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Introduction. Simulation of the motion of an incompressible fluid remains an important but
very challenging problem. The resources required for accurate three-dimensional simulation of
practical flows test even the most advanced of supercomputer hardware—the necessity for effective
and efficient numerical algorithms is uncontrovertible. Computations based on approximations on
fixed non-adapted grids are out of the question, and the excellent sparse direct solvers developed
over the past 30 years or so (which have enabled many two-dimensional computations) require
unreasonable and usually unattainable computational resources.

In this project, we have built and demonstrated a new and complete methodology for the ap-
proximation and efficient solution of steady incompressible Navier-Stokes problems. In particular
our research evolved along three separate fronts as identified on the original proposal: (i) the ap-
proximation by convenient low order mixed finite elements with appropriate pressure-stabilisation
(this is described in [7],[8]); (ii) estimation of error a posteriori, using estimators caleulated from
the solution of local higher order problems together with adaptive mesh (A—)refinement based on
these indicators (see [4],[5]); and (iii) preconditioned Krylov subspace iteration employing pre-
conditioners which provide an optimal solver with respect to the mesh size and an almost optimal
solver with respect to the Reynolds number associated with the underlying flow (see [3],[10]).
In each of these research threads we have made important advances commensurate with those
envisaged on the original proposal—these are detailed below. The combination of our ideas is
implemented in some research software which is used to compute the example results presented
below. This software package is already being used by a number of academic colleagues around
the world—making it more widely usable is being undertaken as part of ongoing callaboration
with David Kay.

Stabilised mixed finite element methods. The development of stable mixed finite element
methods is a fundamental component in the search for efficient numerical methods for solving the
Navier-Stokes equations. Using a primitive variable formulation, the importance of ensuring the
compatibility of the component approximations of velocity and pressure by satisfying a technical
“inf-sup’ condition is widely appreciated. In particular, it is well known that conforming low
order elements are not stable. This impinges on efficiency since the simple logic and regular data
structure associated with low order finite element methods make them particularly attractive on
modern parallel processing architectures.

In recent years, computationally convenient stabilised low-order discretisation methods have been
developed. Such methods are widely used by practitioners since they permit the use of equal-
order velocity and pressure approximations—a combination that is notoricusly unstable in the
standard finite element framework. The drawback with this methodology is the introduction of
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stabilisation parameters that must be chosen sensibly if the resulting method is to work well in
practice. This choice between stable and stabilised low order finite element methods was addressed
by the project student—in the first instance by a series of numerical experiments. These results
were published in a special journal issue devoted to stabilisation methods [8], and two conclusions
were drawn.

¢ The three stabilised mixed methods discussed in [8] proved to be superior to their inherently
stable counterparts, with respect to the accuracy for a fixed number of degrees of freedom.

o There was no major difference in the performance of the stabilised methods, although the
results hinted that the standard equal order P,—P, stabilised method (linear velocity with
C° linear pressure) may perform poorly compared to a Pi—Py (linear velocity and constant
pressure) stabilised method if small scale features of the flow really need to be resolved.

Although attention in [8] is restricted to two-dimensional flow problems and triangular meshes,
the conclusions are also relevant to the case of three-dimensional flow problems discretised using
the lowest order tetrahedral elements. As noted above, the biggest drawback of stabilisation
techniques is that (regularisation) parameters are implicitly introduced. To address this issue, a
Fourier analysis of periodic Stokes flow problems discretised using a @;—¢); (C° bilinear velocity
and pressure) mixed finite element method is given in [9]. In particular, we extended the standard
stabilisation technique (originally introduced by Brezzi and Pitkiranta in the case of P,—P; mixed
approximation) and deduced the optimal choice of stabilisation parameter which minimises the
condition number of the Schur complement matrix that determines stability. Contrary to our
expectations, it turns out that the optimal parameter is not uniquely determined—there is an
interval of parameter values over which optimality is achieved. The upshot of this analysis is that
the performance of stabilised methods is less sensitive than might be anticipated in terms of the
choice of parameter. Norburn’s Ph.D thesis [7] represents a lucid exposition of state-of-the-art
optimally stabilised mixed methods for incompressible flow equations.

The issue of inf-sup stability has increased in importance with the advent of fast iterative solution
algorithms, for example, based on multigrid iteration or preconditioning—if the underlying mixed
approximation is not stable then stabilisation is essential if methods based on multigrid are to be
effective.

A posteriori error estimation and adaptivity. In the first phase of the project (when David
Kay was based at UMIST), the design of an efficient and effective mesh refinement strategy for
incompressible flow models was addressed. Qur starting point was that of steady incompressible
Stokes flow using the stabilised P,—FPy approximation methods that is identified in [8] as being the
most accurate Stokes mixed finite method based on a linear approximation of velocity. Building on
the pioneering work of Ainsworth and Oden, we developed alocal error estimator that is computed
by solving a local Poisson problem (using a higher order space of edge bubble functions) for
each component of velocity (in two-dimensions we need to solve two independent 3 X 3 systems
for every element in the mesh). In [4] we extended the analysis of Verfiirth to show that the
resulting estimator is equivalent to the discretisation error, where the computable constants in
the equivalence relation are independent of the stabilisation parameter that controls the stability
of the method. We also devised a novel adaptive refinement strategy that ensures that the
stabilisation remains valid in the limit as the mesh size tends to zero.

In a subsequent paper [5] we addressed the reliability of this type of local Poisson estimator in
the context of steady convection-diffusion problems. QOur analysis illustrates that this type of
estimator suffers from a potential source of difficulty in regimes where convection dominates—
specifically, in the neighbourhood of unresolved exponential boundary layers, the estimator is
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likely to grossly over-estimate the discretisation error. Fortunately, in the case of incompressible
flow models such exponential boundary layers only arise when outflow boundary conditions are
inappropriately specified. Consequently we are confident that a combination of the approaches
in [4] and [5] can provide the basis for cheap and effective error indicators for incompressible flow
problems, at least for flows associated with Reynolds numbers up to O(10*) — that is realistic
steady flows in most non-trivial flow geometries.

Efficient preconditioning for the linearised Navier-Stokes equations. The second phase
of the project on preconditioned iterative solution methods started when David Kay moved from
UMIST to Oxford as envisaged in the original proposal.

Block preconditioned GMRES iteration had been selected as the most attractive approach for
the Navier-Stokes equations based on earlier work of the two principle investigators on the Stokes
problem. The requirements were for a multigrid preconditioner for the ‘primal’ (1,1) operator
which could be combined with the pressure scaling matrix in the (2,2) Schur complement operator
giving a preconditioner which can be proved to give convergence rates independent of mesh size
for the Stokes problem (this had been demonstrated for regular grids by Silvester and Wathen).
David Kay quickly implemented a multigrid procedure based on the adaptive levels of refinement
and was able to build an efficient Stokes preconditioner which demonstrated the effectiveness of
the Silvester—Wathen approach for irregular /adapted grids.

The work proceded on to the Oseen problem where the result of [6] indicated that a multigrid
preconditioning procedure for the discrete scalar advection-diffusion operator was required as well
as an approximate Schur complement.

The multigrid procedure was achieved by constructing stable finite element approximations on
each of the different grid levels using the Streamline Upwind Petrov Galerkin (SUPG) procedure of
Hughes and Brookes with an appropriate stabilisation parameter asidentified by Fischer, Ramage,
Silvester and Wathen (Comput. Meths. Appl. Mech. Engrg. 179, pp. 179-196 (1999)). By
this approach, the unwanted oscillations on coarser grids associated with Galerkin approximation
were avoided enabling standard grid transfer operations to be employed. Note that even if a
Galerkin approximation could be used on the finest level of adapted mesh, it was always (and
will generally) be the case that mesh-Peclet conditions will be violated on the coarser meshes and
so appropriate advection-stabilisation is required. We avoided complicated ‘trajectory-following’
variable orderings for the smoother as these seem unlikely to be applicable for realistic flows but
employed a small number of Gauss-Seidel sweeps through the variables in the forward and reverse
order. The ordering of the discrete variables was simply as computed in the adaptive algorithm,
employing a simple ‘stack’ for new degrees of freedom in a finer level of refined mesh. This
multigrid component of the overall block preconditioner worked very well in tests and attention
switched to the Schur complement part of the preconditioner.

Initial work on the so-called BFBT idea of Howard Elman (SIAM J. Sci. Comput. 20, pp.
1299-1316 (1999)) encountered some difficulties, particularly for the stabilised low order elements
which we desired to use. Results for higher order stable mixed spaces (such as P,—P;) were a little
better, but not as good as we had hoped. Coincidently, a graduate student, Daniel Loghin, was
working on the use of Green’s functions and Green’s tensors for preconditioning partial differential
equation problems and when he heard about this problem, he was able to come up with an idea
for a Schur complement preconditioner motivated by the Green tensor for the Oseen operator.
The preconditioner is described in [3] where also an excellent set of computational results which
demonstrate the effectiveness of this so-called Fp preconditioner are given. Amnalysis of this
preconditioner is ongoing and has involved also Howard Elman of the University of Maryland.
The numerical results indicate that the combination of one multigrid V-cycle employing all of the
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levels of adapted mesh, and the Fp approximation of the Schur complement as a preconditioner
for the GMRES iterative method is an extremely efficient solver - the number of iterations remains
constant with respect to the number of discrete variables and also seems to depend only mildly
on the Reynolds number.

A set of sample results is given here: the problem is the full non-linear incompressible Navier-
Stokes equations for flow past a cylinder at Reynolds number 50. The figure below shows six
levels of refined mesh computed for the final non-linear iteration and the table gives the number
of preconditioned GMRES iterations required over all of the computation. Pg o is the fully
efficient preconditioner employing multigrid and the Fp approximation. Note that use of multigrid
rather than a direct inversion of the (1,1) block results in at most two more iterations and more
profoundly that the number of iterations goes down as the number of adapted degrees of freedon
(in brackets for each level) increases. This is a feature of the Green’s function approach to
preconditioning since the underlying preconditioning operator is better approximated on finer
grids. Further results can be found in [10]. David Kay has computed simple three-dimensional
flows using these techniques and they appear equally effective. Analysis of the Fp preconditioner
and the computation of more realistic three dimensional flows are ongoing.

Mesh 1
1 1
0 0
-1 -1
-1 0 1 2 3 4 5 -1 3 4 5
Mesh 3 Mesh 4
1 1
0 0
-1 -1
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
Mesh 5 Mesh 6
1 1

Flow past a cylinder: levels of adaptive mesh refinement used also in the multigrid preconditioner

Level  1(264) 2(540) 3 (1242) 4(2709) 5 (5484) 6 (9003)
Py 2 49 51 44 44 41 40

GMRES iteration counts for the P,—P, adaptive mesh solution to the flow past a cylinder problem
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Research Seminars given by David Silvester: Fast iterations imply optimally stabilised discreti-
sation methods, University of Bradford, December 1996; Fast and accurate solution of the incom-
pressible Navier-Stokes equations, University of Greenwich, March 1997; Error estimation and
aadaptivity for incompressible flow problems, University of Bath, June 1997; Multigrid precon-
ditioning in computational fluid dynamics, University of Manchester, September 1997; Multigrid
preconditioning for elliptic PDFEs, Manchester Metropolitan University, January 1998; A posteri-
ori error estimation for elliptic PDEs, University of Strathclyde, February 1998, Imperial College,
December 1998, University of Maryland, USA, January 1999, University of Reading, February
1999, University of Minnesota, USA, June 1999.

Lecture Series given by David Silvester: University of Utrecht, 3 lectures on Fast solution
techniques for incompressible Navier-Stokes equations, Stable & unstable finite element methods
for incompressible flow problems and Fast iterations imply optimally stabilised discretisation
methods in a workshop on Theoretical and Practical Aspects of Incompressible CFD, January
8-10, 1997; Technical University of Denmark, Lyngby, 4 lectures on Finite element multigrid
methods in an International Graduate Research Course on Iterative and Finite Element Multigrid
Methods, June 25—July 3, 1998.

Plenary Lectures given by David Silvester: Mathematical Aspects of CFD, Oberwolfach, Jan-
uary 1997; Meeting in honour of Professor Godunov, Manchester Metropolitan University, Octo-
ber, 1999.

Research Seminars and Conference Contributions given by Andy Wathen: Imperial Col-
lege, November 1996, University of Leeds, November 1996, University of Sussex, January 1997,
University of Greenwich, April 1997, University of Minnestota, January 1998, University of Cam-
bridge, February 1998, University of Manchester, February 1998, Copper Mountain Conference
on Iterative Methods, April 1998, University of Reading, May 1998, University of Liverpool,
February 1999, University of Maryland, February 1939, Lawrence Livermore National Labora-
tory, California, March 1999, Stanford University, March 1999, University of Leicester, May 1999,
Preconditioning techniques for large sparse matrix problems in industrial applications, University
of Minnesota, June 1999, Biennial conference on Numerical Analysis, University of Dundee, July

1999.

Lecture Series given by Andy Wathen: University of Utrecht, 3 lectures on Introduction to
Stokes problems/inf-sup stability, Figenvalue bounds/estimates for Stokes and Preconditioning
discrete Oseen systems in a workshop on Theoretical and Practical Aspects of Incompressible
CF¥D, January 8-10, 1997

Plenary Lectures given by Andy Wathen: Meeting in honour of Professor K.W. Morton, Oxford,
April 1997, Biennial Conference on Numerical Analysis, Dundee, Scotland, June 1997, House-
holder Meeting on Numerical Algebra, Vancouver, Canada, June 1999, International Conference
on Numerical Algebra and Optimization, Nanjing, China, Sept 1999.

Research Seminars and Conference Contributions given by David Kay: University of
Durham, March 1997, University of Dundee, 17th Biennial Conference on Numerical Analysis,
1997, University of Strathclyde, February 1998, Stockholm, Royal Institute of Technology, Work-
shop on Adaptive Methods for Differential Equations, March 1998, University of Leicester, April
1998, Ninth Copper Mountain conference on multigrid methods, 1999, Stanford University, May
1999, University of Dundee, 18th Biennial Conference on Numerical Analysis, 1999. Oxford
University Computing Laboratory, November 19939.
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