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Abstract—Vibration signal analysis has become one of the
important methods for machinery fault diagnosis. Extraction of
weak fault features from vibration signals with heavy background
noise remains a challenging problem. In this paper, we first intro-
duce the idea of algorithm-aware sparsity-assisted methods for
fault feature enhancement, which extends model-aware sparsity-
assisted fault diagnosis and allows more flexible and convenient
algorithm design. In the framework of algorithm-aware methods,
we define the generalized structured shrinkage operators and
construct the generalized structured shrinkage algorithm (GSSA)
to overcome the disadvantages of l1-norm regularization based
fault feature enhancement methods. We then perform a series
of simulation studies and two experimental cases to verify the
effectiveness of the proposed method. Additionally, comparisons
with model-aware methods, including basis pursuit denoising
and windowed-group-lasso, and fast kurtogram further verify
the advantages of GSSA for weak fault feature enhancement.

Index Terms—Algorithm-aware method, fault diagnosis, gen-
eralized structured shrinkage operators, social sparsity

I. INTRODUCTION

CONDITION-based maintenance (CBM) of rotating ma-
chinery has become an essential part of systems in a

wide range of mechanical systems, such as wind turbines, he-
licopters, and aero-engines. Some key components of rotating
machinery, including bearings and gearboxes, often operate in
poor conditions and are likely to generate mechanical faults to
make system failure. Therefore, it is important to detect these
faults of key components quickly and accurately. In CBM,
vibration signal analysis is a widely used and validated etch-
nique for fault diagnosis. Traditional vibration signal analysis
methods, such as time domain statistics and classical spectrum
analysis techniques, often fail to diagnose weak faults as
fault features are often submerged by strong background noise
and harmonic interference. Other signal processing algorithms
such as spectral kurtosis (SK) [1], cyclostationary descriptors
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[2], minimum entropy deconvolution [2], time-frequency anal-
ysis [3], empirical mode decomposition [4], and stochastic
resonance [5] have previously been proposed to address this
issue.

Over the past two decades, wavelet denoising has been
proven to be a powerful tool for signal processing. The main
steps of wavelet denoising consist of transforming the signal
into the wavelet domain, shrinking the wavelet coefficients
[6], and calculating the inverse wavelet transform. However,
because these strategies treat each coefficient independently,
they usually fail to model the similarity between coefficients.
Therefore, Cai et al. [7] incorporated information on neigh-
boring coefficients into wavelet denoising and proposed the
neighboring coefficients denoising (NCD) for image process-
ing and further, they proposed a data-driven block thresholding
approach to incorporate more coefficients. Sendur et al. [8]
proposed bivariate shrinkage functions for wavelet denoising.
For fault diagnosis, Chen et al. [9] and He et al. [10] used NCD
to improve the performance of fault feature extraction. Sun et
al. [11] and Chen et al. [12] used the data-driven block thresh-
old for condition monitoring. Hussein et al. [13] considered
the disadvantages of conventional thresholding functions and
proposed the histogram-based threshold estimation method for
signal denoising. In addition, Yu et al. [14] used the sparse
coding shrinkage to improve the performance of weak fault
feature extraction. Although researchers have tried to add more
structural information into thresholding strategies there has
been limited improvement in wavelet denoising methods.

Recently, sparsity-assisted signal processing methods are
becoming increasingly popular in machinery fault diagnosis
[15]–[18]. The core idea of sparsity-assisted fault diagnosis
mainly consists of using sparse priors of fault features under
some dictionaries (such as wavelet transform) to establish
a sparse model and solving the established model by an
optimization algorithm. We call these model-aware methods as
they are mainly concerned with modeling the sparse prior by
designing the corresponding regularization and establishing an
explicit mathematical model. Among these methods, l1−norm
regularization methods, such as basis pursuit denoising (BPD)
[19], are becoming increasingly popular and have been suc-
cessfully used in machinery condition monitoring. Yang et al.
[20] proposed a novel sparse time-frequency representation
method based on l1−norm regularization (BPD) and applied
it to incipient fault diagnosis of wind turbine drive train.
However, BPD has three serious problems for machinery
fault diagnosis. First, BPD often underestimates the energy
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of fault feature, leading to incorrect diagnosis. To enhance
the energy of fault features, Zhang et al. [21], Huang et
al. [22], Wang et al. [23], and Zhao et al. [24] proposed
new penalties based on model-aware methods for rotating
machinery fault diagnosis. Second, BPD assumes that each
coefficient is independent and identically distributed (IID), but
wavelet coefficients of fault features often appear in groups,
especially under redundant transforms. To incorporate the
relationship between coefficients, He et al. [25] and Sun et al.
[26] used the structured information (They still established an
explicit model to sovle the problem) to detect faults in rotating
machines, including group sparsity and persistent sparsity.
Finally, BPD does not consider the multiscale property of
wavelet transform at all. However, the fault signal often
shows the nonstationary property and the multiscale property
is very useful for nonstationary signal processing. For the
sake of using the multiscale property, He et al. [27] used the
periodic group-sparse model in each wavelet transform layer
and blended in the multiscale period sequences. In conclusion,
previous published papers did not consider all the disadvan-
tages of l1−norm regularization methods together. In addition,
an explicit model is critical to model-aware methods which
means that we need to find penalties corresponding to sparse
priors to form an explicit optimization problem. However,
designing the penalties promoting properties simultaneously to
overcome the disadvantages of l1−norm regularization meth-
ods is difficult. Inversely, designing the thresholding functions
from the aspect of wavelet denoising is simpler and has shown
good performance in the previous studies.

In this paper, inspired by thresholding strategies from
wavelet denoising, we introduce the idea of algorithm-aware
methods for weak feature enhancement, which extends the tra-
ditional modeling framework (model-aware sparsity-assisted
methods). To be more specific, in this paper, we propose
generalized structured shrinkage operators and replace the
operator in the proximal gradient descent algorithm with these
proposed operators to form the iterative optimization algorithm
called generalized structured shrinkage algorithm (GSSA) for
weak fault feature enhancement. Finally, we perform a series
of numerical simulations and experimental cases to further
compare the performance of model-aware and algorithm-aware
methods.

The main contributions of this paper are summarized in two
categories:
1) We provide a new idea called the algorithm-aware method

which breakthroughes the model-aware sparsity-assisted
fault diagnosis and allows to design algorithms more
flexible and convenient, and the algorithm-aware method
uses existing algorithmic flows of sparsity-assisted methods
through focusing on designing thresholding functions to
develop new methods.

2) To introduce the structured information, we bring in
the structured shrinkage operator. Using the idea of the
algorithm-aware method, we further improve the structured
shrinkage operator through considering unbiased and multi-
scale properties and construct the general expression of the
structured shrinkage operator to copy with shortcomings of
BPD (representing the model-aware method).

The remaining parts of this paper are organized as follows.
In Section II, we review the sparsity-assisited fault diagnosis
based on l1−norm regularization. Section III explains the
main idea of algorithm-aware methods, proposes generalized
structured shrinkage operators, and forms GSSA for weak fault
feature enhancement. In Section IV, we analyze the parameter
selection in depth and provide the performance verification
of the proposed algorithm. In Section V, we further verify the
effectiveness and robustness of the proposed algorithm through
experimental cases. Section VI states the conclusion of this
paper.

II. SPARSITY-ASSISITED FAULT DIAGNOSIS BASED ON
l1−NORM REGULARIZATION

In this section, we briefly review the main idea of sparsity-
assisited fault diagnosis based on l1−norm regularization.

We assume that the measured vibration signal is y ∈ RN
with a signal of interests, s ∈ RN , corrupted by heavy
background noise n ∈ RN . Thus, the observed vibration signal
can be modeled as:

y = s+ n = Dx+ n (1)

where D ∈ RN×M denotes the matrix of the dictionary, and
the representation coefficients of s in D are represented by
x ∈ RM .

A general relaxation and unconstrained formulation to esti-
mate x from y can be written in the Lagrangian form:

x̂ = argmin
x

1

2
‖y −Dx‖22 + λP (x) (2)

where P (·) denotes the penalty (regularization) which needs
to be carefully designed according to sparse priors and λ > 0
is a trade-off regularization parameter. If the penalty P (·) is
convex, standard algorithms such as the toolbox CVX [28] and
the proximal gradient descent (PGD) [29] can be used to solve
this problem. The most popular convex penalty for sparsity-
assisited fault diagnosis is ‖x‖1 where ‖x‖1 =

∑
n |xn| is

the l1-norm of x ∈ RM , and the optimization problem (2) is
reduced to BPD [19]:

x̂ = argmin
x

1

2
‖y −Dx‖22 + λ‖x‖1. (3)

As the algorithm proposed in this paper is based on PGD,
we briefly describe PGD here. Recently research [30] has
shown that even if the penalty P (x) is not convex, PGD
still displays good convergence properties. We first define the
proximity operator for a proper and lower semicontinuous
function P (·) as

proxP,β(z) = argmin
x

1

2β
(z − x)2 + P (x) (4)

where β > 0 is the penalty parameter and z and x are
scalar values. Proximity operators proxP,β(z) for P (x) do not
always have a closed-form solution and they are sometimes
very difficult to calculate. proxP,β(·) is element-by-element
for any vector input and are separable such that proxP,β(z) =
[proxP,β(z1), . . . , proxP,β(zM )]T. One well-known operator is
the soft-thresholding operator defined as:

prox‖·‖1,β(z) = sign(z)max (|z| − β, 0) . (5)
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This operator is used in the Iterative Shrinkage-Thresholding
Algorithm (ISTA) for the optimization problem (3) [31] and
is a special case of PGD.

Algorithm 1 describes how PGD may be applied to solve
the optimization problem in (2). µ is the updating step, ‖D‖2
represents the square root of the maximum eigenvalue of the
matrix DTD, and Iter is the number of iterations.

Algorithm 1 : PGD
1: Initialization: x(0), µ < ‖D‖−2

2 , Iter
2: Procedure:
3: for i = 0 to Iter do
4: z(i) = x(i) − µDT(Dx(i) − y)
5: x(i+1) = proxP,λµ(z

(i)) (for example, (5) for ISTA)
6: end for
7: return x(i+1)

The optimization problem described in equation (2) requires
P (x) to be explicitly defined (e.g. l1-norm, group sparse
[32] and periodic group sparse [25]), to generate the sparsity-
assisted model. It is known as a model-aware method as one
needs to establish the model before deducing a corresponding
algorithm. It is worth mentioning that compressed sensing
is not directly related to the model-aware method and com-
pressed sensing is a more general concept which is not limited
to the model-aware method.

Since the paper is not concerned with the choice of D, we
simply use a tunable Q−Factor wavelet transform (TQWT)
[33], with parameters adopted to match the oscillatory wave-
form of fault features. Thus, the Q-factor, the redundant factor
r and the decomposition levels J are set to be 2 ≤ Q ≤ 5,
2 ≤ r ≤ 5 and J = 10 respectively. Further details on
parameter selection methods can refer to [34].

TQWT is not a “uniform” tight frame, which means that
rows of D do not have the same energy. Therefore, we need
to treat the regularization parameter λ differently at different
levels, and we set the parameter λ as λj = c‖ϕj‖2, (j =
1, 2, . . . , J + 1) where ϕj with j = 1, 2, . . . , J is the wavelet
function at the level j, ϕJ+1 is the scaling function at the level
J + 1, and c is a constant value.

III. ALGORITHM-AWARE METHOD

A. Core idea

As model-aware methods generate the corresponding al-
gorithm through a certain optimization model and a specific
penalty, therefore, it may not copy with complex priors, such
as the multi-scale property [35].

The core idea of our algorithm-aware method is to use
existing algorithmic flows of sparsity-assisted methods and to
replace the thresholding functions in existing algorithmic flows
to develop new methods. Fig. 1 shows the idea in mode detail.
(k1, k2, and k3 are the central coefficients in the neighborhoods
N (k1),N (k2), andN (k3) respectively, whereN (·) represents
one type of the window, such as the Gaussian window) We
summarize PGD in the form of a flowchart where the proximal
projection plays the same role as the thresholding strategy of
the wavelet denoising.

k
k k

k k k

Fig. 1. Explanation of the algorithm-aware method and social sparsity
structure of the time-frequency domain in the right bottom.

Here, we replace the original proximity operator used in
PGD, based on thresholding strategies used for wavelet denois-
ing. Because we directly design the algorithm from PGD, it is
very difficult to find a model corresponding to the proposed
algorithm like (3). This is the reason why this new idea is
called the algorithm-aware method. Since we avoid to design
the specific regularization term and the optimization model,
the idea of the algorithm-aware method allows to design
algorithms more flexible and convenient.

B. Designing thresholding functions

The l1-norm penalty and its soft-thresholding operator
assume that each coefficient is independent and identically
distributed, but wavelet coefficients of fault features often
appear in groups [12]. To introduce the function of the block
(or group sparse), Kowalski et al. [36] introduced the concept
of “social sparsity” to shrink the coefficients by considering
the weight of the coefficient’s neighborhood. Its performance
has been verified by different applications, such as audio
inpainting [37] and audio denoising [32].

To explain the concept of social sparsity and define its
induced shrinkage operator, we need to define a neighborhood.
For an index k, we denote the weighted neighborhood as
N (k) = {k′ ∈ I : wk′ ≥ 0}, and the weights wk′ satisfy∑
k′∈N (k) w

2
k′ = 1. A visual interpretation of this is shown in

the bottom-right of Fig. 1. Detailed choice of N (k) will be
discussed in the parameter selection.

According to the defined neighborhood and the proximal
operator of the l1-norm regularization, the windowed-group-
lasso (WGL) structured shrinkage operator, S(·), is defined as
[36]:

SWGL,λβ(zk) = zkmax

1− λβ√∑
k′∈N (k) wk′ |zk′ |

2
, 0

 .

(6)
By taking weights of the neighborhood into consideration,

a single large coefficient surrounded by small noise can be
deleted, whereas a small coefficient containing feature infor-
mation in the middle of large ones can be preserved. This
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TABLE I
PROXIMITY OPERATORS

Penalty name Proximity operator: proxP,β(z)
l0 [38] zI

(
|z| >

√
2β
)

l1 [19] sign(z)max (|z| − β, 0)

MCP [40]


0, |z| < β
sign(z)(|z|−β)

1−1/γ
, β ≤ |z| < γβ

z, |z| ≥ γβ

characteristic is good for enhancing the weak fault feature
without also enhancing the interference.

Although the structured shrinkage operator (6) blends in the
information of groups through the social sparsity, the induced
shrinkage operator is based on soft-thresholding. It still suffers
from underestimating the energy of feature information. In
order to preserve the amplitude of feature information, we
extend the structured shrinkage operator (6) to a generalized
structured shrinkage operator through embedding the prop-
erties of other proximal operators. To express the operators
concisely, we first define the structured threshold value as

Tk =
λβ|zk|√∑

k′∈N (k) wk′ |zk′ |
2

(7)

where Tk is the structured threshold value of k-th coeffi-
cient. Therefore, the generalized structured shrinkage opera-
tors (thresholding functions) are defined as

SP,Tk(zk) = proxP,Tk(zk) (8)

where prox(·) is defined in Table I. It can be noted that only
the l1-norm penalty is convex. Among these penalties, l0 is a
natural selection for inducing sparsity, and its corresponding
proximal operator is called the hard-thresholding operator
introduced by Donoho [38]. The hard-thresholding operator
leads to no bias on the large inputs, but its discontinuity makes
it unstable during the optimization procedure [39].

The minimax concave penalty (MCP) [40] is widely used
in statistical learning and feature selection, and it satisfies
three principles proposed in [41]: unbiasedness, sparsity, and
continuity. For MCP (γ > 1), when the parameter γ tends to 1,
the induced operator tends to the hard-thresholding operator.
Otherwise, when the parameter γ tends to positive infinity,
the induced operator tends to the soft-thresholding operator.
Therefore, in the remainder of this paper, we use the MCP
and its induced proximal operator with the parameter γ = 2
recommended in [40] (Researchers can also use smoothly
clipped absolute deviation (SCAD) [41] or l1/2 [42], as shown
in the right top of Fig. 1).

C. Generalized structured shrinkage algorithm

After designing the thresholding functions, we further con-
sider the multiscale property of TQWT by redefining the
thresholding functions and determine the selection of the
regularization parameter c through K-sparsity [23] to construct
GSSA.

In the wavelet domain (in this paper, TQWT), the total
points of each level are different and sometimes appear radix

2. Thus, we need to embed this multiscale property into the
generalized structured shrinkage operators. We first define the
basic length l of the window N at the level J + 1. If the
length of the j-th level (denoted as Mj) is twice the length
of the j + 1-th level (denoted as Mj+1), the basic length
l of the window N is multiplied by 2, whereas remaining
unchanged. In order to distinguish the windows at different
wavelet levels, we redefine the structured threshold value and
the final generalized structured shrinkage operators as

Tj,· =
λjβ|zj,·|√∑

k′∈Nj(·) wk′ |zj,k′ |
2

(9)

SP,Tj,·(zj,·) = proxP,Tj,·(zj,·) (10)

where j represents the j−th level in the wavelet domain, Tj,·

represents the vector
[
Tj,1, . . . , Tj,Mj

]T
, and zj,· is the wavelet

coefficients at the j−th level. At different levels, the parameter
λj is calculated by c‖ϕj‖2.

In addition, we use the K-sparsity (K) strategy to determine
the most important parameter c. The core idea of the K-
sparsity strategy is that in each iteration, we only keep K
largest coefficients and set other coefficients to be zero. This
strategy is more robust to noise, and we suggest to keep
0.5% − 5% of total number of coefficients in the sparsity
domain by our proposed method. The wavelet coefficients
should be normalized before setting c as the K-th largest
coefficient. Therefore, we define the parameter c as follows:

c = max[K](
z1,·
‖ϕ1‖2

, . . . ,
zJ+1,·

‖ϕJ+1‖2
) (11)

where max[K] means to extract the K-th largest coefficient in
the sequence.

After defining the structured threshold value and the gener-
alized structured shrinkage operator at different levels, we can
easily construct GSSA according to the idea of the algorithm-
aware method with the multiscale window and the given
generalized structured shrinkage operator. Algorithm 2 shows
the details of the proposed algorithm, and the computational
complexity is similar to PGD, because the calculation of
the generalized structured shrinkage operators costs a little.
Additionally, the convergence analysis of Algorithm 2 is very
hard and is still an unsolved problem. However, through
numerical simulations and experimental cases, Algorithm 2
shows good performance according to the results.

IV. SIMULATION STUDY

In this section, we perform a series of numerical simulations
to discuss the parameter selection and verify the effectiveness
of the proposed method. We first describe the model of the
simulated signal according to [23] as follows:

y = s+ n =
∑

k
akh (t− kT − τk − τ0) + n (12)

where the fault characteristic period T = 0.01 with the random
slip τk following the uniform distribution U(−0.001, 0.001),
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Algorithm 2 : GSSA
1: Initialization: x(0), step size: µ < ‖D‖−2

2 , number of iterations:
Iter, TQWT parameters: Q, r, and J , K-sparsity parameter: K,
length of windows: l

2: Procedure:
3: for i = 0 to Iter do
4: z(i) = x(i) − µDT(Dx(i) − y)

5: c = max[K](
z
(i)
1,·

‖ϕ1‖2
, . . . ,

z
(i)
J+1,·

‖ϕJ+1‖2
)

6: for j = J + 1 to 1 do
7: λj = c‖ϕj‖2
8: Tj,· =

λjµ|zj,·|√∑
k′∈Nj(·)

wk′ |zj,k′ |2

9: x
(i+1)
j = SP,Tj,·(z

(i)
j,· )

10: end for
11: end for
12: return x(i+1)
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Fig. 2. (a) The simulation signal with the noise intensity equal to 0.6, and
(b) its frequency spectrum.

TABLE II
EXPLANATION OF PARAMETERS

Parameters Explanations
Q the Q−factor of TQWT
r the redundant factor
J the decomposition levels
l the basic length of the window
N the type of the window

τ0 is the initial phase equal to 0.002, and the bilateral impulses
h(t) is defined as

h(t) =

 e

−ζL√
1−ζ2

L

(2πf1t)
2

cos (2πf1t) , t < 0

e

−ζR√
1−ζ2

R

(2πf1t)
2

cos (2πf1t) , t ≥ 0

(13)

with ζL = 0.02, ζR = 0.005, and f1 = 2000 Hz. The noise n
is generated by Gaussian distribution with zero mean and σ2

variance. The sampling frequency and the length of the signal
are set 20480 Hz and 4096 respectively. In addition, as shown
in Fig. 2, the periodic impulses are submerged by the heavy
background noise with the noise intensity equal to 0.6. In the
discussion below, we use the index RMSE to evaluate the
algorithms, and RMSE is defined as RMSE =

√
1
N ||s− ŝ||22,

where ŝ is the extracted feature by the algorithm.

A. Parameter selection

We do not study the parameter selection of TQWT in this
paper, interested researchers can further refer to [34]. Thus, the
parameters required to be identified include the basic length l
and the type of the window N shown in Table II.
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Fig. 3. Relationships between average RMSE and the basic length l under
different windows: (a) Gaussian window, (b) Hamming window, (c) Triangular
window, and (d) Rectangular window.

In order to discuss the selection of the basic length l,
we use GSSA with the K-sparsity strategy to analyze the
simulated signal. The TQWT parameters are set as Q = 2,
r = 5, and J = 10. We test on four different windows
(Gaussian window, Hamming window, Triangular window,
and Rectangular window) and five different noise levels (σ
from 0.2 to 0.6 with the increment equal to 0.1) to study
the relationships between the basic length l and the average
RMSE. In addition, we vary the K-sparsity parameter K (from
10 to 500 with the increment equal to 5) to achieve the minimal
RMSE. To avoid the randomness, we perform 100 realizations
under different random seeds to achieve the average RMSE.
The results are shown in Fig. 3, and it is observed that
when the noise level is relatively low (i.e., σ = 0.2), the
average RMSE is almost the same under the different basic
lengths l. However, as the noise increases, the average RMSE
decreases first and then increases, especially in the strong
noise interference, and this phenomenon helps us determine
the range of the basic length l (i.e., l = 5, 7, or 9). In
term of the calculation complexity (the larger the basic length,
the greater the computational time), we recommend l = 5.
Besides, according to the comparisons among four windows,
we can conclude that the algorithm is almost robust to the type
of the window. Therefore, in the analysis below, we simply use
the Gaussian window.

In addition, we also perform 100 realizations for each
method to compare the averaging computional time, and the
results are listed in Table III. It can be observed that the
computional times of GSSA, BPD and WGL are almost same
since they are all based on the same optimization algorithm,
and NCD is much faster than other three methods since it does
not need any iteration and is just traditional wavelet denoising.
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TABLE III
COMPUTATIONAL TIMES OF DIFFERENT METHODS

MethodAveraging computional time (s)
GSSA 0.4720
BPD 0.3203
NCD 0.0674
WGL 0.4489
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Fig. 4. (a) The relationship between average RMSE values and the K-sparsity
values when σ = 0.6, and (b) average RMSE values of different methods
under different noise levels.

B. Performance verification 1

In the performance verification, for comparison targets, we
analyze the simulation signals through BPD [19], [20], WGL
[36] (These two methods represent the model-aware methods),
and neighboring coefficients denoising (NCD) representing
the traditional wavelet denosing [10], [13]. Except for the k-
sparsity parameter, other parameters are set as Q = 2, r = 5,
and J = 10. On the one hand, we draw the relationships
between the average RMSE and the K-sparsity parameter of
four different methods under the noise intensity equal to 0.6.
As shown in Fig. 4 (a), the best K is 90 for GSSA, 240 for
BPD, 480 for WGL, and 630 for NCD. Moreover, the average
RMSE of GSSA is obviously smaller than other methods.
From the comparison results, we can conclude that the pro-
posed algorithm can use much fewer coefficients to recover the
more accurate features. On the other hand, we also evaluate
the performance of four methods under different noise levels
and vary the K-sparsity parameter K from 10 to 1000 with the
increment equal to 10 (for NCD, we vary k from 10 to 11000
due to the fact that it does not promote the sparsity). We also
perform 100 realizations for all four methods under different
random seeds. Fig. 4 (b) compares the average RMSE of four
different methods, and it is observed that GSSA achieves the
best performance. Due to the disadvantage of not being able
to promote the sparsity, NCD gets the worst performance. In
addition, because BPD and WGL are both based on the l1-
norm regularization, their performance is almost the same,
especially, when the noise intensity is relatively high.

For the purpose of further verifying the performance of
the proposed algorithm, visualization results with the noise
intensity σ = 0.6 are shown in Fig. 5. The parameter setting
is the same as the performance verification above. From the
visualization shown in Fig. 5, we can draw two conclusions:
GSSA can maintain the amplitude of each impulse in the better
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Fig. 5. The extracted results of different methods: (a) the result extracted by
GSSA, (b) the result extracted by BPD, (c) the result extracted by WGL, and
(d) the result extracted by NCD.
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Fig. 6. The simulation signal corrupted by noise interference σ = 0.6
and discrete frequency interference: (a)the pure impulse signal, (b) discrete
frequency interference, (c) the mixed signal, and (d) the frequency spectrum
of the mixed signal.

way; From comparisons with other methods, GSSA achieves
better denoising results and contains scarcely any pseudo-
impulse in the extracted components.

C. Performance verification 2

In order to further testify the robustness of the proposed
method, another numerical simulation which not only contains
heavy background noise, but also suffers from discrete fre-
quency interference is performed. We first define the discrete
frequency interference d(t) as:

d(t) = A1 cos(2πf2t) +A2 cos(4πf2t) (14)

where A1 = 0.5 and A2 = 0.3 are the amplitudes of the
interference, and f2 = 160 Hz is the basic frequency of the
interference. The simulation signal is shown in Fig. 6, and
it is observed from the frequency spectrum (shown in Fig. 6
(d)) that the resonance frequency band is submerged by the
discrete frequency components totally. The simulation signal
is still handled by GSSA, BPD, WGL and NCD. Meanwhile,
the parameter setting is the same as the previous discussion
except that the K-sparsity parameter K is varied from 10
to 1000 (with the increment equal to 10) to find the best
parameter for each method. The extracted results and their
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Fig. 7. The extracted results of different methods: (a) the fault feature
extracted by GSSA, (b) SES of GSSA, (c) the fault feature extracted by
BPD, (d) SES of BPD, (e) the fault feature extracted by WGL, (f) SES of
WGL, (g) the fault feature extracted by NCD, and (h) SES of NCD.

square envelope spectra (SES) are displayed in Fig. 7 (The
green triangle represents the harmonic interference, and the
red circle represents the fault characteristic frequency). In
conclusion, GSSA achieves the best performance either RMSE
(according to the ability of maintaining the amplitude) or
harmonic interference suppression since its SES is very clean
and fault characteristic frequencies are extremely obvious.
Comparisons with the proposed method, BDP and WGL are
all affected by the discrete frequency interference exhibited in
Fig. 7 (c)-(f). Meanwhile, there are lots of pseudo impulses
in time domains which affect the judgment of the period, and
the energy of fault characteristic frequencies is only a tenth of
GSSA. Besides, as shown in Fig. 7 (g) and (h), NCD fails to
extract the periodic impulses completely.

V. EXPERIMENTAL VERIFICATION

A. Case 1: Experiment description

First, we analyze the measured vibration signal collected by
the NSF I/UCR Center for Intelligent Maintenance Systems
[43]. The test rig which installed four bearing on the shaft
was shown in Fig. 8. Besides, all the bearings were forced
lubricated and were loaded with 6000 lb radial load by the
sping mechanism. Eight accelerometers (PCB 353B33 High
Sensitivity Quartz ICP) were installed on four bearings and
each bearing contained two accelerometers on the horizontal
X and vertical Y shown in Fig. 8. The sampling frequency
and the rotating speed are equal to 20.48 kHz and 2000 rpm,
respectively. The acquisition system collected one second data
every 10 minutes by a NI DAQ Card 6062E. At the end of

Fig. 8. Test rig and its structural sketch with sensor arrangement [43].
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Fig. 9. (a) RMS values of the measured vibration signals in the run-to-
failure data, (b) the measured signal in the early stage of the fault, and (c)
the measured signal in the medium stage of the fault.

the test, a fault occurred at the outer race of the bearing,
and we analyze the measured signal from the accelerometer 1
which was just mounted on the fault bearing and the horizontal
X. According to Ref. [43], the fundamental outer race fault
frequency of the test bearing (BPFO) was approximately equal
to 236.4 Hz.

The root-mean-square (RMS) values of the run-to-failure
data and two segments of the measured signal in the early
and medium stage are shown in Fig. 9. We can observe that
in the early stage of the fault (in file No.550 corresponding to
91.7 hours after the experiment started), the periodic impulses
are submerged by the strong background noise. In the medium
stage of the fault (in file No.703 corresponding to 117.3 hours
after the experiment started), the periodic impulses are obvious
and the amplitude of the signal is larger than that in the early
stage of the fault. In order to verify the performance of GSSA,
we analyze the measured signal in the early stage of the fault
to extract fault features.
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Fig. 10. The extracted results of different methods: (a) fault features extracted
by GSSA, (b) SES of GSSA, (c) fault features extracted by BPD, (d) SES of
BPD, (e) fault features extracted by WGL, and (f) SES of WGL.

B. Case 1: Results

In this case, the parameters of TQWT are the same as
the simulation condition (Q = 2, r = 5, and J = 10)
and Gaussian window with the length l = 5 is used as the
neighboring window. Meanwhile, the K-sparsity parameters
(K) of GSSA, BPD and WGL are set as 2% of the total
number of wavelet coefficients. The extracted results of GSSA,
BPD and WGL are shown in Fig. 10. It is observed that
fault features extracted by GSSA are more obvious than those
extracted by BPD and WGL in the time domain. Moreover,
from the comparison of SES, the BPFO and 2xBPFO are
successfully extracted by GSSA and their amplitudes are much
larger than those extracted by BPD and WGL. Therefore, the
results of GSSA are more accurate than the results of BPD
and WGL which underestimate the energy of fault features.

C. Case 2: Experiment description

In this subsection, we verify the performance of the pro-
posed method through another complete life test of the aero-
engine bearing. As shown in Fig. 11, the test rig which is
controlled by the Industrial Personal Computer (IPC) can
simulate the load spectrum, rotation spectrum, and temperature
spectrum of the aeroengine bearing. Meanwhile, the test rig
consists of the main body of the testing machine, cooling and
lubrication system, electrical control system, IPC, and data
acquisition instrument. The main body of the test rig and its
structural sketch are shown in Fig. 12(a-b). The shaft is driven
by a high-speed motor and hosts one test bearing (bearing 3)
and two support bearing (bearing 1 and bearing 2). One run-to-
failure experiment was performed with the radial load and the
axial load equal to 11 kN and 2 kN added to the test bearing
by the load system. Two accelerometers (Lance LC0401) were
mounted on the sleeve and the vibration signal was collected
every 5 minutes using the econ data collector. The sampling
frequency equal to 20.48 kHz. It is worth mentioning that
the analysis frequency should be larger than the resonance

Fig. 11. The test rig of the aeroengine bearing.

Fig. 12. (a) The zoom-in view of the main body of the experimental rig, (b)
the structural sketch of the main body, (c) A spall on inner raceway, and (d)
the area of the spall.

frequency plus the fault characteristic frequency for detecting
the bearing faults. Therefore, the frequency response of the
accelerometer and the data acquisition system need to meet
this requirement.

After the total running time of the test bearing was 156.3
hours, a spall on the inner raceway was found in the test
bearing, as shown in Fig. 12(c-d). Besides, the area of the
spall was about 3 mm2 measured by the monocular video
microscope system. The type of the test bearing was an
H7018C angular contact ball bearing, and its pitch diameter
(D), ball diameter (d), number of balls (n), and contact angle
(φ) are 117 mm, 11.12 mm, 15◦, and 27 respectively.

BPFI =
nfr
2

(
1 +

d

D
cosφ

)
(15)

where fr is the rotating frequency.
According to the rotating Frequency (RF) 100 Hz and the

geometrical parameters of the test bearing, the characteristic
frequency of the fault located on the inner race (ball pass
frequency of inner race, denoted by BPFI) was about 1474
Hz calulated by (15). We use one segment of the vibration
signal (The length of the signal is 32768) collected during
the run-to-failure experiment to verify the performance of the
proposed method, as shown in Fig. 13.

D. Case 2: Results

We firstly use GSSA, BPD and WGL to analyze the col-
lected vibration signal, and parameters of TQWT are Q = 2,
r = 2, and J = 10. The K-sparsity parameters of GSSA, BPD
and WGL are 4% of the total number of wavelet coefficients.
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Fig. 13. (a) The original vibration signal, and (b) its spectrum.
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Fig. 14. The extracted results of different methods: (a) fault features extracted
by GSSA, (b) SES of GSSA, (c) fault features extracted by BPD, (d) SES of
BPD, (e) fault features extracted by WGL, and (f) SES of WGL.

The results of GSSA, BPD and WGL are shown in Fig. 14.
Fig. 14(a) indicate that GSSA can preserve the amplitude
of bearing fault features and reduce the noise interference
more effectively than BPD and WGL. Besides, as shown
in Fig. 14(b), BPFI and its high-order frequency (2xBPFI)
extracted by GSSA are obvious in the SES. Meanwhile, the
amplitudes of BPFI and 2xBPFI extracted by BPD and WGL
are much smaller than those extracted by GSSA. It is worth
mentioning that because the fault of the test bearing occurs
on the inner raceway of the failure bearing, amplitudes of the
periodic impulses may be modulated by the rotating speed,
and thus RF is also dominant in the SES. In conclusion, the
proposed GSSA method can extract the fault feature of the
bearing effectively.

Similar to the above case, SK is also applied to extract
the fault feature of the bearing. The kurtogram, the filtered
signal, and its SES are shown in Fig. 15 (the optimal filter
with the center frequency is equal to 8333.33 Hz and the
bandwidth is equal to 3333.33 Hz). It is observed that we
can also find the RF, BPFI, and 2xBPFI in the SES. However,
fault characteristic frequencies extracted by GSSA are more
dominant than these extracted by SK and the interference
frequencies in the SK result are more complex than these in
GSSA results. Thus, the proposed GSSA method is better than
SK.

VI. CONCLUSION

In this paper, we interpret the concept of the algorithm-
aware method which allows to design algorithms more flex-
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Fig. 15. The extracted fault feature by SK: (a) kurtogram of the measured
signal, (b) the filtered signal, and (c) SES of SK.

ible, in contrast to the model-aware method which needs
to construct the specific penalty to model the sparse prior
(if the prior is complex, it is really difficult to construct
the expression). In addition, on the basis of the idea of
algorithm-aware methods, we generalize structured shrinkage
operators and form GSSA through rewriting PGD. The main
advantages of the proposed method consist of introducing the
group structure (also called weighted neighborhood structure),
embedding the properties (unbiasedness, sparsity, continuity)
of other proximal operators, and considering the multiscale
property of the wavelet transform. Moreover, its satisfying
performance is further verified by simulation studies, experi-
mental cases, and comparisons with model-aware methods and
fast kurtogram. More theoretical works and application devel-
opments including verifying the convergence of the proposed
method, designing more complex denoisers, rewriting broader
sparsity-assisted optimization frameworks, and studying the
mathematical relationship between the defined operators and
the corresponding penalties need to be carried out in the further
research.
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