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A B S T R A C T   

Background: Slowness of movement, known as bradykinesia, is the core clinical sign of Parkinson’s and funda-
mental to its diagnosis. Clinicians commonly assess bradykinesia by making a visual judgement of the patient 
tapping finger and thumb together repetitively. However, inter-rater agreement of expert assessments has been 
shown to be only moderate, at best. 
Aim: We propose a low-cost, contactless system using smartphone videos to automatically determine the presence 
of bradykinesia. 
Methods: We collected 70 videos of finger-tap assessments in a clinical setting (40 Parkinson’s hands, 30 control 
hands). Two clinical experts in Parkinson’s, blinded to the diagnosis, evaluated the videos to give a grade of 
bradykinesia severity between 0 and 4 using the Unified Pakinson’s Disease Rating Scale (UPDRS). We developed 
a computer vision approach that identifies regions related to hand motion and extracts clinically-relevant fea-
tures. Dimensionality reduction was undertaken using principal component analysis before input to classification 
models (Naïve Bayes, Logistic Regression, Support Vector Machine) to predict no/slight bradykinesia 
(UPDRS = 0–1) or mild/moderate/severe bradykinesia (UPDRS = 2–4), and presence or absence of Parkinson’s 
diagnosis. 
Results: A Support Vector Machine with radial basis function kernels predicted presence of mild/moderate/severe 
bradykinesia with an estimated test accuracy of 0.8. A Naïve Bayes model predicted the presence of Parkinson’s 
disease with estimated test accuracy 0.67. 
Conclusion: The method described here presents an approach for predicting bradykinesia from videos of finger- 
tapping tests. The method is robust to lighting conditions and camera positioning. On a set of pilot data, accuracy 
of bradykinesia prediction is comparable to that recorded by blinded human experts.   

1. Introduction 

Parkinson’s disease is a neurodegenerative disorder that affects 
approximately 1 in 500 adults [1]. The diagnosis is a clinical one, based 
on the clinician detecting the presence of a slowness of movement 
termed bradykinesia, together with at least one of rigidity, rest tremor or 
postural instability (United Kingdom Parkinson’s Disease Society Brain 
Bank Criteria) [2–4]. 

Clinician assessment of the presence and severity of bradykinesia is 
visual, and almost always includes an observation of finger tapping. In 
this test, a patient is asked to repetitively tap their forefinger against 
their thumb as wide and quickly as possible. The clinician will typically 
observe ten finger taps whilst looking for impairment of speed, ampli-
tude or rhythm, often including a progressive ‘decrement’ seen over the 
duration of the test [4,5]. 

However, this visual clinical judgment is inherently subjective, and 

* Corresponding author. 
E-mail address: david.wong@manchester.ac.uk (D.C. Wong).  

Contents lists available at ScienceDirect 

Artificial Intelligence In Medicine 

journal homepage: www.elsevier.com/locate/artmed 

https://doi.org/10.1016/j.artmed.2020.101966 
Received 17 January 2020; Received in revised form 3 September 2020; Accepted 2 October 2020   

mailto:david.wong@manchester.ac.uk
www.sciencedirect.com/science/journal/09333657
https://www.elsevier.com/locate/artmed
https://doi.org/10.1016/j.artmed.2020.101966
https://doi.org/10.1016/j.artmed.2020.101966
https://doi.org/10.1016/j.artmed.2020.101966
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artmed.2020.101966&domain=pdf


Artificial Intelligence In Medicine 110 (2020) 101966

2

there is no objective measure of bradykinesia in routine clinical use. 
Given both the imprecise definition of the term, and the difficulty for 
human observers to quantify small differences in movement, it is little 
surprise that inter-rater agreement of assessment of bradykinesia is 
moderate at best [4,5]. Current evidence suggests that human observers 
prioritise changes in movement amplitude over changes in tapping 
frequency or rhythm [4]. 

Given the fundamental importance of bradykinesia to diagnose and 
monitor Parkinson’s, and the relatively small group of neurologists 
trained to assess it, an automatic and objective method of determining 
the level of bradykinesia has the potential to improve early diagnosis 
and to standardise follow-up assessment, including home monitoring. 

Other approaches have previously been suggested for objective 
bradykinesia assessment [6–9]. However, all require either sensors that 
may not be readily available, or patient interaction with a specific 
computer program or smartphone app. To our knowledge, only one 
previous report used standard video to measure finger tapping brady-
kinesia, but featured only participants with advanced stage Parkinson’s 
and required video recording of the face [10]. Here we propose a solu-
tion that uses the ubiquitous smartphone video camera to capture the 
relevant data during standard clinical assessment of finger tapping. 

Our primary aim is to provide proof-of-concept that the assessment 
of bradykinesia can be automated using simple camera input, negating 
the impact of inter-rater variability and providing easily accessible 
clinical decision support. We also investigate the potential to predict 
diagnosis of Parkinson’s itself. We describe how the video signal is 
processed and how pertinent features may be extracted to predict both 
bradykinesia and the presence of a Parkinson’s diagnosis. Finally, we 
present initial results from a case-control pilot study.1 

2. Existing work 

The standard clinical method to assess bradykinesia is a visual 
judgment of finger tapping made by an experienced clinician. The two 
main validated clinical rating scales for finger tapping are Item 3.4 of the 
Unified Parkinson’s Disease Rating Scale (UPDRS) [11], and the Modi-
fied Bradykinesia Rating Scale (MBRS) [4]. The UPDRS amalgamates the 
judgment of finger tapping speed, amplitude, and rhythm into a single 
score, such that those three elements can contribute to the score as 
‘and/or’ definitions (Table 1). The score ranges from 0 (normal) to 4 
(severe). In contrast, the MBRS is comprised of three separate scores for 

speed, amplitude, and rhythm. 
A variety of devices have been studied as methods to objectively 

measure bradykinesia during finger tapping. These include: contact 
sensors (e.g. MIDI keyboards or smartphone screens) [13–16]; acceler-
ometers or gyroscopes attached to the index finger [4,17,18]; electro-
magnetic systems with magnetic generation and detection coils placed 
on finger and thumb [19,9,7]; infrared cameras with passive or active 
markers on the hand [20]. 

Example measures of finger tapping derived from such devices 
include opening velocity (speed) [4,20], excursion angle (amplitude) [4, 
18,21], and coefficient of variation (rhythm) [4,13,17]. Most metrics 
used show significantly different mean values in Parkinson’s compared 
with control groups across several studies, albeit with considerable 
overlap of the group scores. 

Multiple reports show that tapping measures correlate with clinical 
rating scales. For example, good correlation has been shown for gyro-
scope angular velocity with UPDRS (Spearman correlation coefficient: −
0.78) [18], variation in duration of keyboard taps with UPDRS (Pearson: 
− 0.61) [13], and gyroscope excursion angle with the amplitude 
component of MBRS (Pearson: − 0.81) [4]. Several studies of finger 
tapping measurement show AUROC for patient/control discimination in 
the range of 0.7–0.9. For example, 0.88 for dwelling time with smart-
phone tapping [14], 0.75 for inter-peak interval using accelerometer 
[7], 0.81 for opening velocity and 0.87 for amplitude decrement using 
infrared [20]. In a ‘clinician v.s. machine’ trial, a gyroscope system 
showed better intraclass correlation and minimal detectable change 
compared with clinician (MBRS) ratings during adjustment of deep 
brain stimulation treatment strength [22]. 

There is variation across studies in terms of which specific aspect of 
tapping measurement (speed/amplitude/rhythm) shows the largest 
group differences or is most strongly correlated with clinical categories. 
There is no clear pattern of results or methods to explain this variation, 
except that finger tap frequency alone is often not predictive [17,23,24] 
and protocols in which patients are temporarily ‘off’ medication likely 
make it easier to find differences [4,21], but are less relevant to clinical 
practice. 

Multiple tests using non-camera sensors in smartphones can be 
combined [25–27], and previous reports suggest that application of 
machine learning techniques to such data can discriminate patients from 
controls (96% sensitivity with random forests [25]) while the combined 
data correlates strongly with clinical ratings [26]. However, all such 
approaches require patients to independently interact with the app, 
usually for a prolonged period of time, more than once per day (e.g. 
minimum of twice per day in reference [26]). In our view, the vast 
majority of patients lack sufficient motivation for this, which could 
possibly explain why no such apps have entered routine clinical practice. 
In contrast, camera-based computer vision can simply observe existing 
clinical examination, and augment or assist clinical judgement, without 
a requirement for patient motivation to regularly use an app. 

To our knowledge, only one previous study used computer vision 
with simple video to detect bradykinesia on finger tapping, by tracking 
finger motion [10]. A feature of tapping rhythm, ‘cross-correlation be-
tween the normalised peaks’, showed a strong Guttman correlation of −
0.8 with UPDRS, and a support vector machine with multiple tapping 
features distinguished between patients and controls with an accuracy of 
95%. However, only 13 participants were recorded and all were 
described as having “advanced” Parkinson’s: a disease stage at which 
diagnosis is rarely an issue. Furthermore, they required video of the 
patient’s face (to approximate hand length) which could be considered 
intrusive in practice. 

3. Method 

3.1. Data collection (video recording and clinician rating) 

The study was approved by the UK Health Research Authority (IRAS 

Table 1 
Summary of the Movement Disorder Society revision to UPDRS Item 3.4 (Finger 
Tapping) rating scale [11].  

Score Description 

0 – Normal No problems. 
1 – Slight Any of the following:  

(a) regular rhythm broken with 1–2 interruptions,  
(b) slight slowing,  
(c) amplitude decreases towards end. 

2 – Mild Any of the following:  
(a) 3–5 interruptions,  
(b) mild slowing,  
(c) amplitude decreases midway. 

3 – Moderate Any of the following:  
(a) 6+ interruptions or long freeze in movement,  
(b) moderate slowing,  
(c) amplitude decreases from start. 

4 – Severe Cannot perform the task due to slowing, interruptions, or 
decrements.  

1 This work is an extended version of the conference paper presented at IEEE 
CBMS 2019 [12]. 
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no. 224848). Patients with Parkinson’s disease, previously diagnosed by 
a consultant neurologist at Leeds Teaching Hospitals NHS Trust, were 
invited to attend a research clinic appointment. All patients were in the 
‘on’ motor state, by which we mean that: (i) patients reported that they 
felt ‘on’ – a widely accepted and understood term that patient’s use to 
describe an overall sense that they feel their medications are working 
and they have reduced symptoms of Parkinson’s [2], (ii) the neurologist 
reported the patient looked ‘on’ – a clinically accepted term for recog-
nising a response to medications, and (iii) no medication had been 
withheld prior to recording. 

Control participants were invited from the companions of partici-
pants, or from hospital staff. Control participants did not have any 
neurological diagnosis or take any medication that could cause Parkin-
sonism, tremor, bradykinesia or other movement impairment. 

Each hand was filmed tapping forefinger and thumb ‘as quick and as 
big as possible’ for 15 s. This convenience sample comprised 40 patient 
hands and 30 controls hands (20 patient participants and 15 control 
participants). 

The recordings were made using an integrated smartphone camera 
(iPhone SE), set to 60 frames per second, 1920 × 1080 pixels, and placed 
on a tripod, with only ambient lighting. Participants were asked to rest 
their elbow on a chair arm during the finger tapping and only the hand/ 
forearm was filmed (no identifiable patient details were filmed). The 
distance from camera to hand was not tightly defined; in practice the 
camera was positioned at approximately 1m from the participant. The 
lateral (thumb) surface of the hand faced the camera. There were no 
specific instructions for the position of digits 3–5. 

The degree of bradykinesia in each video was independently rated by 
two consultant neurologists with a special interest in Parkinson’s, ac-
cording to the section 3.4 of the UPDRS scale (UPDRS-FT) (Table 1) 
[11]. The raters were blinded to patient/control group. 

For both groups, the correlation between UPDRS-FT scores from the 
right and left hand for an individual participant was very low (Patients 
k = 0.17, 95%CI: − 0.18 to 0.47, Controls k = 0.18, 95%CI: − 0.07 to 
0.41). Consequently, we treated videos from each hand as independent 
samples. 

3.2. Data analysis 

3.2.1. Data processing 
A schematic of the data processing framework is presented in Fig. 1. 
Initially, the video frames were segmented to pixels corresponding to 

a participant’s hand. Traditional skin color methods were unsuitable, 
given the uncontrolled lighting conditions used. Instead, the hand re-
gions of interest were first detected using a convolutional neural 
network, originally proposed by Bambach et al. [29]. The detector is 
based on a MobileNet-V2 mode architecture and the single shot 
multi-box approach using the TensorFlow Object Detection API [30,31]. 
This architecture uses depth-wise separable convolutions to reduce 

computer overhead for mobile devices. We trained our model using 
manual annotation of 500 randomly selected frames from our dataset. 

The output of the model was refined using a secondary pixel-level 
segmentation to remove erroneous background pixels. We used the 
grabcut method [32], which iteratively updates two Gaussian Mixture 
Models representing the background and foreground. We set two 
mixture components to model the foreground colors and 3 mixture 
components for the background colors. 

The segmented frames were then converted into an optical flow field 
[33]. In such a field, each position corresponds to the vector pixel 
movement of a point object between two sequential frames. The 
magnitude of the vector thus represents the instantaneous speed of a 
point (in pixels/frame). We sum the magnitude at each point in the re-
gion of interest to obtain a metric of overall hand movement. 

Optical flow magnitude is affected by camera distance and hand size 
(as well as actual movement), so to convert optical flow magnitude into 
true hand velocity, we scale the magnitude by the number of pixels in 
the hand region of interest, such that our metric Mt is: 

Mt =

∑H
j
∑W

i bij

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

ij + v2
ij

√

∑H
j
∑W

i bij
, (1)  

where H and W are the height and width of the optical flow field, u and v 
are the horizontal and vertical components of the flow, and b is the pixel 
mask obtained from the image segmentation. By evaluating Mt over a 
sequence of video frames we produce a 1D signal over time. Examples of 
the signal are shown in Fig. 2. 

3.2.2. Feature extraction 
Candidate features were derived from the 1D signal via clinical 

knowledge and visual inspection. In particular, we derived a set of 
features that described the frequency, amplitude, and tap-to-tap vari-
ability, to reflect the UPDRS assessment criteria as follows. 

Frequency: Tapping frequency was estimated as the frequency cor-
responding to the maximal amplitude peak in the fast Fourier transform 
(FFT) spectrum. This assumes that the finger tapping motion corre-
sponds to the greatest movement (and thus energy) between frames and 
that other movements, such as finger tremor, have smaller magnitude. 

Amplitude: Energy spectral density was calculated as the squared 
integral of the FFT spectrum, a measure that would be expected to in-
crease with the amplitude of tapping. In addition, we assumed that 
bradykinesia movement is distinctive in some frequency bands. There-
fore the energy spectral density is separated into six non-overlapping 
equal frequency bands ranging from 0 to 18.36 Hz with bandwidth in-
terval 3.06 Hz. The upper frequency threshold was selected heuristically 
to avoid having multiple uninformative zero-energy frequency bins. The 
threshold represents the frequency up to which, on average, 99% of the 
signal energy is contained. 

Variability: Two variability features were derived using the peaks of 

Fig. 1. Illustration of the data processing in which raw video is converted to an anonymous 1D time series. Raw video is first segmented using a convolutional neural 
network. The segmentation is refined using the grabcut method. Frame-by-frame movement of the hand is extracted using optical flow. The optical flow field is then 
reduced so that the magnitude of movement between two frames is summarised by a single value. 
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the optical flow waveform. Peaks were calculated via the MATLAB 
function findpeaks with zero minimum peak prominence. Peaks were 
then classified as maxima or minima by fitting a 1D Gaussian mixture 
model with two clusters to the peak amplitude values. We then defined: 

Jitter: We hypothesise that there are differences between the hand 
closing and hand opening motions. From visual inspection, we observed 
differences in higher frequency movement between the signal maxima 
and minima – troughs in the signal appeared more jittery than the peaks. 
To quantify the jitter we include the ratio of number of maxima to 
number of minima over the entire time series as a predictor. 

Peak-to-peak variability: was calculated as the standard deviation 
of the time between maxima peaks. This feature models variation in 

tapping frequency across the time series and may be considered analo-
gous to the standard deviation of RR intervals (SDRR) for ECG signals 
[34]. 

3.3. Classification 

We performed binary classification using Naïve Bayes (NB), logistic 
regression (LR), and both linear and RBF-based support vector machines 
(SVM-L and SVM-R, respectively) [35] to predict two outcomes: (1) a 
UPDRS-FT score > 1, and (2) clinical diagnosis of Parkinson’s disease 
(previous clinical diagnosis by a consultant neurologist). Where there 
was disagreement in rater UPDRS-FT scores, the higher score was 

Fig. 2. Examples of the optical flow magnitude 
time series, plots (c)-(f) are discussed in Section 
4.4. (a) – no bradykinesia (UPDRS-FT = 0). (b) – 
severe bradykinesia (UPDRS-FT = 4). (c) – 
UPDRS-FT = 0–1 misclassified as UPDRS- 
FT = 2–4, close to decision boundary. (d) – 
UPDRS-FT = 2–4 misclassified as UPDRS- 
FT = 0–1, close to decision boundary. (e) – 
UPDRS-FT = 0–1 misclassified as UPDRS- 
FT = 2–4, far from decision boundary. (f) – 
UPDRS-FT = 2–4 misclassified as UPDRS- 
FT = 0–1, far from decision boundary.   
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selected for training of the models. 
Given the relatively small number of samples in the dataset we begin 

by reducing the feature space into two dimensions using principal 
component analysis. Indeed, preliminary work fitting models with all 10 
features led to significant overfitting. We then explore the effect of 
analyzing up to 5 principal components, to look for any additional gain 
in accuracy. 

The NB model was chosen as a simple baseline classifier providing a 
sensible lower bound for performance. 

LR provides a linear separation of the data points and this simplicity 
may lead to lower generalisation error. We incorporated ridge (ℒ2) 
regularisation with strength determined via a grid search of 100 log- 
spaced values in the interval [1e − 4, 1e+4] to minimise 10-fold cross- 
validation accuracy loss. 

The SVM-L model optimises a different cost function than the LR 
model and therefore gives a different linear separation of the classes. 
Meanwhile, the SVM-R model has the ability to model nonlinear deci-
sion boundaries. The slack and (for SVM-R) kernel scaling hyper- 
parameters were again estimated using a grid search to minimise 10- 
fold cross-validation accuracy loss. The grid search consisted of 100 
log-spaced values in the intervals [1e+0, 1e+3] and [1e+0, 1e+5], 
respectively. 

We report the training accuracy and AUC score for each model with 
two principal components, and for 3–5 components. We used permu-
tation tests (α = 0.05) on the varient obtaining highest accuracy to 
assess whether classifiers had meaningful predictive ability [36]. 

Due to the relatively small size of our pilot data we estimate the out- 
of-sample test accuracy, sensitivity, and specificity of each model by 
reporting the mean value of leave-one-out cross-validation (LOO-CV). 
Hyperparameters were preset according to outputs of the 10-fold cross- 
validation procedure described above. 

We also investigate the contribution of each feature to the principal 
component analysis, to investigate the most discriminative features of 
the timeseries and compare with other research on this topic. 

Finally, a visual inspection of the raw videos underlying the times-
eries that were misclassified by the model with highest LOOCV accuracy 
was performed by two neurology clinicians (SW, JA). Analyses were 
performed using MATLAB 2017b and the scikit-learn and TensorFlow 
packages for Python 3 [37,38]. 

4. Results 

A total of 70 videos were collected from 35 participants (left and 
right hands), Characteristics of the participants are presented in Table 2. 
40 videos corresponded to the hands of participants with an established 
clinical diagnosis of Parkinson’s. UPDRS-FT scores from 0 to 4 were 
assigned by two expert clinicians and then categorised into our binary 
outcome: UPDRS-FT ≤ 1 (no/slight bradykinesia) and UPDRS-FT > 1 
(mild/moderate/severe bradykinesia). Their assessment matched in 
73% of cases (κ = 0.46). In Fig. 2 we show an example of UPDRS-FT = 0 
and UPDRS-FT = 4 for comparison. 

4.1. Two principal components 

The performance of each model for the prediction of UPDRS-FT 
category is shown in Table 3. The SVM-R model achieved the highest 
scores in all of our metrics. The other three models perform quite 
similarly, reflecting the fact that their decision boundaries are close to 
one another (see Fig. 3). The test accuracy (estimated using LOO-CV) 
drops to 0.8 for the SVM-R model, with the other models similarly 
dropping a few points of accuracy. 

In Fig. 3 we show each time series plotted in feature-space after 
dimensionality reduction, marked according to category. We also show 
the decision boundaries of each method: an unbroken line for NB, 
dashed for SVM-R, dash-dotted for SVM-L, and dotted for LR. 

Our second task was the prediction of Parkinson’s disease diagnosis 

itself based upon these features. The performance of each model for this 
task is shown in Table 4. Both the NB and SVM-R methods had very 
similar performance in terms of accuracy and AUC – with NB having 

Table 2 
Study participant characteristics split by Parkinson’s patients and control hands. 
The modified Hoehn and Yahr (H&Y) is a brief overall clinical rating to describe 
the stage of symptom progression in Parkinson’s (higher number represents 
more advanced disease). UPDRS-FT refers to the Unified Parkinson’s Disease 
Rating Scale Item 3.4 (Finger Tapping). Where raters disagreed the highest of the 
two UPDRS-FT scores was used.   

Patients Controls 

Age (Std. Dev.) yrs 67 (10.1) 66 (12.2) 
Male/female 26 / 14 12 / 18 
Median years since diagnosis 4 –  

Median H&Y [IQR] 2 [1, 2.5] – 
H&Y = 1 9 – 
H&Y = 1.5 0 – 
H&Y = 2 5 – 
H&Y = 2.5 1 – 
H&Y = 3 4 – 
H&Y = 4 1 – 
H&Y = 5 0 –  

Median UPDRS-FT [IQR] 2 [1, 3] 1 [0, 1] 
UPDRS-FT = 0 2 8 
UPDRS-FT = 1 11 13 
UPDRS-FT = 2 17 7 
UPDRS-FT = 3 7 2 
UPDRS-FT = 4 3 0  

Table 3 
Results for each model when predicting whether UPDRS-FT > 1 using two 
principal components. Accuracy and AUC are estimated from the training 10-fold 
cross validation and may be considered as upper-bounds. The test accuracy, 
sensitivity and specificity are estimated using LOO-CV. The emboldened values 
are the best result for each metric.  

Method Accuracy AUC Test Acc Test Sens Test Spec 

NB 0.74 0.74 0.70 0.67 0.70 
LR 0.73 0.73 0.69 0.72 0.65 
SVM-L 0.71 0.71 0.71 0.72 0.71 
SVM-R 0.84 0.84 0.80 0.86 0.74  

Fig. 3. Decision boundaries for prediction of UPDRS-FT > 1 using two principal 
components. The unbroken line is for NB, dashed for SVM-R, dash-dotted for 
SVM-L, and dotted for LR. 
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better specificity but SVM-R having better sensitivity. Neither LR or 
SVM-L were competitive for this task unless high sensitivity is desired. 

A plot of the time series in feature-space, colored by category, and 
the decision boundary of each method is displayed in Fig. 4. 

4.2. Additional principal components 

In addition, we experimented with adding additional principal 
components into the models, training them using the same cross- 
validation procedure as above. 

Tables 5 and 6 show the resulting accuracy and AUC scores when 
additional principal components are added, with the test accuracy 
estimated using LOO-CV. 

The NB model shows improvement in both accuracy and AUC as 
more components are included. This did not translate into improved test 
accuracy, probably indicating model overfitting. The LR and SVM-L 
models showed minor improvements which again fail to translate into 
improved test accuracy. The non-monotonic gains in accuracy may be 
due to the effect of the bias-variance trade-off in this dataset. Overall the 
SVM-R model with two principal components performs had the highest 
metrics; additional components degrade its accuracy due to the bias- 
variance trade-off. 

The resulting accuracy and AUC when predicting a Parkinson’s 
diagnosis with additional principal components is shown in Tables 7 and  
8. 

All models except for LR benefited from additional components in 
terms of in-sample performance but none of these gains translate into 
improvements in estimated test accuracy. Non-monotonicity in perfor-
mance as the number of components grows implies there may be some 

Table 4 
Results for each model when predicting Parkinson’s diagnosis using two prin-
cipal components. Accuracy and AUC are estimated from the training 10-fold 
cross validation may be considered as upper-bounds. The test accuracy, sensi-
tivity and specificity are estimated using LOO-CV. The emboldened values 
highlight the best result for each metric.  

Method Accuracy AUC Test Acc Test Sens Test Spec 

NB 0.69 0.70 0.64 0.58 0.73 
LR 0.61 0.59 0.61 0.78 0.40 
SVML-L 0.63 0.60 0.60 0.78 0.40 
SVM-R 0.69 0.68 0.63 0.68 0.57  

Fig. 4. Decision boundaries for prediction of Parkinson’s diagnosis using two 
principal components. The unbroken line is for NB, dashed for SVM-R, dash- 
dotted for SVM-L, and dotted for LR. 

Table 5 
Resulting accuracy when predicting UPDRS-FT > 1 using 2–5 principal compo-
nents. The emboldened values highlight the model with highest accuracy in each 
case The best performing number of principal components was used to estimate 
the test accuracy with LOO-CV and the permutation test P-value.  

Method PCA-2 PCA-3 PCA-4 PCA-5 Test Acc. P 

NB 0.74 0.76 0.79 0.81 0.73 0.02 
LR 0.73 0.74 0.76 0.74 0.73 0.01 
SVM-L 0.71 0.79 0.76 0.79 0.71 0.01 
SVM-R 0.84 0.84 0.83 0.81 0.8 0.01  

Table 6 
Resulting AUC when predicting UPDRS-FT > 1 using 2–5 principal components. 
The emboldened values highlight the model with highest AUC in each case.  

Method PCA-2 PCA-3 PCA-4 PCA-5 

NB 0.74 0.76 0.79 0.81 
LR 0.73 0.74 0.76 0.74 
SVM-L 0.71 0.79 0.76 0.79 
SVM-R 0.84 0.84 0.83 0.81  

Table 7 
Resulting accuracy when predicting Parkinson’s diagnosis using 2–5 principal 
components. The emboldened values highlight the model with highest AUC in 
each case. The best performing number of principal components was used to 
estimate the test accuracy with LOO-CV and the permutation test P-value.  

Method PCA-2 PCA-3 PCA-4 PCA-5 Test Acc. P 

NB 0.69 0.63 0.67 0.74 0.67 0.46 
LR 0.61 0.57 0.6 0.57 0.57 0.57 
SVM-L 0.63 0.66 0.67 0.7 0.63 0.97 
SVM-R 0.69 0.8 0.8 0.76 0.66 0.49  

Table 8 
Resulting AUC when predicting Parkinson’s diagnosis using 2–5 principal 
components. The emboldened values highlight the model with highest AUC in 
each case.  

Method PCA-2 PCA-3 PCA-4 PCA-5 

NB 0.69 0.64 0.69 0.74 
LR 0.59 0.5 0.57 0.57 
SVM-L 0.6 0.65 0.67 0.68 
SVM-R 0.68 0.81 0.79 0.75  

Table 9 
Contribution of each feature to the first 5 principal components in percentages. 
The column names SV-n denote contributions to the nth singular vector. ESD is 
short-hand for Energy Spectral Density.  

Feature SV-1 SV-2 SV-3 SV-4 SV-5 

Max peak (Hz) 9.5 14.8 1.3 12.1 9.7 
Total ESD 3 16.5 4.5 18.7 19.6 
ESD (0–3.06 Hz) 8.3 10.7 23.2 6 4 
ESD (3.06–6.12 Hz) 8.3 4 27.8 1.8 8.9 
ESD (6.12–9.18 Hz) 12.7 10.8 11.3 8.6 4.6 
ESD (9.18–12.24 Hz) 13.2 8 7 10.3 2.9 
ESD (12.24–15.3 Hz) 11.8 10.5 4.7 4.1 12.2 
ESD (15.3–18.36 Hz) 12 11.6 9.8 9.6 5.9 
Maxima-minima ratio 6.4 13 8.6 20.9 20.2 
Peak-to-peak std. dev. 14.9 0.1 1.8 8 12.1  

Variance explained 37.5 24.1 15.3 7.6 5.5 
Cumulative variance 37.5 61.6 76.9 84.5 90  
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effect from the bias-variance trade-off. 

4.3. Feature contribution to PCA 

Table 9 lists the percentage contribution of all of derived features to 
the first 5 principal components, along with the variance explained by 
each components. 

Our first component explaining 37.5% of the overall variance is 
comprised primarily of the peak-to-peak standard deviation – measuring 
variability in rhythm throughout the timeseries – and the energy spec-
tral density (ESD) in higher frequency bands, which measure jittery 
movement. 

The second component included strong influence from the frequency 
of the maximal peak (measuring rhythm), the total power in the signal 
(corresponding to average amplitude across the time series), and the 
maxima-minima ratio (corresponding to jitter in hand motions). 

4.4. Misclassified UPDRS-FT categories 

We investigated the misclassified examples when predicting UPDRS- 
FT category using our the SVM-R with two principal components model, 
to glean insight into where our models may be improved. 

This model misclassified 11 examples. 7 were misclassified as mild/ 
moderate/severe bradykinesia (UPDRS-FT > 1) (5 controls, 2 patients). 
Meanwhile, 4 were misclassified as no/slight bradykinesia (UPDRS-FT 
0–1) (1 control, 3 patients). The misclassified examples were close to the 
decision boundary in 4 cases; for these cases there was expert rater 
disagreement. All misclassified videos had a UPDRS-FT grade of either 1 
or 2, i.e. no large misclassifications occurred. 

The time series of two of the examples closest to the decision 
boundary (one patient and control) are shown in Fig. 2. The two mis-
classified cases furthest from the decision boundary (one patient and 
control) are also shown in Fig. 2. 

Re-examination of the original videos and optical flow timeseries by 
two neurologists (SW, JA) identified several potential contributors to 
this misclassification. First, several videos showed overall hand move-
ment while fingers were held closed between taps, usually a swinging 
wrist movement preparing for the next tap (and in one case tremor). This 
created additional small peaks and a more irregular timeseries in videos 
that showed otherwise regular, smooth finger tapping. Conversely, 
moving all the fingers ‘en masse’ tended to create large smooth peaks of 
optical flow, that reduced the optical flow effect of underlying irregu-
larities in the tapping itself. 

Second, a large difference between the speed of finger opening 
(slower) and closing (quicker) created two distinct optical flow peak 
sizes/shapes, and a less uniform timeseries, even though the actual 
tapping was not clearly bradykinetic by UPDRS-FT. Third, our timeseries 
have a 15s duration, similar to several other objective measures, e.g. 
[41], but the UPDRS-FT asks raters to judge only the first 10 finger taps. 
When tapping rate is fast, only a small initial section of the time series is 
judged by raters, while later tapping changes contribute to the optical 
flow timeseries. 

Finally, it is known that raters prioritise amplitude and rhythm when 
judging finger tapping, but pay less attention to speed [4]. With this is 
mind, we noted that slow but large amplitude movements tended to be 
classified as UPDRS-FT 0–1 by raters, but UPDRS-FT > 1 by SVM-R, 
whereas fast but smaller amplitude movements tended to be classified 
as UPDRS-FT > 1 by raters, but UPDRS-FT 0–1 by SVM-R. 

5. Discussion 

In a pilot sample of 70 finger-tapping test videos, we showed 
reasonable predictive performance for mild/moderate/severe bradyki-
nesia (UPDRS-FT > 1). The estimated test accuracy of 0.8 (using SVM-R) 
is promising in light of the level of agreement between expert clinical 
raters (κ = 0.46). We also note that disagreement between the 

automated method and clinical experts may be caused when either (i) 
the clinician is correct and the automated test is wrong, or (ii) the 
clinician is incorrect and the automated test is right. Given that prior 
literature casts doubt on the ability of human experts to accurately 
evaluate subtle traits [4,39], (ii) is highly feasible; such that the reported 
accuracy may underestimate how well we truly classify bradykinesia. 
Further improvements in accuracy and generalisability may be achieved 
by using classification algorithms that account for uncertain labels, such 
as probabilistic SVM [40]. However, in our case with only two raters, 
such approaches may still be fragile, as an individual rater will have a 
large effect on the probabilistic labels. 

The method was less successful at predicting the presence of Par-
kinson’s diagnosis: NB obtained an estimated test accuracy of 0.67 using 
5 principal components. In fact, for all classifiers, the p-values from the 
permutation test indicate that similar accuracies may be obtained by 
chance. While this does not invalidate the result, a much larger training 
sample is required to determine whether the classifiers are learning true 
structure in the data. 

This poorer performance is to be expected. A degree of bradykinesia 
is often detected in control hands when clinical raters are blinded to 
diagnosis status, particularly among older age groups [20]. While bra-
dykinesia is a necessary component of the Parkinson’s diagnostic 
criteria, it is not sufficient in isolation [3]. In practice, finger tapping 
bradykinesia is only one of a more comprehensive set of clinical as-
sessments used to diagnose Parkinson’s. 

The clinician ratings were based on 10 finger taps, as per UPDRS, 
whereas the optical flow time series was 15 s duration, similar to some 
existing studies [41]. Some misclassification may have resulted from this 
difference in assessment time period. Future work could isolate indi-
vidual tapping epochs [42]. Future work to separate overall hand 
movement from finger-thumb tapping might also improve classification. 

Our novel approach to finger tap measurement cannot be easily 
compared with previous literature for several reasons. First, previous 
studies use clinically recognisable features (e.g. tap distance) rather than 
overall optical flow, but they require special equipment or patient 
interaction with an app. Second, the results of previous studies vary 
widely in terms of strength of correlation or accuracy of discrimination, 
despite apparently similar methods [18,28,43,44]. Finally, in contrast to 
our work, many previous studies involve measurements after patients 
have been instructed to withhold medication, artificially creating more 
severe bradykinesia and thus larger differences [4,21]. With these ca-
veats, our accuracy of 0.8 is broadly comparable to previous work. 

The single previous computer vision video study involved a small 
sample of 13 Parkinson’s patients, who all had advanced disease [10]. 
We note that their most predictive feature for UPDRS was a measure of 
tapping rhythm. This corresponds to our results in which the first 
principal component feature was primarily composed of a rhythm 
measure (peak to peak variation). Other studies also suggest rhythm 
measures may be particularly important [4,19]. 

The approach used here has potential to provide widely available, 
low-cost bradykinesia detection; without the requirement for new 
hardware or for patients to directly interact with smartphone apps or 
computer programs. This is a fundamental difference from previously 
published methods [4,8]. An automated method broadens access to the 
measurement of bradykinesia (currently the preserve of a small group of 
clinicians, principally neurologists). For example, allowing family doc-
tors and medical nurse practitioners to screen for and monitor the 
phenomenon has potential resource benefits. Furthermore, the use of 
ubiquitous technology means that the approach may be suitable in a 
home setting to monitor progression of Parkinson’s. In addition, it might 
also be useful for monitoring other conditions in which there are 
changes in movement over time such as rheumatoid arthritis, in which 
common signs include decreased range of motion and joint stiffness [45, 
46]. 

Whilst initial results appear promising, our estimate of accuracy may 
be optimistic, as our small sample size meant that there was insufficient 
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data to test on an independent subset of data. In addition, the small 
sample size means that classification using LR, SVMs, and NB produced 
conservative decision boundaries. A large sample would allow us to 
determine whether there was any true local structure in the feature 
space. A larger sample would also allow us to improve the usefulness of 
the system by estimating the UPDRS score directly, rather than the bi-
nary categorisation undertaken here. A larger validation study is 
therefore necessary and has been initiated by the study team. 

In addition, the continuum of finger tapping performance means that 
in reality there is a soft boundary between UPDRS-FT grade 1 and grade 
2, but the use of a binary classifier (e.g. SVM) creates a harder boundary 
between these classifications, contributing to errors. In future work, we 
can investigate ‘fuzzy’ or multi-class neural networks to address this. 

Furthermore, the approach taken here is likely sub-optimal in two 
respects. First, spatial and angular information is discarded at each 
frame. This has the advantage of reducing the dimensionality of the 
signal so that real-time processing, even on modest hardware, is prac-
ticable. Second, the hand-selection of candidate features was entirely 
subjective and may have missed important characteristics in the time 
series. Additional data would allow more sophisticated approaches to 
automatically learn pertinent features (c.f. [47]). 

Finally, it is possible that we may introduce bias by analyzing data on 
a per-hand, rather than per-patient basis. We do not believe that this was 
an important factor for the analysis presented here. In supplementary 
material, we further describe the expert-rated UPDRS of left and right 
hands of the control and patient population, showing no evidence of 
systematic difference between hands. We also performed a sensitivity 
analysis in which the ‘partnering’ hand was omitted from Leave One Out 
Cross Validation training, in which the results remained consistent. 

6. Conclusion and future work 

We have described and demonstrated an automated method to 
classify the presence of bradykinesia via smartphone video signals. In 
our pilot study we have shown good agreement with expert clinicians. 
Further improvements may be possible via more sophisticated analyses, 
but this requires further training data. A larger validation study of this 
technology is currently under development. 
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