1. Since $u - u_h \in V$, we use the first property and note that a is bilinear:

$$\begin{aligned} \|u - u_h\|_{H^1(\Omega)}^2 &\leq \frac{1}{\gamma} a(u - u_h, u - u_h) \\ &= \frac{1}{\gamma} a(u - u_h, u - v_h + v_h - u_h) \quad \forall v_h \in V_h \\ &= \frac{1}{\gamma} a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h). \end{aligned}$$

Next since $a(u - u_h, v_h) = 0$ $\forall v_h \in V_h \text{ (G-O)}$ and $v_h - u_h \in V_h$ we get

$$||u - u_h||^2_{H^1(\Omega)} \le \frac{1}{\gamma} a(u - u_h, u - v_h).$$

Then, using the second property

$$||u - u_h||^2_{H^1(\Omega)} \le \frac{\Gamma}{\gamma} ||u - u_h||_{H^1(\Omega)} ||u - v_h||_{H^1(\Omega)}.$$

Assuming $u \neq u_h$, we can divide through by $||u - u_h||_{H^1(\Omega)}$ to give

$$||u - u_h||_{H^1(\Omega)} \le \frac{\Gamma}{\gamma} ||u - v_h||_{H^1(\Omega)}.$$

The result also holds in the case $||u - u_h||_{H^1(\Omega)} = 0 \iff u = u_h$. \heartsuit

2. (a) Let $u \in X$ be the solution of (V). Suppose $v \in X$ and define $w = v - u \in X$. Using the symmetry of the bilinear form gives

$$\begin{split} F(v) &= F(u+w) \\ &= \frac{1}{2}a(u+w,u+w) - \ell(u+w) \\ &= \frac{1}{2}a(u,u) - \ell(u) + \frac{1}{2}a(u,w) + \frac{1}{2}\underbrace{a(w,u)}_{\frac{1}{2}a(u,w)} - \ell(w) + \frac{1}{2}a(w,w) \\ &= \frac{1}{2}a(u,u) - \ell(u) + \frac{1}{2}a(w,w) + \underbrace{a(u,w)}_{=0} - \ell(w) \\ &= F(u) + \frac{1}{2}a(w,w). \end{split}$$

Finally, $a(w, w) = ||w||_E^2 \ge 0$, thus $F(v) \ge F(u)$ as required. \heartsuit (b) Noting that $u_h \in X_h \subset X$ and using Galerkin orthogonality gives

$$\begin{aligned} \|u - u_h\|_E^2 &= a(u - u_h, u - u_h) \\ &= a(u - u_h, u) - \underbrace{a(u - u_h, u_h)}_{=0} \\ &= a(u - u_h, u) + a(u - u_h, u_h) \\ &= a(u - u_h, u + u_h) \\ &= a(u, u) - a(u_h, u_h) = \|u\|_E^2 - \|u_h\|_E^2. \end{aligned}$$

Thus, since $||u - u_h||_E^2 \ge 0$, we have shown that $||u||_E \ge ||u_h||_E$. (*) To see the connection with (M) we note that $F(u) \le F(u_h)$. Thus, $\frac{1}{2} ||u||_E^2 - \ell(u) \le \frac{1}{2} ||u_h||_E^2 - \ell(u_h)$. Setting v = u in (V) and $v_h = u_h$ in the Galerkin formulation, we find that $-\frac{1}{2} ||u||_E^2 \le -\frac{1}{2} ||u_h||_E^2$ which can be arranged to give the result (*) above.

3. (a) First, if u satisfies (E) then $u \in C^2(\Omega)$, which means that $u \in \mathcal{H}^1(\Omega)$. Since u = 0 on $\partial\Omega$ we deduce that $u \in X$.

Multiplying both sides of (E) by $v \in X$ and integrating over Ω gives the *strong* formulation

$$-\int_{\Omega} v \nabla^2 u = \lambda \int_{\Omega} u v \quad \forall v \in X.$$

Next, integrating by parts gives the *weak* formulation

$$\int_{\Omega} \nabla u \cdot \nabla v = \lambda \int_{\Omega} uv + \int_{\partial \Omega} v \nabla u \cdot \vec{n} \quad \forall v \in X,$$

where \vec{n} is the outward pointing normal to the boundary: this integration by parts is permitted because $v \in \mathcal{H}^1(\Omega)$. The fact that v = 0 on $\partial\Omega$ establishes that u satisfies (V).

To establish that $\lambda > 0$ we we make the specific choice v = u in (V). This gives

$$\int_{\Omega} \nabla u \cdot \nabla u = \lambda \int_{\Omega} u^2.$$

Applying the (P–F) inequality then leads to the estimate

$$0 \le ||u||^2 \le L^2 ||\nabla u||^2 = L^2 \lambda ||u||^2.$$
 (*)

This establishes that $\lambda \geq 0$. To show that $\lambda > 0$ we suppose that $\lambda = 0$ in (\star) so that

$$0 \le ||u||^2 \le L^2 ||\nabla u||^2 = 0.$$

This means that $||u|| = 0 \implies u = 0$ almost everywhere in Ω . This is a contradiction because an eigenfunction satisfying (E) cannot be the zero function. Thus $\lambda > 0$ as required. \heartsuit

(b) Introducing a bilinear form $a(\cdot, \cdot) : \mathcal{H}^1(\Omega) \times \mathcal{H}^1(\Omega) \to \mathbb{R}$, the weak formulation can be written as follows:

find
$$(\lambda \in \mathbb{R}, u \in X)$$
 such that $a(u, v) = \lambda(u, v) \quad \forall v \in X$.

The corresponding Galerkin formulation is the following:

find $(\lambda_h \in \mathbb{R}, u_h \in X_h)$ such that $a(u_h, v_h) = \lambda_h(u_h, v_h) \quad \forall v_h \in X_h \subset X$. Writing $u_h = \sum_{j=1}^k u_j \phi_j$ and setting $v_h = \phi_i$ gives

$$a\left(\sum_{j=1}^{k} u_j \phi_j, \phi_i\right) = \lambda_h\left(\sum_{j=1}^{k} u_j \phi_j, \phi_i\right).$$

That is,

$$\sum_{j=1}^{k} u_j a(\phi_j, \phi_i) = \lambda_h \sum_{j=1}^{k} u_j (\phi_j, \phi_i).$$

This represents a $k \times k$ system $A\mathbf{x} = \lambda_h Q\mathbf{x}$ with matrix coefficients $A_{ij} = a(\phi_j, \phi_i)$ and $Q_{ij} = (\phi_j, \phi_i)$. \heartsuit

(c) case (i)

When h = 1/2 there are 8 triangles and one interior degree of freedom at the central point $(\frac{1}{2}, \frac{1}{2})$. There are six elements that meet at this vertex. The 1×1 Galerkin system is thus given by

$$4u_1 = \lambda_h \cdot 6 \cdot \frac{h^2}{12} u_1$$

and the eigenvalue estimate is given by $\lambda_h = 8/h^2 = 32$.

case (ii)

When h = 1/3 there are 18 triangles and four interior degrees of freedom at the points $(\frac{1}{3}, \frac{1}{3})$, $(\frac{2}{3}, \frac{1}{3})$, $(\frac{1}{3}, \frac{2}{3})$ and $(\frac{2}{3}, \frac{2}{3})$. Assembling the 3×3 Galerkin system gives the generalised eigenvalue problem

	-1 4 0 -1	$-1 \\ 0 \\ 4 \\ -1$	0 -1 -1 -1 4	$\left[\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \end{array}\right]$	$=\lambda_h\cdot rac{h^2}{12}$	$\begin{bmatrix} 6\\1\\1\\1\\1 \end{bmatrix}$	1 6 0 1	$ \begin{array}{c} 1 \\ 0 \\ 6 \\ 1 \end{array} $	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 6 \end{bmatrix}$	$\begin{bmatrix} u_1\\ u_2\\ u_3\\ u_4 \end{bmatrix}$	2
0	-1	-1	4 _	u_4		[1	1	1	6]	$\lfloor u_4$	L

Solving this problem the *smallest* eigenvalue is given by $\lambda_h^1 = 25.3763$. Note that the analytic solution to this eigenproblem can be found using Fourier analysis. This gives

$$\lambda = (i^2 + j^2) \pi^2, \qquad i = 1, 2, 3 \dots \quad j = 1, 2, 3, \dots$$
$$u_{i,j} = \sin(i\pi x) \sin(j\pi y).$$

Thus the smallest eigenvalue is given by $\lambda^1 = 2\pi^2 = 19.7392...$