Let X be a finite-dimensional subspace of a Hilbert space H, and let $u \in H$ and $u_h \in X$ satisfy

$$a(u,v) = \ell(v) \qquad \forall v \in H,\tag{V}$$

$$a(u_h, v_h) = \ell(v_h) \qquad \forall v_h \in X, \tag{V}_h$$

respectively, where $a(\cdot, \cdot)$ is a symmetric bilinear form on H and $\ell : H \to \mathbb{R}$ is a linear functional.

1. Show that the Galerkin solution u_h is the best approximation to $u \in H$ when measured in the energy norm $||u||_E$, that is

$$\|u - u_h\|_E \le \|u - v_h\|_E \quad \forall v_h \in X,$$

where $||v||_E^2 = a(v, v)$ for $v \in H$.

2. Suppose that we have an enhanced approximation space W so that $X \subset W \subset H$, with associated solution $u_h^* \in W$ satisfying

$$a(u_h^*, v) = \ell(v) \qquad \forall v \in W.$$

Use the fact that $a(u - u_h^*, v) = 0$, for all $v \in W$ to show that

$$||u - u_h||_E^2 = ||u - u_h^*||_E^2 + ||u_h^* - u_h||_E^2.$$

Deduce that $||u - u_h||_E \ge ||u - u_h^*||_E$.

3. Suppose that the enhanced space W can be written as $W = X \oplus Z$ and that a strengthened Cauchy–Schwarz inequality holds

$$a(v_h, z_h) \leq \gamma \left\| v_h \right\|_E \left\| z_h \right\|_E \qquad \forall v_h \in X, \forall z_h \in Z$$

with $0 \leq \gamma < 1$. Consider the simplified error representation problem: find $e_h \in Z$ satisfying

$$a(e_h, z_h) = \ell(z_h) - a(u_h, z_h) \qquad \forall z_h \in Z.$$

$$(Z_h^*)$$

Show that $e_h \in Z$ is equivalent to $u_h^* - u_h \in W$

$$||e_h||_E^2 \le ||u_h^* - u_h||_E^2 \le \frac{1}{1 - \gamma^2} ||e_h||_E^2$$

where $0 \leq \gamma < 1$ is the CBS constant. [Hint: to establish the left-hand inequality use that fact that $a(u_h^* - u_h, z_h) = a(e_h, z_h)$ for all $z_h \in Z$. To establish the right-hand inequality, write $u_h^* - u_h = v_h + z_h$ with $v_h \in X$ and $z_h \in Z$ and use the inequality $a^2 + b^2 - 2\gamma ab \geq (1 - \gamma^2)b^2$.]