1. Since $u - u_h \in V$, we use the first property and note that a is bilinear:

$$
||u - u_h||_{H^1(\Omega)}^2 \le \frac{1}{\gamma} a(u - u_h, u - u_h)
$$

= $\frac{1}{\gamma} a(u - u_h, u - v_h + v_h - u_h)$ $\forall v_h \in V_h$
= $\frac{1}{\gamma} a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h).$

Next since $a(u - u_h, v_h) = 0 \quad \forall v_h \in V_h \text{ (G–O) and } v_h - u_h \in V_h \text{ we get}$

$$
||u - u_h||_{H^1(\Omega)}^2 \le \frac{1}{\gamma} a(u - u_h, u - v_h).
$$

Then, using the second property

$$
||u - u_h||_{H^1(\Omega)}^2 \leq \frac{\Gamma}{\gamma} ||u - u_h||_{H^1(\Omega)} ||u - v_h||_{H^1(\Omega)}.
$$

Assuming $u \neq u_h$, we can divide through by $||u - u_h||_{H^1(\Omega)}$ to give

$$
||u - u_h||_{H^1(\Omega)} \leq \frac{\Gamma}{\gamma} ||u - v_h||_{H^1(\Omega)}.
$$

The result also holds in the case $||u - u_h||_{H^1(\Omega)} = 0 \iff u = u_h.$ \heartsuit

2. (a) Let $u \in X$ be the solution of (V) . Suppose $v \in X$ and define $w = v - u \in X$. Using the symmetry of the bilinear form gives

$$
F(v) = F(u + w)
$$

= $\frac{1}{2}a(u + w, u + w) - \ell(u + w)$
= $\frac{1}{2}a(u, u) - \ell(u) + \frac{1}{2}a(u, w) + \frac{1}{2}\underbrace{a(w, u)}_{\frac{1}{2}a(u, w)} - \ell(w) + \frac{1}{2}a(w, w)$
= $\frac{1}{2}a(u, u) - \ell(u) + \frac{1}{2}a(w, w) + \underbrace{a(u, w) - \ell(w)}_{=0}$
= $F(u) + \frac{1}{2}a(w, w)$.

Finally, $a(w, w) = ||w||_E^2 \ge 0$, thus $F(v) \ge F(u)$ as required. \heartsuit (b) Noting that $u_h \in X_h \subset X$ and using Galerkin orthogonality gives

$$
||u - u_h||_E^2 = a(u - u_h, u - u_h)
$$

= $a(u - u_h, u) - a(u - u_h, u_h)$
= $a(u - u_h, u) + a(u - u_h, u_h)$
= $a(u - u_h, u + u_h)$
= $a(u, u) - a(u_h, u_h) = ||u||_E^2 - ||u_h||_E^2$.

Thus, since $||u - u_h||_E^2 \ge 0$, we have shown that $||u||_E \ge ||u_h||_E$. (*) To see the connection with (M) we note that $F(u) \leq F(u_h)$. Thus, 1 $\frac{1}{2} ||u||_E^2 - \ell(u) \leq \frac{1}{2}$ $\frac{1}{2} ||u_h||_E^2 - \ell(u_h)$. Setting $v = u$ in (V) and $v_h = u_h$ in the Galerkin formulation, we find that $-\frac{1}{2}$ $\frac{1}{2} ||u||_E^2 \leq -\frac{1}{2} ||u_h||_E^2$ which can be arranged to give the result (∗) above.

3. (a) First, if u satisfies (E) then $u \in C^2(\Omega)$, which means that $u \in H^1(\Omega)$. Since $u = 0$ on $\partial\Omega$ we deduce that $u \in X$.

Multiplying both sides of (E) by $v \in X$ and integrating over Ω gives the strong formulation

$$
-\int_{\Omega} v \nabla^2 u = \lambda \int_{\Omega} uv \quad \forall v \in X.
$$

Next, integrating by parts gives the weak formulation

$$
\int_{\Omega} \nabla u \cdot \nabla v = \lambda \int_{\Omega} uv + \int_{\partial \Omega} v \nabla u \cdot \vec{n} \quad \forall v \in X,
$$

where \vec{n} is the outward pointing normal to the boundary: this integration by parts is permitted because $v \in \mathcal{H}^1(\Omega)$. The fact that $v = 0$ on $\partial\Omega$ establishes that u satisfies (V) .

To establish that $\lambda > 0$ we we make the specific choice $v = u$ in (V) . This gives

$$
\int_{\Omega} \nabla u \cdot \nabla u = \lambda \int_{\Omega} u^2.
$$

Applying the (P–F) inequality then leads to the estimate

$$
0 \le ||u||^2 \le L^2 ||\nabla u||^2 = L^2 \lambda ||u||^2. \tag{*}
$$

This establishes that $\lambda \geq 0$. To show that $\lambda > 0$ we suppose that $\lambda = 0$ in (\star) so that

$$
0 \le ||u||^2 \le L^2 ||\nabla u||^2 = 0.
$$

This means that $||u|| = 0 \implies u = 0$ almost everywhere in Ω . This is a contradiction because an eigenfunction satisfying (E) cannot be the zero function. Thus $\lambda > 0$ as required. \heartsuit

(b) Introducing a bilinear form $a(\cdot, \cdot) : \mathcal{H}^1(\Omega) \times \mathcal{H}^1(\Omega) \to \mathbb{R}$, the weak formulation can be written as follows:

find
$$
(\lambda \in \mathbb{R}, u \in X)
$$
 such that $a(u, v) = \lambda(u, v) \quad \forall v \in X$.

The corresponding Galerkin formulation is the following:

find $(\lambda_h \in \mathbb{R}, u_h \in X_h)$ such that $a(u_h, v_h) = \lambda_h(u_h, v_h)$ $\forall v_h \in X_h \subset X$. Writing $u_h = \sum_{j=1}^k u_j \phi_j$ and setting $v_h = \phi_i$ gives

$$
a\left(\sum_{j=1}^k u_j \phi_j, \phi_i\right) = \lambda_h\left(\sum_{j=1}^k u_j \phi_j, \phi_i\right).
$$

That is,

$$
\sum_{j=1}^{k} u_j a(\phi_j, \phi_i) = \lambda_h \sum_{j=1}^{k} u_j (\phi_j, \phi_i).
$$

This represents a $k \times k$ system $A\mathbf{x} = \lambda_h Q\mathbf{x}$ with matrix coefficients $A_{ij} = a(\phi_j, \phi_i)$ and $Q_{ij} = (\phi_j, \phi_i)$. \heartsuit

(c) case (i)

When $h = 1/2$ there are 8 triangles and one interior degree of freedom at the central point $(\frac{1}{2}, \frac{1}{2})$ $\frac{1}{2}$). There are six elements that meet at this vertex. The 1×1 Galerkin system is thus given by

$$
4u_1 = \lambda_h \cdot 6 \cdot \frac{h^2}{12} u_1
$$

and the eigenvalue estimate is given by $\lambda_h = 8/h^2 = 32$.

case (ii)

When $h = 1/3$ there are 18 triangles and four interior degrees of freedom at the points $(\frac{1}{3}, \frac{1}{3})$ $\frac{1}{3}$), $(\frac{2}{3}, \frac{1}{3})$ $\frac{1}{3}$), $(\frac{1}{3}, \frac{2}{3})$ $(\frac{2}{3}, \frac{2}{3})$ and $(\frac{2}{3}, \frac{2}{3})$ $(\frac{2}{3})$. Assembling the 3×3 Galerkin system gives the generalised eigenvalue problem

Solving this problem the *smallest* eigenvalue is given by $\lambda_h^1 = 25.3763$. Note that the analytic solution to this eigenproblem can be found using Fourier analysis. This gives

$$
\lambda = (i^2 + j^2) \pi^2, \qquad i = 1, 2, 3 \dots \quad j = 1, 2, 3, \dots
$$

$$
u_{i,j} = \sin(i\pi x) \sin(j\pi y).
$$

Thus the smallest eigenvalue is given by $\lambda^1 = 2\pi^2 = 19.7392...$