
Heidelberg short course | David Silvester Exercises 3

. . . continued from Exercises 2

Stochastic T-IFISS extends the core version of T-IFISS to cover stochastic
Galerkin approximations of diffusion problems with random coefficients, the
associated a posteriori error estimation and adaptive algorithms, including goal-
oriented adaptivity. It can be downloaded from
http://web.mat.bham.ac.uk/A.Bespalov/software/

10. The aim of this exercise is to assess the effectiveness of the default adap-
tive refinement strategy that is built into stochastic T-IFISS by looking
at a problem with a regular solution. The test problem can be set up in
stochastic T-IFISS by running the driver stoch adapt testproblem and
selecting reference problem 2. Taking all the default choices, you should
discover that the adaptive algorithm converges in 47 steps with 4 para-
metric enrichments. The total number of degrees of freedom should be
109136 with 7133 vertices on the final mesh with 16 indices activated and
5 active parameters. Save the plots of the refinement path (Figure 120)
and of the final mesh (Figure 2). (Hint: use the command savefig.)

Next, repeat the experiment by running stoch adapt diff main with
the hierarchical strategy EES2 together with edge marking. You should
observe that far fewer adaptive steps are needed to reach the default
tolerance and the number of vertices on the final mesh is reduced by a
factor of close to 2.

Another point worth noting is that, in both cases, the order of convergence
is close to N−1/3 where N is the number of degrees of freedom, which is
suboptimal.

11. The aim of this final exercise is to assess the role of the marking thresh-
old parameters on the adaptive algorithm efficiency. To this end, you
might consider repeatedly solving the singular problem given by running
stoch adapt testproblem and selecting reference problem 5. Choose the
default error tolerance and run the code with the default strategy EES1

with element marking and select a fast decaying random coefficient series
representation.

Generate a two-dimensional table of results showing iteration counts and
associated solution times for 3 different values of each marking parameter
(9 runs of the code in total). You should discover that the default choices
θx = 0.2 and θy = 0.9 are close to optimal in terms of the cpu time!


