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1. Since u− uh ∈ V , we use the first property and note that a is bilinear:

‖u− uh‖2H1(Ω) ≤
1
γa(u− uh, u− uh)

= 1
γa(u− uh, u− vh + vh − uh) ∀vh ∈ Vh

= 1
γa(u− uh, u− vh) + a(u− uh, vh − uh).

Next since a(u− uh, vh) = 0 ∀vh ∈ Vh (G–O) and vh − uh ∈ Vh we get

‖u− uh‖2H1(Ω) ≤
1
γa(u− uh, u− vh).

Then, using the second property

‖u− uh‖2H1(Ω) ≤
Γ
γ ‖u− uh‖H1(Ω)‖u− vh‖H1(Ω).

Assuming u 6= uh, we can divide through by ‖u− uh‖H1(Ω) to give

‖u− uh‖H1(Ω) ≤ Γ
γ ‖u− vh‖H1(Ω).

The result also holds in the case ‖u− uh‖H1(Ω) = 0 ⇐⇒ u = uh. ♥

2. (a) Let u ∈ X be the solution of (V ). Suppose v ∈ X and define
w = v − u ∈ X. Using the symmetry of the bilinear form gives

F (v) = F (u+ w)

=
1

2
a(u+ w, u+ w)− `(u+ w)

=
1

2
a(u, u)− `(u) +

1

2
a(u,w) +

1

2
a(w, u)︸ ︷︷ ︸
1
2
a(u,w)

−`(w) +
1

2
a(w,w)

=
1

2
a(u, u)− `(u) +

1

2
a(w,w) + a(u,w)− `(w)︸ ︷︷ ︸

=0

= F (u) +
1

2
a(w,w).

Finally, a(w,w) = ‖w‖2E ≥ 0, thus F (v) ≥ F (u) as required. ♥
(b) Noting that uh ∈ Xh ⊂ X and using Galerkin orthogonality gives

‖u− uh‖2E = a(u− uh, u− uh)

= a(u− uh, u)− a(u− uh, uh)︸ ︷︷ ︸
=0

= a(u− uh, u) + a(u− uh, uh)

= a(u− uh, u+ uh)

= a(u, u)− a(uh, uh) = ‖u‖2E − ‖uh‖
2
E . ♥

1



Thus, since ‖u− uh‖2E ≥ 0, we have shown that ‖u‖E ≥ ‖uh‖E . (∗)
To see the connection with (M) we note that F (u) ≤ F (uh). Thus,
1
2 ‖u‖

2
E−`(u) ≤ 1

2 ‖uh‖
2
E−`(uh). Setting v = u in (V ) and vh = uh in

the Galerkin formulation, we find that −1
2 ‖u‖

2
E ≤ −

1
2 ‖uh‖

2
E which

can be arranged to give the result (∗) above.

3. (a) First, if u satisfies (E) then u ∈ C2(Ω), which means that u ∈ H1(Ω).
Since u = 0 on ∂Ω we deduce that u ∈ X.

Multiplying both sides of (E) by v ∈ X and integrating over Ω gives
the strong formulation

−
∫

Ω
v∇2u = λ

∫
Ω
uv ∀ v ∈ X.

Next, integrating by parts gives the weak formulation∫
Ω
∇u · ∇v = λ

∫
Ω
uv +

∫
∂Ω
v∇u · ~n ∀ v ∈ X,

where ~n is the outward pointing normal to the boundary: this in-
tegration by parts is permitted because v ∈ H1(Ω). The fact that
v = 0 on ∂Ω establishes that u satisfies (V ).

To establish that λ > 0 we we make the specific choice v = u in (V ).
This gives ∫

Ω
∇u · ∇u = λ

∫
Ω
u2.

Applying the (P–F) inequality then leads to the estimate

0 ≤ ‖u‖2 ≤ L2‖∇u‖2 = L2λ‖u‖2. (?)

This establishes that λ ≥ 0. To show that λ > 0 we suppose that
λ = 0 in (?) so that

0 ≤ ‖u‖2 ≤ L2‖∇u‖2 = 0.

This means that ‖u‖ = 0 =⇒ u = 0 almost everywhere in Ω. This
is a contradiction because an eigenfunction satisfying (E) cannot be
the zero function. Thus λ > 0 as required. ♥

(b) Introducing a bilinear form a(·, ·) : H1(Ω) × H1(Ω) → R, the weak
formulation can be written as follows:

find (λ ∈ R, u ∈ X) such that a(u, v) = λ (u, v) ∀v ∈ X.

The corresponding Galerkin formulation is the following:

find (λh ∈ R, uh ∈ Xh) such that a(uh, vh) = λh(uh, vh) ∀vh ∈ Xh⊂ X.

Writing uh =
∑k

j=1 ujφj and setting vh = φi gives

a (
∑k

j=1ujφj , φi) = λh (
∑k

j=1ujφj , φi).
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That is,
k∑
j=1

uj a(φj , φi) = λh

k∑
j=1

uj (φj , φi).

This represents a k × k system Ax = λhQx with matrix coefficients
Aij = a(φj , φi) and Qij = (φj , φi). ♥

(c) case (i)

When h = 1/2 there are 8 triangles and one interior degree of freedom
at the central point (1

2 ,
1
2). There are six elements that meet at this

vertex. The 1× 1 Galerkin system is thus given by

4u1 = λh · 6 ·
h2

12
u1

and the eigenvalue estimate is given by λh = 8/h2 = 32.

case (ii)

When h = 1/3 there are 18 triangles and four interior degrees of
freedom at the points (1

3 ,
1
3), (2

3 ,
1
3), (1

3 ,
2
3) and (2

3 ,
2
3). Assembling

the 3× 3 Galerkin system gives the generalised eigenvalue problem
4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4



u1

u2

u3

u4

 = λh · h
2

12


6 1 1 1
1 6 0 1
1 0 6 1
1 1 1 6



u1

u2

u3

u4


Solving this problem the smallest eigenvalue is given by λ1

h = 25.3763.

Note that the analytic solution to this eigenproblem can be found
using Fourier analysis. This gives

λ = (i2 + j2)π2, i = 1, 2, 3 . . . j = 1, 2, 3, . . .

ui,j = sin(iπx) sin(jπy).

Thus the smallest eigenvalue is given by λ1 = 2π2 = 19.7392 . . ..
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