MATH46052|66052 Solutions III

1.

2.

Since u — up, € V, we use the first property and note that a is bilinear:

lu —unllfp ) < Falu—un,u—up)

a(u — up,u — vy + vy — up) Yo € Vi

2= 2= 2=

a(u —up,u —vp) + alu — up, vy — up)-
Next since a(u — up,vp) =0 Yop € Vi, (G-0) and vy, — up, € Vi, we get
lu — uh”?{l(ﬂ) < %G(U — Up, U — V).
Then, using the second property
lu = unll3 ) < Ellw — unll g ollv = vall g )-
Assuming u # up, we can divide through by [lu — up|| g1 () to give
= unll ) < Ellu— villmq)-
The result also holds in the case ||u — up||g1(0) =0 <= u = up. V)

(a) Let u € X be the solution of (V). Suppose v € X and define
w=v—u € X. Using the symmetry of the bilinear form gives

F(v) = F(u+ w)

1
zia(u+w,u+w)—£(u—|—w)

= 1a(u, u) —l(u) + 1a(u,w) + 1a(w,u) —l(w) + 1a(w,w)
2 2 o LY 2
La(u,w)
2

= F(u) + %a(w,w).

Finally, a(w,w) = |w||% > 0, thus F(v) > F(u) as required.
(b) Noting that u, € Xj, C X and using Galerkin orthogonality gives
lu = unf = au — up,u — up)

= a(u - Uh,U) - CL(’LL — Uh, Uh)
—————

=0

= a(u — up,u) + a(u — up, up)
= a(u — up,u + up)
2 2
= a(u,u) — a(up, up) = |lullg — lunlly. @



Thus, since ||u — up||3 > 0, we have shown that [[ul|z > [lup||z. (%)
To see the connection with (M) we note that F(u) < F(uyp). Thus,
: [ u|%—£(u) < : upl|% —£(up). Setting v = w in (V) and vy = uy, in
the Galerkin formulation, we find that —3 ul|3 < -1 [up |3 which
can be arranged to give the result (%) above.

First, if u satisfies (E) then u € C%(Q), which means that u € H!(Q).
Since u = 0 on 02 we deduce that v € X.

Multiplying both sides of (F) by v € X and integrating over 2 gives
the strong formulation

—/vv2u:)\/uv Vv e X.
Q Q

Next, integrating by parts gives the weak formulation

/Vu-Vv:)\/uv+/ vVu-n Vv e X,
Q Q o0

where 71 is the outward pointing normal to the boundary: this in-
tegration by parts is permitted because v € H!(2). The fact that
v = 0 on 0N establishes that u satisfies (V).

To establish that A > 0 we we make the specific choice v = u in (V).

This gives
/Vu-Vu:/\/UQ.
Q Q

Applying the (P-F) inequality then leads to the estimate
0 < Jlul® < L2 Vul® = L2Aful?. (%)

This establishes that A > 0. To show that A\ > 0 we suppose that
A =0in (%) so that

0 < [lul* < L?||Vul?* = 0.

This means that ||ul] = 0 = u = 0 almost everywhere in €. This
is a contradiction because an eigenfunction satisfying (E) cannot be
the zero function. Thus A > 0 as required. Q©

Introducing a bilinear form a(-,-) : H1(2) x H(2) — R, the weak
formulation can be written as follows:

find (A € R,u € X) such that a(u,v) = A (u,v) Yve X.

The corresponding Galerkin formulation is the following:

find (A, € R,up € Xp,) such that a(up,vn) = Ap(up,vp) Vo, € XpC X.

Writing up = Z?:l uj¢; and setting v, = ¢; gives
k k
a(D25=1ujj, 6i) = An (Doj_1uidj, Gi)-

2



That is,

k k

D ujaldy b)) = Y uj (¢4, ).

j=1 j=1
This represents a k x k system Ax = Aj @x with matrix coefficients
Aij = a(¢j,¢:) and Qij = (¢5,¢:). O
case (i)
When h = 1/2 there are 8 triangles and one interior degree of freedom
at the central point (%, %) There are six elements that meet at this
vertex. The 1 x 1 Galerkin system is thus given by

2
4u1:)\h-6-ﬁu1
and the eigenvalue estimate is given by A, = 8/h? = 32.

case (ii)

When h = 1/3 there are 18 triangles and four interior degrees of
freedom at the points (3,%), (3,3), (3,3) and (3,2). Assembling
the 3 x 3 Galerkin system gives the generalised eigenvalue problem

4 -1 -1 0 u 6 1 1 1 u
-1 4 0 -1 wp | _y 2|16 01 us
-1 0 4 -1 us | P21 0 6 1 us3

0 -1 -1 4 U4 1 116 g

Solving this problem the smallest eigenvalue is given by )\,11 = 25.3763.

Note that the analytic solution to this eigenproblem can be found
using Fourier analysis. This gives

A= (2 4 ) 72, i=1,2,3... j=1,2,3,...

w;; = sin(irx) sin(jry).

Thus the smallest eigenvalue is given by A\! = 272 = 19.7392. . ..



