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The first two questions are about natural cubic splines.

A cubic spline is a piecewise polynomial S3(x) ∈ C2([a, b]) such that

➊ S3(xi) = fi := f(xi) for i ∈ {0, 1, . . . , n} and

➋ S3(x) is a cubic polynomial on Ωi = [xi−1, xi] for i ∈ 1, 2, . . . , n.

A natural cubic spline also satisfies the end conditions

S′′
3 (x0) = 0 = S′′

3 (xn).

Suppose we want to construct such a spline approximation with a uniformly
spaced set of knots K = {xi}ni=0 = {a + ih}ni=0 on Ω = [a, b] (so that n =
(b− a)/h). The condition S3(x) ∈ C2([a, b]) requires that

S′
3(xi)

∣∣
Ωi

=S′
3(xi)

∣∣
Ωi+1

and S′′
3 (xi)

∣∣
Ωi

=S′′
3 (xi)

∣∣
Ωi+1

for all interior data points xi, i = 1, . . . , n− 1.

The simplest construction is to define σi = S′′
3 (xi), i = 0, 1, . . . , n, and notice

that S′′
3 (x) is a linear function on Ωi so that

S′′
3 (x) =

xi − x

h
σi−1 +

x− xi−1

h
σi, x ∈ Ωi, i = 1, 2 . . . , n.

Integrating twice gives two constants of integration, αi and βi, say, which are
uniquely determined by the conditions S3(xi−1) = fi−1, S3(xi) = fi.

1. (a) Use the suggested method of construction to derive an explicit ex-
pression for S3(x) over the subinterval Ωi.

(b) Next, show that enforcing the continuity of S′
3(x) at the interior

knots {xi}n−1
i=1 , leads to a tridiagonal system of linear equations,

Aσ = b,

for the unknowns σi, i = 1, 2, . . . , n−1, where A has diagonal entries
Ai, i = 2h

3 , off-diagonal entries Ai, i−1 = h
6 = Ai, i+1 and the right-

hand side vector coefficients are given by bi =
1
h(fi+1 − 2fi + fi−1).

2. (a) Let f(x) = x3 on [0, 1] and let S3(x) be the natural cubic spline
interpolant of f constructed with uniformly spaced points (with n ≥
2). If we choose the natural conditions σ0 = 0 = σn, show that the
values σi = f ′′(xi) for i = 1, . . . , n−1 do not satisfy the linear system
Aσ = b derived in question 1(b). (This shows that the natural cubic
spline interpolant S3 is not equal to f , even though f is cubic).

(b) Show that when we choose σ0 = f ′′(0) and σn = f ′′(1) we have
σi = f ′′(xi) for all i = 1, . . . , n− 1. Deduce then that the associated
cubic spline interpolant S3(x) is identical to f(x) = x3 on [0, 1].
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The next two questions focus on quadratic splines.

3. (a) Consider a piecewise quadratic spline function s(x), that interpolates
a function f(x) at a set of knots K = {xi}ni=0 with a = x0, xn = b
and hi = xi − xi−1. This interpolant s(x) is characterised by three
unknown coefficients in each subinterval Ωi = [xi−1, xi]. Show that
if s(x) is written in the form

s(x) = ai + bi(x− xi−1) + ci(x− xi−1)(x− xi), x ∈ Ωi,

then the interpolation conditions s(xi−1) = fi−1, s(xi) = fi uniquely
determine the coefficients ai and bi.

(b) In addition, show that requiring s(x) ∈ C1([a, b]) means that

ci+1 = − 1

hi+1

{
cihi +

(
fi − fi−1

hi

)
−
(
fi+1 − fi
hi+1

)}
,

for i = 1, . . . , n − 1, so that the spline function s(x) on [a, b] is
uniquely specified by setting the value of c1.

4. (a) Suppose that the quadratic spline interpolant s(x) is applied to two
data sets differing only in the first value, f0 and f∗

0 say, and assume
that the data is equally spaced so that h = hi, i = 1, 2, . . . , n. Denote
the two resulting interpolants by s(x) and s∗(x) and suppose that
the same initial value c1 = c∗1 is specified for each. Use proof by
induction to show that

c∗i = ci +
(−1)i

h2
(f∗

0 − f0), i = 2, . . . , n.

(b) Deduce then that

s∗(x) = s(x) +
(−1)i

h2
(f∗

0 − f0)(x− xi−1)(x− xi), x ∈ Ωi,

for i = 1, . . . , n. (This means that a small change in the first data
point will be propagated undamped throughout the domain of inter-
polation. This is why quadratic splines are rarely used in practice).

The focus of the final two questions is least-squares data fitting, oth-
erwise known as ‘best L2(Ω) approximation’.

5. Let Ω = (0, 1). Instead of being required to interpolate a function f at a
chosen set of knots K = {xi}ni=0, suppose a linear spline approximation
S1(x) is constructed to minimise ||f − S1||L2(Ω). By writing S1(x) as a
linear combination of linear ‘hat’ functions

S1(x) =
n∑

i=0

αiϕi(x),
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use calculus to show that the coefficients {αi}ni=0 can be computed by
solving a linear system of n+ 1 linear equations

Qα = b, (⋆)

where Q has entries given by

Qi, j =

∫ 1

0
ϕi(x)ϕj(x) dx

for i, j = 0, 1, . . . , n and the entries of b are

bi =

∫ 1

0
f(x)ϕi(x) dx,

for i = 0, 1, . . . , n. [Note that here the counter i starts at zero so the (1,1)
entry of Q is Q0,0 and the first entry of of b is b0].

6. (a) Suppose that the knots in the previous question are equally spaced.
Use properties of the hat functions ϕi(x) to show that Q is a sym-
metric and tridiagonal matrix with diagonal entries

Q0, 0 =
h

3
, Qi, i =

2h

3
, i = 1, . . . , n− 1, Qn, n =

h

3

and off-diagonal entries Qi, i−1 =
h
6 = Qi, i+1.

[Hint: the easiest way to integrate a quadratic or cubic function f(x)
over an interval (a, b) is to use Simpson’s quadrature rule:∫ b

a
f(x)dx = S :=

h

6
(fa + 4fm + fb),

where m is the midpoint of the interval and h = b− a.]

(b) Consider f(x) = x. Verify that the ith equation in the system (⋆)
is satisfied with αi = ih for i = 0, 1, 2, . . . , n. Deduce then that
S1(x) = f(x) on [0, 1].
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