MATH46052|66052 Solutions I

-
- 1. Using the given characterisation of s''_3 on the interval $[x_{j-1}, x_j]$ we have

$$
s_3''(x) = \frac{1}{h}(x_j - x)\sigma_{j-1} + \frac{1}{h}(x - x_{j-1})\sigma_j
$$

\n
$$
s_3'(x) = -\frac{1}{2h}(x_j - x)^2\sigma_{j-1} + \frac{1}{2h}(x - x_{j-1})^2\sigma_j + \alpha_j
$$

\n
$$
s_3(x) = \frac{1}{6h}(x_j - x)^3\sigma_{j-1} + \frac{1}{6h}(x - x_{j-1})^3\sigma_j + \alpha_j x + \beta_j.
$$

Applying the interpolation conditions $s_3(x_{j-1}) = f_{j-1}, s_3(x_j) = f_j$ gives

$$
\alpha_j = \frac{1}{h}(f_j - f_{j-1}) - \frac{h}{6}(\sigma_j - \sigma_{j-1})
$$

$$
\beta_j = \frac{1}{h}(f_{j-1}x_j - f_jx_{j-1}) + \frac{h}{6}(x_{j-1}\sigma_j - x_j\sigma_{j-1}).
$$

Next, evaluating $s'_3(x)$ defined in the interval $[x_{j-1}, x_j]$ at the right-hand point x_j , we get

$$
s'_3(x_j^-) = \frac{1}{h}(f_j - f_{j-1}) + \frac{h}{3}\sigma_j + \frac{h}{6}\sigma_{j-1}.
$$

Similarly, evaluating $s'_3(x)$ defined in the interval $[x_j, x_{j+1}]$ at the lefthand point x_j , we get

$$
s'_3(x_j^+) = \frac{1}{h}(f_{j+1} - f_j) - \frac{h}{3}\sigma_j - \frac{h}{6}\sigma_{j+1}.
$$

Equating these two expressions and rearranging gives

$$
\frac{h}{6}\sigma_{j-1} + \frac{2h}{3}\sigma_j + \frac{h}{6}\sigma_{j+1} = \frac{1}{h}(f_{j+1} - 2f_j + f_{j-1}) \qquad (*)
$$

which is the jth equation of the required tridiagonal system $A\sigma = b$.

2. In the specific case of $f(x) = x^3$ and equally spaced knots $h_j = h, j =$ $1, 2, \ldots, n$, we have that $\sigma_j = f''(x_j) = 6x_j$. Substituting into the lefthand side of (\star) we see that

$$
\frac{h}{6}\sigma_{j-1} + \frac{2h}{3}\sigma_j + \frac{h}{6}\sigma_{j+1} = h(x_j - h) + 4hx_j + h(x_j + h) = 6hx_j,
$$

which (after some simple algebra) can be shown to be equal to the righthand side of (★) with $f_{j-1} = (x_j - h)^3$, $f_j = x_j^3$ and $f_{j+1} = (x_j + h)^3$. Note that the last equation is not satisfied,

$$
\frac{h}{6}\sigma_{n-2} + \frac{2h}{3}\sigma_{n-1} + \frac{h}{6}\sigma_n \neq 6hx_{n-1} = 6h(1-h)
$$

in the case $\sigma_n = 0$, but is satisfied when $\sigma_n = f''(x_n) = f''(1) = 6$. In general s_3 will be identical to f only if the two additional conditions are given by $\sigma_0 = f''(0)$ and $\sigma_n = f''(1)$.

3. Applying the interpolation conditions $s(x_{j-1}) = f_{j-1}, s(x_j) = f_j$ gives $a_j = f_{j-1}$ and $b_j = \frac{1}{h}$ $\frac{1}{h_j}(f_j - f_{j-1})$ and hence $s(x)$ is uniquely determined:

$$
s(x) = f_{j-1} + \frac{1}{h_j}(f_j - f_{j-1})(x - x_{j-1}) + c_j(x - x_{j-1})(x - x_j), \quad x \in [x_{j-1}, x_j].
$$

Evaluating $s'(x)$ defined in the interval $[x_{j-1}, x_j]$ at the right-hand point x_j , we get

$$
s'(x_j^-) = \frac{1}{h_j}(f_j - f_{j-1}) + h_j c_j.
$$

Similarly, evaluating $s'(x)$ defined in the interval $[x_j, x_{j+1}]$ at the left-hand point x_j , we get

$$
s'(x_j^+) = \frac{1}{h_{j+1}}(f_{j+1} - f_j) - h_{j+1}c_{j+1}.
$$

Equating these two expressions and rearranging gives the stated result.

4. Consider the case $j = 2$. Evaluating the alternative interpolants in the first interval using the characterisation of $s(x)$ above gives

$$
s(x) = f_0 + \frac{1}{h}(f_1 - f_0)(x - x_0) + c_1(x - x_0)(x - x_1), \qquad x \in [x_0, x_1],
$$

$$
s^*(x) = f_0^* + \frac{1}{h}(f_1 - f_0^*)(x - x_0) + c_1(x - x_0)(x - x_1), \qquad x \in [x_0, x_1],
$$

and invoking the update formula for c_2 with $h_j = h_{j+1} = h$ gives

$$
c_2 = -c_1 + \frac{1}{h^2}(f_2 - 2f_1 + f_0)
$$

$$
c_2^* = -c_1^* + \frac{1}{h^2}(f_2 - 2f_1 + f_0^*).
$$

Subtracting these equations and noting that $c_1 = c_1^*$ we have that

$$
c_2^* = c_2 + \frac{(-1)^2}{h^2} (f_0^* - f_0).
$$

This establishes the required result for $j = 2$.

Now suppose that the result is true for $j = n$, that is

$$
c_j^* = c_j + \frac{(-1)^j}{h^2} (f_0^* - f_0). \tag{1}
$$

Invoking the update formula for c_{j+1} and c_{j+1}^* with $h_j = h_{j+1} = h$ gives

$$
c_{j+1} = -c_j + \frac{1}{h^2}(f_{j+1} - 2f_j + f_{j-1})
$$

$$
c_{j+1}^* = -c_j^* + \frac{1}{h^2}(f_{j+1} - 2f_j + f_{j-1}).
$$

Subtracting these equations gives

$$
c_{j+1}^* = c_{j+1} + (-1)(c_j^* - c_j),
$$

and using (\ddagger) we see that the desired result holds for $j = n + 1$. Hence by induction the result is true for all $j = 2, 3, 4, \ldots$

5. By definition

$$
||f - s_1||_{L^2(\Omega)}^2 = ||f - \sum_j \alpha_j \phi_j||_{L^2(\Omega)}^2
$$

=
$$
\int_0^1 \{f(x) - \sum_j \alpha_j \phi_j(x)\}^2 dx = F(\alpha).
$$

To minimise this we require that

$$
\frac{\partial F}{\partial \alpha_i} = 0, \quad i = 0, \dots, n,
$$

which gives

$$
-2\left[\int_0^1 f(x) - \sum_j \alpha_j \phi_j(x)\right] \phi_i(x) dx = 0, \quad i = 0, \dots, n.
$$

Rearranging this expression gives the system (\star) .

6. The matrix Q having entries given by

$$
Q_{i j} = \int_0^1 \phi_j(x) \phi_i(x) \, dx,
$$

is called the mass matrix. The basis functions are only nonzero in the two intervals adjoining the jth knot as illustrated below.

The general diagonal entry ${\cal Q}_{j,j}$ is thus given using Simpson's rule by

$$
Q_{j,j} = \int_{x_{j-1}}^{x_j} \phi_j(x)^2 dx + \int_{x_j}^{x_{j+1}} \phi_j(x)^2 dx
$$

= $\frac{h}{6} (1 \cdot 0^2 + 4 \cdot \frac{1}{2^2} + 1 \cdot 1^2) + \frac{h}{6} (1 \cdot 1^2 + 4 \cdot \frac{1}{2^2} + 1 \cdot 0^2) = \frac{2h}{3}.$

The first and last basis functions are nonzero in a single subinterval so we only get one contribution to the integral above and thus $Q_{0,0} = \frac{h}{3} = Q_{n,n}$. The off-diagonal entries are nonzero only when the two basis functions are both nonzero in the same interval. Thus

$$
Q_{j,j-1} = \int_{x_{j-1}}^{x_j} \phi_j(x)\phi_{j-1}(x) dx = \int_{x_{j-1}}^{x_j} \ell_1(x) \ell_2(x) dx
$$

= $\frac{h}{6}(1 \cdot 0 \cdot 1 + 4 \cdot \frac{1}{2} \cdot \frac{1}{2} + 1 \cdot 1 \cdot 0) = \frac{h}{6}.$

The matrix is symmetric: $\frac{h}{6} = Q_{j,j-1} = Q_{j-1,j} = Q_{j,j+1}.$ The elements of \boldsymbol{b} are

$$
b_i = \int_0^1 f(x) \, \phi_i(x) \, dx.
$$

Consider the case $f(x) = x$. We want to show that the *j*th equation

$$
\frac{h}{6}\alpha_{j-1} + \frac{2h}{3}\alpha_j + \frac{h}{6}\alpha_{j+1} = \int_0^1 x\phi_j(x) \, dx,
$$

is satisfied by setting $\alpha_j = x_j = jh$. The left-hand side is given by

$$
\frac{h}{6}[(j-1)h + 4jh + (j+1)h] = jh^2.
$$

The right-hand side can be computed exactly by Simpson's rule (the integrand is cubic) thus:

$$
b_j = \int_{x_{j-1}}^{x_j} x \phi_j(x) dx + \int_{x_j}^{x_{j+1}} x \phi_j(x) dx
$$

= $\frac{h}{6} ((x_j - h) \cdot 0 + 4 \cdot (x_j - h/2) \cdot \frac{1}{2} + x_j \cdot 1)$
 $+ \frac{h}{6} (x_j \cdot 1 + 4 \cdot (x_j + h/2) \cdot \frac{1}{2} + (x_j + h) \cdot 0)$
= $\frac{h}{6} (6x_j) = jh^2.$

The first and last equations can be shown to be satisfied using the same technique. The fact that $\alpha_j = x_j$ is the only solution of the linear system equations follows from the fact that $\alpha^T Q \alpha > 0$ for all nonzero vectors α . (Positive-definiteness implies that the mass matrix Q is nonsingular.)