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1. Using the given characterisation of s′′3 on the interval [xj−1, xj ] we have

s′′3(x) =
1

h
(xj − x)σj−1 +

1

h
(x− xj−1)σj

s′3(x) = − 1

2h
(xj − x)2σj−1 +

1

2h
(x− xj−1)

2σj + αj

s3(x) =
1

6h
(xj − x)3σj−1 +

1

6h
(x− xj−1)

3σj + αjx+ βj .

Applying the interpolation conditions s3(xj−1) = fj−1, s3(xj) = fj gives

αj =
1

h
(fj − fj−1)−

h

6
(σj − σj−1)

βj =
1

h
(fj−1xj − fjxj−1) +

h

6
(xj−1σj − xjσj−1).

Next, evaluating s′3(x) defined in the interval [xj−1, xj ] at the right-hand
point xj , we get

s′3(x
−
j ) =

1

h
(fj − fj−1) +

h

3
σj +

h

6
σj−1.

Similarly, evaluating s′3(x) defined in the interval [xj , xj+1] at the left-
hand point xj , we get

s′3(x
+
j ) =

1

h
(fj+1 − fj)−

h

3
σj −

h

6
σj+1.

Equating these two expressions and rearranging gives

h

6
σj−1 +

2h

3
σj +

h

6
σj+1 =

1

h
(fj+1 − 2fj + fj−1) (⋆)

which is the jth equation of the required tridiagonal system Aσ = b.

2. In the specific case of f(x) = x3 and equally spaced knots hj = h, j =
1, 2, . . . , n, we have that σj = f ′′(xj) = 6xj . Substituting into the left-
hand side of (⋆) we see that

h

6
σj−1 +

2h

3
σj +

h

6
σj+1 = h(xj − h) + 4hxj + h(xj + h) = 6hxj ,

which (after some simple algebra) can be shown to be equal to the right-
hand side of (⋆) with fj−1 = (xj − h)3, fj = x3j and fj+1 = (xj + h)3.

Note that the last equation is not satisfied,

h

6
σn−2 +

2h

3
σn−1 +

h

6
σn ̸= 6hxn−1 = 6h(1− h)

in the case σn = 0, but is satisfied when σn = f ′′(xn) = f ′′(1) = 6. In
general s3 will be identical to f only if the two additional conditions are
given by σ0 = f ′′(0) and σn = f ′′(1).
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3. Applying the interpolation conditions s(xj−1) = fj−1, s(xj) = fj gives
aj = fj−1 and bj =

1
hj
(fj − fj−1) and hence s(x) is uniquely determined:

s(x) = fj−1+
1

hj
(fj−fj−1)(x−xj−1)+cj(x−xj−1)(x−xj), x ∈ [xj−1, xj ].

Evaluating s′(x) defined in the interval [xj−1, xj ] at the right-hand point
xj , we get

s′(x−j ) =
1

hj
(fj − fj−1) + hjcj .

Similarly, evaluating s′(x) defined in the interval [xj , xj+1] at the left-hand
point xj , we get

s′(x+j ) =
1

hj+1
(fj+1 − fj)− hj+1cj+1.

Equating these two expressions and rearranging gives the stated result.

4. Consider the case j = 2. Evaluating the alternative interpolants in the
first interval using the characterisation of s(x) above gives

s(x) = f0 +
1

h
(f1 − f0)(x− x0) + c1(x− x0)(x− x1), x ∈ [x0, x1],

s∗(x) = f∗
0 +

1

h
(f1 − f∗

0 )(x− x0) + c1(x− x0)(x− x1), x ∈ [x0, x1],

and invoking the update formula for c2 with hj = hj+1 = h gives

c2 = −c1 +
1

h2
(f2 − 2f1 + f0)

c∗2 = −c∗1 +
1

h2
(f2 − 2f1 + f∗

0 ).

Subtracting these equations and noting that c1 = c∗1 we have that

c∗2 = c2 +
(−1)2

h2
(f∗

0 − f0).

This establishes the required result for j = 2.

Now suppose that the result is true for j = n, that is

c∗j = cj +
(−1)j

h2
(f∗

0 − f0). (‡)

Invoking the update formula for cj+1 and c∗j+1with hj = hj+1 = h gives

cj+1 = −cj +
1

h2
(fj+1 − 2fj + fj−1)

c∗j+1 = −c∗j +
1

h2
(fj+1 − 2fj + fj−1).

Subtracting these equations gives

c∗j+1 = cj+1 + (−1)(c∗j − cj),

and using (‡) we see that the desired result holds for j = n+1. Hence by
induction the result is true for all j = 2, 3, 4, . . ..
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5. By definition

||f − s1||2L2(Ω) = ||f −
∑
j

αjϕj ||2L2(Ω)

=

∫ 1

0
{f(x)−

∑
j

αjϕj(x)}2 dx = F (α).

To minimise this we require that

∂F

∂αi
= 0, i = 0, . . . , n,

which gives

−2

∫ 1

0
f(x)−

∑
j

αjϕj(x)

ϕi(x) dx = 0, i = 0, . . . , n.

Rearranging this expression gives the system (⋆).

6. The matrix Q having entries given by

Qi j =

∫ 1

0
ϕj(x)ϕi(x) dx,

is called the mass matrix. The basis functions are only nonzero in the
two intervals adjoining the jth knot as illustrated below.

%
%
%
%
%%e

e
e
e
eec c c

c

xj−1 xj xj+1

ϕj(j)

ℓ1(x)

%
%
%
%
%%e

e
e
e
eec c c

c

xj−2 xj−1 xj

ϕj−1(x)

ℓ2(x)

The general diagonal entry Qj,j is thus given using Simpson’s rule by

Qj,j =

∫ xj

xj−1

ϕj(x)
2 dx+

∫ xj+1

xj

ϕj(x)
2 dx

=
h

6
(1 · 02 + 4 · 1

22
+ 1 · 12) + h

6
(1 · 12 + 4 · 1

22
+ 1 · 02) = 2h

3
.
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The first and last basis functions are nonzero in a single subinterval so we
only get one contribution to the integral above and thus Q0,0 =

h
3 = Qn,n.

The off-diagonal entries are nonzero only when the two basis functions
are both nonzero in the same interval. Thus

Qj,j−1 =

∫ xj

xj−1

ϕj(x)ϕj−1(x) dx =

∫ xj

xj−1

ℓ1(x) ℓ2(x) dx

=
h

6
(1 · 0 · 1 + 4 · 1

2
· 1
2
+ 1 · 1 · 0) = h

6
.

The matrix is symmetric: h
6 = Qj,j−1 = Qj−1,j = Qj,j+1.

The elements of b are

bi =

∫ 1

0
f(x)ϕi(x) dx.

Consider the case f(x) = x. We want to show that the jth equation

h

6
αj−1 +

2h

3
αj +

h

6
αj+1 =

∫ 1

0
xϕj(x) dx,

is satisfied by setting αj = xj = jh. The left-hand side is given by

h

6
[(j − 1)h+ 4jh+ (j + 1)h] = jh2.

The right-hand side can be computed exactly by Simpson’s rule (the in-
tegrand is cubic) thus:

bj =

∫ xj

xj−1

xϕj(x) dx+

∫ xj+1

xj

xϕj(x) dx

=
h

6
((xj − h) · 0 + 4 · (xj − h/2) · 1

2
+ xj · 1)

+
h

6
(xj · 1 + 4 · (xj + h/2) · 1

2
+ (xj + h) · 0)

=
h

6
(6xj) = jh2. □

The first and last equations can be shown to be satisfied using the same
technique. The fact that αj = xj is the only solution of the linear system
equations follows from the fact that αTQα > 0 for all nonzero vectors α.
(Positive-definiteness implies that the mass matrix Q is nonsingular.)
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