameters as well as the 
uncertainty. These approaches only model epistemic 
uncertainty of parameters. Kim et al. [16] 
systematically modeled two types of uncertainties 
embedded in prognostics, but they only assumed 
Gaussian noise in degradation processes. 

In this paper, we aim to simplify the process of 
aleatoric uncertainty quantification and provide a 
probabilistic RUL prediction framework with 
sufficient flexibility to work with existing DL 
models. The framework estimates the probability 
density of target outputs using both parametric and 
non-parametric approaches. Inspired by [17,18], the 
parametric approach estimates parameters of the 
hypothetical distribution based on maximum 
likelihood estimation (MLE), and the non-
parametric approach predicts multiple RULs to 
estimate a posterior RUL distribution via quantile 
regression. 

To demonstrate the approach, we apply it to a 
DCNN. The DCNN we used is a shortened and 
modified version of ResNet [19], named MResNet9. 
Six metrics for evaluating the performance of 
predicting ground-truth RUL and one metric for 
evaluating the performance of probabilistic RUL 
prediction are constructed, and we observe that 
MResNet9 can achieve acceptable results in the 
probabilistic RUL prediction framework and 
aleatoric uncertainty quantification based on 
experimental verification.  

The rest of this paper is organized as follows: 
Section 2 describes the details of the point 
estimation, the probabilistic RUL prediction 
framework, and the DCNN architecture. In Section 
3, we perform experimental verification on a public 
dataset. Finally, Section 4 summarizes the main 
conclusions of this paper. 

2. Methodology 

In this section, we first review point estimation 
methods, and then introduce the probabilistic RUL 
prediction framework and its implementation details 
for deep learning models. After that, we further 
describe the DCNN architecture used in the 
probabilistic RUL prediction method. 

2.1. Point estimation 

Mathematically, the real RUL, 𝑦" , at the 
timestamp 𝑡 can be formulated as: 

 

𝑦" = 𝑓(𝑥"; 𝜃) 	+ 𝜀"                                                     (1) 
 
where 𝑓(𝑥"; 𝜃)  denotes a representation function 
with the input data 𝑥"  and learned parameters 𝜃 , 
such as a deep neural network and 𝜀"  is the 
additional noise. The input data, 𝑥" , may contain 
multiple historical observations, 𝑧",… 𝑧"1234 , ( 𝑙 
denotes the length of the sliding window) and each 
historical observation may be high-dimensional, 
containing measurements related to machine 
conditions, such as vibration sensors and 
temperatures.  

A common method to predict RULs is to assume 
that the noise 𝜀"~𝒩(0, 𝜎:)  follows the same 
Gaussian distribution at all timestamps. Under this 
assumption, the parameters 𝜃  of the deep neural 
network can be estimated by solving the following 
optimization problem using the training samples 
{𝑥<, 𝑦<}<>4? : 

 
𝜃∗ = argminG 	

4
?
∑ (𝑦< − 𝑓(𝑥<; 𝜃)):?
<>4                   (2) 

 
After solving the above optimization problem and 
obtaining the estimated parameters 𝜃∗, the predicted 
RUL at the timestamp 𝑡 is given by 𝑦J" = 𝑓(𝑥"; 𝜃∗), 
which is a point estimate of 𝑦". 

2.2. Probabilistic RUL prediction framework 

Probabilistic RUL prediction at time 𝑡  can be 
expressed as modeling the conditional distribution 
of the RUL 𝑦": 

 
ℙ(𝑦"|𝑥") ⟶ ℙ(𝑦"|𝑧",… 𝑧"123:, 𝑧"1234)	                  (3) 
 
It is worth mentioning that the input data, 𝑥" , 
represents multiple historical observations, 
𝑧",… 𝑧"1234 with a sliding window 𝑙. After obtaining 
the conditional distribution, the point estimate RUL, 
𝑦J", can be obtained by the distribution expectation: 
 
𝑦J" = 𝔼[𝑦"|𝑥"]                                                        (4) 
 

Under the above definition, the main challenge 
becomes how to model the conditional distribution 
via designing a neural network 𝑓(𝑥"; 𝜃)  that 
incorporates historical observations and RULs. 

Inspired by [17,18], we establish a probabilistic 
RUL prediction framework that (i) estimates 
parameters of a posterior RUL distribution based on 
MLE and (ii) generates an estimation of a posterior 
RUL distribution by a non-parametric method 
estimating multiple RULs using quantile regression 
[20]. Benefiting from the flexibility of a neural 
network, that is the number of network outputs can 
adapt to the target requirement, we can directly 
model the parameters of the hypothetical 
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distribution in the parametric approach and 
concerned quantile points in the non-parametric 
approach. 

Parametric approach: Given a specific 
distribution, the MLE-induced loss is used as a loss 
function to optimize the corresponding parameters 
of the representation function. For simplicity, a 
common way to model aleatoric uncertainties is to 
use Gaussian distribution, which means that we 
assume 𝜀"  is the additional Gaussian noise. Given 
training samples {𝑥<, 𝑦<}<>4? , the neural network, 
𝑓(𝑥<; 𝜃) , outputs the mean 𝜇<  and the standard 
deviation 𝜎"  of Gaussian distribution. Then we 
apply the negative log-likelihood of all training 
samples to construct the following optimization 
problem: 
𝜃∗ = argminG −

4
?
∑ log	ℙ(𝑦<|𝜇<,𝜎<)?
<>4 		    

     = argminG
4
?
∑ T(UV1WV)

X

:YV
X + Z[\]YV

X^
:

_?
<>4                (5) 

The standard deviation 𝜎< should be strictly positive. 
Furthermore, a large 𝜎<  is undesirable, especially 
when the RUL is short. To address the first 
constraint, we apply the softplus activation function 
to ensure the positivity. To address the second 
constraint, similar to [16], we add a variance decay 
term in the final loss function, which is reformulated 
as: 

𝜃∗ = argminG
4
?
∑ T(UV1WV)

X

:YV
X + Z[\]YV

X^
:

+ 𝜆𝜎<a_?
<>4    (6) 

where 𝜆  is the trade-off parameter controlling the 
importance of the variance decay term. We can use 
the mean 𝜇" as the predicted RUL and the standard 
deviation 𝜎"  to evaluate the uncertainties at the 
timestamp 𝑡. 

The main disadvantage of the parametric 
approach is that it is distribution-specific. If the 
assumed distribution cannot represent the real-life 
uncertainty distribution, the performance will be 
sub-optimal. 

Non-parametric approach: When it is difficult to 
determine a specific distribution, a non-parametric 
approach is possible. For the non-parametric 
approach, multiple predicted RULs at different 
quantile levels can be obtained by quantile 
regression. Given the real RUL 𝑦<  and the neural 
network 𝑓(𝑥<; 𝜃) output 𝑦J<

b  at a quantile level 𝑞 ∈
[0,1], the quantile regression loss is defined as: 
 
𝐿b]𝑦<, 𝑦J<

b^ = 𝑞]𝑦< − 𝑦J<
b^3 + (1 − 𝑞)]𝑦J<

b − 𝑦<^
3

 (7) 
 
where (𝑦<)3 = max(0, 𝑦<)  means that we only 
maintain the positive part and let the negative part 
equal to zero. With that, given multiple quantile 
levels 𝑄 = {𝑞4, . . . , 𝑞j} , the final optimization 
problem using the quantile loss of all training 
samples can be formulated as: 
 

𝜃∗ = argminG
4
?
∑ ∑ 𝐿bk]𝑦<, 𝑦J<

bk^j
l>4

?
<>4              (8) 

 
For example, given different quantile levels 𝑄 =
{0.1,0.5,0.9}, we can use the quantile 𝑦J"o.p  as the 
predicted RUL and other two quantiles [𝑦J"o.q, 𝑦J"o.4] 
as interval estimation with 80% confidence interval 
at the timestamp 𝑡. 

Although quantile regression is distribution-free, 
it cannot obtain the whole distribution. That is the 
non-parametric approach is not additive for a certain 
period. 

2.3. DCNN architecture 

In the above probabilistic RUL prediction 
framework, one important detail is left unanswered, 
that is how to construct a deep neural network 
𝑓(𝑥"; 𝜃)  incorporating historical observations and 
RULs. Among different deep neural networks, 
DCNN possessing a strong ability of representative 
learning has become increasingly popular and 
achieve significant success in a wide range of fields. 
Meanwhile, the ResNet proposed by He [19], is one 
of the most popular backbones in DCNNs, and its 
deep version is the first DCNN exceeding the human 
baseline accuracy. Therefore, in this paper, we 
constructed a MResNet9 which is a shortened and 
modified version of ResNet. 

The architecture of MResNet9 is shown in Fig. 1. 
In the figure, the number before Conv2d is the size 
of the convolution kernel. The number after Conv2d 
is the quantity of the convolution kernels, and the 
number after Fc is the output dimension (in this case, 
a variable, Parameters). /2 means that the feature 
dimensions are halved. In addition, BN represents 
the Batch Normalization (BN) layer, ReLU 
represents a Rectified Linear Unit activation 
function, and Dropout represents the Dropout layer 
whose rate is set to 0.2. The final output depends on 
whether we wish the posterior to be a point estimate, 
a parametric distribution or a non-parametric 
method. For example, if a point estimation is 
required, the final output is the RUL. Alternatively, 
if a non-parametric method is used, the final output 
should be a set of quantiles. It is also worth 
mentioning that the convolutional operation does not 
work on the second dimensionality in this 
architecture. 
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Fig. 1. The architecture of MResNet9. The solid line denotes that 
the dimension of input features is the same as that of output 
features, and the dashed line denotes that the dimension of input 
features is reduced by half to match that of output features. 

3. Experimental verification 

In this section, we use one publicly available 
turbofan engine degradation simulation dataset 
provided by the Prognostics CoE at NASA Ames to 
verify the performance of our constructed 
probabilistic RUL prediction framework. All the 
experiments are performed using the PyTorch 
library, running on the Ubuntu 16.04.6 GNU/Linux 
and GeForce GTX TITAN X. 

3.1. C-MAPSS dataset 

The C-MAPSS dataset is a turbofan engine 
degradation simulation dataset generated by C-
MAPSS, a suitable platform that can record 
measurements from different sensors corresponding 
to predefined health-related parameters [21,22]. 
This dataset consists of four different sub-datasets 
simulated under different compositions of two 
working conditions and two fault modes. A total of 
21 sensor measurements are collected in each sub-
dataset that includes a fleet of engines. The detailed 
information is listed in Table 1. The aim is to predict 
the RULs of testing engine units (EU) via run-to-
failure training EU. In this paper, we choose FD001 
and FD003 with the same condition and different 
fault modes to verify the performance of our 
constructed probabilistic RUL prediction 
framework. 

Table 1. Detailed information of the C-MAPSS dataset. 

Sub-dataset names FD001 FD002 FD003 FD004 

Conditions 1 6 1 6 

Fault modes 1 1 2 2 

EU for training 100 260 100 249 

EU for testing 100 259 100 248 

3.2. Data pre-processing 

1) Sensor selection: A total of 21 sensor 
measurements were selected, but there are some 
measurements whose variances are too small to 
provide any useful information. Thus, we drop any 
measurement whose variance was smaller than a 
constant threshold 1 ∗ 101r. The remaining set of 14 
sensor measurements 𝐶 contained sensors 2, 3, 4, 7, 
8, 9, 11, 12, 13, 14, 15, 17, 20, and 21 from the 
original dataset. 

2) Normalization: For the stability of model 
training and testing, each sensor measurement is 
normalized using the following formulae: 

𝑆u"vw<x1xyvl = 2 ∗
{|
}~�V�1w|

}~�V�

�|
}~�V�1w|

}~�V� − 1, 𝑗 ∈ 𝐶		 

𝑆u"��"1xyvl = 2 ∗
{|
}��}1w|

}~�V�

�|
}~�V�1w|

}~�V� − 1, 𝑗 ∈ 𝐶											 

where 𝑆u"vw<x  and 𝑆u"��" denote measurements of the 
sensor 𝑗 from training and testing sets, respectively. 
𝑎u"vw<x  and 𝑏u"vw<x  represent the minimum value and 
the maximum value of measurements of sensor j 
from the training set. 𝑆u"vw<x1xyvl  and 𝑆u"��"1xyvl 
are normalized measurements of the sensor 𝑗 from 
training and testing sets, respectively. 

3) Sample generation: A commonly used time 
window embedding method was applied to generate 
the training and testing samples. That is the input 
data, 𝑥" , contains multiple historical observations 
𝑧", . . . , 𝑧"1234 , where 𝑘 is the length of the sliding 
window. In this paper, we set 𝑙 equal to 30. Finally, 
the dimension of each training sample was 1x30x14 
which represents an input channel, window length, 
and sensor number respectively. In addition, the 
RUL labels of the training samples also had a huge 
impact on the testing performance. Two methods, 
including generating RUL labels by the percentages 
of the whole life [14] and generating RUL labels by 
a piecewise linear function with a constant RUL in 
the early stage [8,23], are often applied to the RUL 
prediction of C-MAPSS. In this paper, we simply 
adopted the latter one and set the constant RUL 
equal to 125. 

3.3. Evaluation indicators 

The performance was evaluated by Root Mean 
Squared Error (RMSE), Root Mean Squared 
Logarithmic Error (RMLSE), Mean Absolute Error 
(MAE), Median Absolute Deviation (MAD), and 
Score Function (SF). These metrics are defined as 
follows: 

RMSE = �4
�
∑ 𝛿�:�
�>4 , 𝛿� = 	𝑦J� − 𝑦�	  

RMLSE = �4
�
∑ ]log(𝑦� + 1) − log(𝑦J� + 1)^

:�
�>4   

MAE = 4
�
∑ |𝛿�|�
�>4   

R2 = 1 −∑ δ�:�
�>4 ∑ (𝑦� − 𝑦l�wx):�

�>4⁄   

SF = ∑ SF��
�>4 ,  SF� = �𝑒

1�� 4�⁄ − 1,			𝛿� < 0
𝑒�� 4o⁄ − 1,			𝛿� ≥ 0

  

 
where 𝐾  is the number of testing samples, 𝑦J� 
denotes the predicted RUL, 𝑦� denotes the real RUL 
of the sample 𝑘, and 𝑦l�wx denotes the mean of real 
RULs respectively. RMSE is a commonly used 
metric in the RUL prediction. RMLSE will be useful 
when handling right skewed labels. MAE is more 
robust to outliers. R2 can eliminate the effect of 
dispersion of the original data. SF is a scoring 
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function used in the 2008 Prognostics and Health 
Management Data Challenge [21]. 

The performance of probabilistic RUL prediction 
is evaluated by the quantile loss at a predefined 
quantile level, 𝑞, denoted as QL-𝑞 (e.g., QL-0.9). 

3.4. Experimental results 

We trained the model using the Adam optimizer 
with initial learning rate 0.001, max epoch as 80, and 
mini-batch size as 256. In addition, a learning rate 
annealing method called ‘step’ was applied this 
decreased the learning rate via multiplying 0.1 in 
epochs 40 and 60. To avoid randomness, the final 
accuracy is the average of the last 10 epochs. 

The final results of two datasets are shown in 
Table 2 and Table 3. M1 represents the point 
estimation. M2 represents the non-parametric 
approach based on quantile regression with the 
quantile levels 𝑄 = {0.1,0.5,0.9}. M3-1 represents 
the parametric approach based on Gaussian 
assumption with the trade-off parameter 𝜆 = 1, and 
M3-2 represents 𝜆 = 101p. It should be noted that 
the max epoch is 180 and declined epochs are 120 
and 160 for M3-2, because a small 𝜆 will allow a 
relatively large variance which leads to the tardiness 
of the learning procedure. We can observe that the 
probabilistic RUL prediction framework can 
achieve considerable results and even higher 
accuracies than the point estimation. 

Performance of the parametric distribution 
estimate is similar to the non-parametric method. 
This might be because that the true prediction 
uncertainty obeys a Gaussian distribution to a 
certain extent. Besides, QL-0.1 and QL-0.9 of M3-1 
are much larger than those of M3-2, which results 
from a large trade-off parameter 𝜆 . In the next 
subsection, we would explain how the parameter 𝜆 
affected the uncertainty quantification. 

Table 2. Accuracy comparisons of three methods on FD001. 

Datasets FD001 

 M1 M2 M3-1 M3-2 

RSME 13.26 13.08 12.48 12.99 

RMLSE 0.1991 0.2093 0.1936 0.1999 

MAE 9.853 9.619 9.409 9.954 

R2 0.8905 0.8934 0.9031 0.895 

SF 290.53 292.9 242.3 245.2 

QL-0.1 - 2.154 3.848 1.986 

QL-0.9 - 2.288 3.890 2.356 

Table 3. Accuracy comparisons of three methods on FD003. 

Datasets FD003 

 M1 M2 M3-1 M3-2 

RSME 12.66 11.90 12.71 12.60 

RMLSE 0.1821 0.1671 0.1820 0.1654 

MAE 9.428 8.636 9.362 8.967 

R2 0.8955 0.9077 0.8948 0.8965 

SF 276.8 251.0 302.6 283.8 

QL-0.1 - 2.043 4.796 2.350 

QL-0.9 - 1.800 2.908 1.988 

To further verify the performance of our 
probabilistic RUL prediction framework, we also 
compared our approach with other state-of-the-art 
methods, including Support Vector Regression 
(SVR) copied from [24], DCNN [8] (point 
estimation) and Bayesian DL [16]. We can observe 
that our proposed approach can achieve a slightly 
better performance than other methods in both 
datasets. 

Table 4. Accuracy comparisons of other state-of-the-art methods, 
and accuracies of other methods are directly copied from the 
original paper. 

Datasets FD001 FD003 

Metrics RMSE SF RMSE SF 

SVR  20.96 1381.5 21.05 1598.3 

DCNN [8] 12.61 273.7 12.64 284.1 

Bayesian DL [16] 12.19 267.2 12.07 409.4 

MResNet9 12.48 242.3 11.90 251.0 

3.5. Uncertainty estimation 

To make the aleatoric uncertainty quantification 
more understandable, we show the [10%, 90%] 
prediction interval estimation (that is 80% 
confidence interval) of RUL (EU24 in FD003) using 
both parametric and non-parametric approaches in 
Fig. 1. All the methods provided a decreasing 
uncertainty over the cycle, which is very useful for 
the RUL prediction in practice, as the shorter RUL 
is associated with higher risk. As shown in Fig. 1 (a) 
and (b), when the trade-off parameter 𝜆  of the 
parametric approach is too large, the learning 
procedure will pay more attention to the variance 
decay term, which means that the model would 
prefer to output a relatively small variance. From the 
perspective of probability, a large 𝜆  means we 
assume a strong prior of the variance in the loss 
function, which might destroy the assumed 
parametric distribution. 

4. Conclusion 

We constructed a probabilistic RUL prediction 
framework using parametric and non-parametric 
approaches to estimate the probability density of 
target outputs based on a DCNN model. Our 
proposed framework can provide not only a point 
estimate of the RUL, but also the associated 
confidence interval of the RUL prediction. In 
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addition, one publicly available turbofan engine 
degradation simulation dataset was used to verify 
the performance of our solution via comparisons 
with other state-of-the-art methods. 

Acknowledgements 

This work was supported by Natural Science 
Foundation of China (No. 51835009, No. 51705398) 
and the Fundamental Research Funds for the Central 
Universities (xzy022019072). 

 

Fig. 1. The [10%, 90%] prediction interval estimation (80% confidence interval) of RUL of EU24 in FD003. (a) the parametric approach 
with 𝜆 = 101p; (b) the parametric approach with 𝜆 = 1; (c) the nonparametric approach.
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