
Uncertainty Quantification:
Does it need efficient linear

algebra?

David Silvester
University of Manchester, UK

Efficient linear algebra | Edinburgh Workshop 2017 – p. 1/45

http://www.maths.manchester.ac.uk/~djs
http://www.manchester.ac.uk


Yes.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 2/45



part I | 1991

• Incompressible flow: Navier–Stokes equations

• fully implicit schemes and adaptive time stepping

Efficient linear algebra | Edinburgh Workshop 2017 – p. 3/45



part I | 1991

• Incompressible flow: Navier–Stokes equations

• fully implicit schemes and adaptive time stepping

• joint work with David Griffiths (University of Dundee)

Efficient linear algebra | Edinburgh Workshop 2017 – p. 3/45



part II | 2011

• PDEs with random data

• stochastic Galerkin approximation methods

• joint work with Catherine Powell (University of
Manchester)

Efficient linear algebra | Edinburgh Workshop 2017 – p. 4/45

http://www.maths.manchester.ac.uk/~cp


 IFISS
HOME DOWNLOAD DOCUMENTATION PUBLICATIONS

Incompressible Flow & Iterative Solver Software

An open-source software package

Summary
IFISS is a graphical package for the interactive numerical study of incompressible flow problems
which can be run under Matlab or Octave. It includes algorithms for discretization by mixed finite
element methods and a posteriori error estimation of the computed solutions. The package can
also be used as a computational laboratory for experimenting with state-of-the-art preconditioned
iterative solvers for the discrete linear equation systems that arise in incompressible flow
modelling. 

Key Features
Key features include 

implementation of a variety of mixed finite element approximation methods;

automatic calculation of stabilization parameters where appropriate;

a posteriori error estimation for steady problems;

a range of state-of-the-art preconditioned Krylov subspace solvers ;

built-in geometric and algebraic multigrid solvers and preconditioners;

fully implicit self-adaptive time stepping algorithms;

useful visualization tools.

The developers of the IFISS package are David Silvester (School of Mathematics, University of
Manchester), Howard Elman (Computer Science Department, University of Maryland), and Alison
Ramage (Department of Mathematics and Statistics, University of Strathclyde).

Links

Download

Documentation

Publications

Overview

Sample output

Contact

The IFISS logo represents the
solution of the double glazing

convection-diffusion problem. It can
be reproduced in IFISS via the
function ifisslogo.

This webpage is based on a CSS template from Free CSS Templates. Efficient linear algebra | Edinburgh Workshop 2017 – p. 5/45



PART I

Efficient linear algebra | Edinburgh Workshop 2017 – p. 6/45



References I

Philip Gresho & David Griffiths & David Silvester
Adaptive time-stepping for incompressible flow; part I:
scalar advection-diffusion
SIAM J. Scientific Computing, 30: 2018–2054, 2008.

David Kay & Philip Gresho & David Griffiths & David
Silvester Adaptive time-stepping for incompressible
flow; part II: Navier-Stokes equations
SIAM J. Scientific Computing, 32: 111–128, 2010.

Howard Elman, Milan Mihajlović and David Silvester.
Fast iterative solvers for buoyancy driven flow problems
J. Computational Physics, 230: 3900–3914, 2011.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 7/45

http://eprints.ma.man.ac.uk/1099/
http://eprints.ma.man.ac.uk/1110/
http://eprints.ma.man.ac.uk/1511/


Buoyancy driven flow

∂~u

∂t
+ ~u · ∇~u− ν∇2~u+∇p = ~jT in W ≡ Ω× (0, T )

∇ · ~u = 0 in W
∂T

∂t
+ ~u · ∇T − ν∇2T = 0 in W

Boundary and initial conditions

~u = ~0 on Γ× [0, T ]; ~u(~x, 0) = ~0 in Ω.

T = Tg on ΓD × [0, T ]; ν∇T · ~n = 0 on ΓN × [0, T ];

T (~x, 0) = 0 in Ω.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 8/45



Buoyancy driven flow

∂~u

∂t
+ ~u · ∇~u− ν∇2~u+∇p = ~jT in W ≡ Ω× (0, T )

∇ · ~u = 0 in W
∂T

∂t
+ ~u · ∇T − ν∇2T = 0 in W

Boundary and initial conditions

~u = ~0 on Γ× [0, T ]; ~u(~x, 0) = ~0 in Ω.

T = Tg on ΓD × [0, T ]; ν∇T · ~n = 0 on ΓN × [0, T ];

T (~x, 0) = 0 in Ω.

ν =
√

Pr/Ra , ν = 1/
√
Pr ·Ra, Tg = (1− e−10t)T∞ .

Efficient linear algebra | Edinburgh Workshop 2017 – p. 8/45



Rayleigh–Bénard | Pr = 7.1, Ra = 15000 .

Efficient linear algebra | Edinburgh Workshop 2017 – p. 9/45



Rayleigh–Bénard | Pr = 7.1, Ra = 15000 .

Stationary streamlines: time = 300.00

Efficient linear algebra | Edinburgh Workshop 2017 – p. 9/45



“Smart Integrator” (SI)

• Optimal time-stepping

• Black-box implementation

• Algorithm efficiency

• Solver efficiency: the linear solver convergence rate is
robust with respect to the mesh size h and the flow
problem parameters.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 10/45



Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .

0 100 200 300
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time
120 130 140 150 160 170

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

time

a
v
e
ra

g
e
 v

o
rt

ic
it
y

ω = ∇× ~u, ωΩ =

√

1

2A

∫

Ω
ω2

Efficient linear algebra | Edinburgh Workshop 2017 – p. 11/45



Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .

0 100 200 300
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

time
0 100 200 300

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

time
ti
m

e
 s

te
p

stabilized TR | εt = 10−6 (left) and εt = 10−5 (right).

Efficient linear algebra | Edinburgh Workshop 2017 – p. 12/45



Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .

Isotherms: time = 100.72

Isotherms: time = 119.28

Isotherms: time = 300.00

Efficient linear algebra | Edinburgh Workshop 2017 – p. 13/45



LINEAR ALGEBRA

Efficient linear algebra | Edinburgh Workshop 2017 – p. 14/45



Trapezoidal Rule (TR) time discretization

Subdivide [0, T ] into time levels {ti}Ni=1. Given (un, pn, Tn) at

time tn, kn+1 := tn+1 − tn, compute (un+1, pn+1, Tn+1) via

2
kn+1

un+1 −ν∇2un+1 + un+1 · ∇un+1 +∇pn+1 − ~jTn+1 =

2
kn+1

un + ∂u
∂t

n
in Ω

−∇ · un+1 = 0 in Ω

un+1 = ~0 on Γ

2
kn+1

Tn+1 −ν∇2Tn+1 + un+1 · ∇Tn+1 = 2
kn+1

Tn + ∂T
∂t

n
in Ω

Tn+1 = Tn+1
g on ΓD

ν∇Tn+1 · ~n = 0 on ΓN .

Efficient linear algebra | Edinburgh Workshop 2017 – p. 15/45



Linearization

Subdivide [0, T ] into time levels {ti}Ni=1. Given (un, pn, Tn) at

time tn, kn+1 := tn+1 − tn, compute (un+1, pn+1, Tn+1) via

2
kn+1

un+1 −ν∇2un+1 + ~wn+1 · ∇un+1 +∇pn+1 − ~jTn+1 =

2
kn+1

un + ∂u
∂t

n
in Ω

−∇ · un+1 = 0 in Ω

un+1 = ~0 on Γ.

2
kn+1

Tn+1 −ν∇2Tn+1 + ~wn+1 · ∇Tn+1 = 2
kn+1

Tn + ∂T
∂t

n
in Ω

Tn+1 = Tn+1
g on ΓD

ν∇Tn+1 · ~n = 0 on ΓN ,

with ~wn+1 = (1 + kn+1

kn
)~un − kn+1

kn
~un−1.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 16/45



Adaptive time stepping components

The adaptive time step selection is based on coupled
physics.

Given L2 error estimates ‖~en+1
h ‖ and ‖en+1

h ‖ for the velocity

and temperature respectively, the subsequent TR–AB2 time
step kn+2 is computed using

kn+2 = kn+1

(
εt

√
∥
∥~en+1

h

∥
∥2 +

∥
∥en+1

h

∥
∥2

)1/3

.

The following parameters must be specified:

time accuracy tolerance εt (10−5)

GMRES tolerance itol (10−6)

GMRES iteration limit maxit (50)

Efficient linear algebra | Edinburgh Workshop 2017 – p. 17/45



Finite element matrix formulation

Introducing the basis sets

Xh = span{~φi}nu

i=1, Velocity basis functions;

Mh = span{ψj}np

j=1, Pressure basis functions.

Th = span{φk}nT

k=1, Temperature basis functions;

gives the method-of-lines discretized system:






M 0 0

0 0 0

0 0 M











∂u
∂t
∂p
∂t
∂T
∂t




+






F BT − ◦

M

B 0 0

0 0 F











u

p

T




 =






~0

0

g






with a (vertical–) mass matrix:

(
◦
M

)ij = ([0, φi], φj)

Efficient linear algebra | Edinburgh Workshop 2017 – p. 18/45



Preconditioning strategy






F BT − ◦

M

B 0 0

0 0 F




P−1 P






αu

αp

αT




 =






fu

fp

fT






Given S = BF−1BT , a perfect preconditioner is given by






F BT − ◦

M

B 0 0

0 0 F











F−1 F−1BTS−1 F−1 ◦

MF−1

0 −S−1 0

0 0 F−1






︸ ︷︷ ︸

P−1

=






I 0 0

BF−1 I BF−1 ◦

MF−1

0 0 I






Efficient linear algebra | Edinburgh Workshop 2017 – p. 19/45



For an efficient preconditioner we need to construct a
sparse approximation to the “exact” Schur complement

S−1 = (BF−1BT )−1

See Chapter 11 of

Howard Elman & David Silvester & Andrew Wathen
Finite Elements and Fast Iterative Solvers: with
applications in incompressible fluid dynamics
Oxford University Press, second edition, 2014.

For an efficient implementation we must also have an
efficient AMG (convection-diffusion) solver ...

Efficient linear algebra | Edinburgh Workshop 2017 – p. 20/45

http://ukcatalogue.oup.com/product/9780199678808.do


HSL HSL MI20

PACKAGE SPECIFICATION HSL 2007

1 SUMMARY

Given an n×n sparse matrix A and an n−vector z, HSL MI20 computes the vector x=Mz, whereM is an algebraic

multigrid (AMG) v-cycle preconditioner for A. A classical AMG method is used, as described in [1] (see also Section

5 below for a brief description of the algorithm). The matrix A must have positive diagonal entries and (most of) the

off-diagonal entries must be negative (the diagonal should be large compared to the sum of the off-diagonals). During

the multigrid coarsening process, positive off-diagonal entries are ignored and, when calculating the interpolation

weights, positive off-diagonal entries are added to the diagonal.

Reference

[1] K. Stüben. An Introduction to Algebraic Multigrid. In U. Trottenberg, C. Oosterlee, A. Schüller, eds, ‘Multigrid’,

Academic Press, 2001, pp 413-532.

ATTRIBUTES — Version: 1.1.0 Types: Real (single, double). Uses: HSL MA48, HSL MC65, HSL ZD11, and the

LAPACK routines GETRF and GETRS. Date: September 2006. Origin: J. W. Boyle, University of Manchester and J.

A. Scott, Rutherford Appleton Laboratory. Language: Fortran 95, plus allocatable dummy arguments and allocatable

components of derived types. Remark: The development of HSL MI20 was funded by EPSRC grants EP/C000528/1

and GR/S42170.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 21/45



Schur complement approximation – I

Introducing the diagonal of the velocity mass matrix

M∗ ∼Mij = (~φi, ~φj),

gives the “least-squares commutator preconditioner”:

(BF−1BT )−1 ≈ (BM−1
∗ BT

︸ ︷︷ ︸

amg

)−1(BM−1
∗ FM−1

∗ BT )(BM−1
∗ BT

︸ ︷︷ ︸

amg

)−1

Efficient linear algebra | Edinburgh Workshop 2017 – p. 22/45

http://www.maths.manchester.ac.uk/~djs/hsl_mi20.pdf
http://www.maths.manchester.ac.uk/~djs/hsl_mi20.pdf


Schur complement approximation – II

Introducing associated pressure matrices

Mp ∼ (∇ψi,∇ψj), mass

Ap ∼ (∇ψi,∇ψj), diffusion

Np ∼ (~wh · ∇ψi, ψj), convection

Fp =
2

kn+1
Mp + νAp +Np, convection-diffusion

gives the “pressure convection-diffusion preconditioner”:

(BF−1BT )−1 ≈M−1
p Fp A

−1
p
︸︷︷︸

amg

Efficient linear algebra | Edinburgh Workshop 2017 – p. 23/45

http://www.maths.manchester.ac.uk/~djs/hsl_mi20.pdf


Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .

0 5 10 15 20

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
s
id

u
a
l 
re

d
u
c
ti
o
n

Exact PCD preconditioning

 

 
t=100
t=120
t=300

0 5 10 15 20

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
s
id

u
a
l 
re

d
u
c
ti
o
n

Exact LSC preconditioning

 

 
t=100
t=120
t=300

0 5 10 15 20

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
s
id

u
a
l 
re

d
u
c
ti
o
n

AMG−ILU PCD preconditioning

 

 

0 5 10 15 20

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
s
id

u
a
l 
re

d
u
c
ti
o
n

AMG−ILU LSC preconditioning

 

 
t=100
t=120
t=300

t=100
t=120
t=300

Efficient linear algebra | Edinburgh Workshop 2017 – p. 24/45



What have we achieved?

♥ Black-box implementation: few parameters that have
to be estimated a priori.

♥ Optimal complexity: essentially O(n) flops per
iteration, where n is dimension of the discrete system.

♥ Efficient linear algebra: convergence rate is
(essentially) independent of h. Given an appropriate
time accuracy tolerance convergence is also robust with
respect to diffusion parameters ν and ν.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 25/45



PART II

Efficient linear algebra | Edinburgh Workshop 2017 – p. 26/45



References II

Catherine Powell & David Silvester
Preconditioning steady-state Navier–Stokes equations
with random data. SIAM J. Scientific Computing, vol.
34, A2482–A2506, 2012.

David Silvester & Alex Bespalov & Catherine Powell
A framework for the development of implicit solvers for
incompressible flow problems. Discrete and Continuous
Dynamical Systems — Series S, vol. 5, 1195–1221,
2012.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 27/45

http://eprints.ma.man.ac.uk/1792/
http://eprints.ma.man.ac.uk/1724/


Steady-state flow with random data

Problem statement

~u · ∇~u− ν∇2~u+∇p = 0 in Ω

∇ · ~u = 0 in Ω

~u = ~g on ΓD

ν∇~u · ~n− p~n = ~0 on ΓN .

We model uncertainty in the viscosity as

ν(ω) = µ+ σξ(ω).

If ξ ∼ U(−
√
3,
√
3), then ν is a uniform random variable with

E[ν(ω)] = µ, Var[ν(ω)] = σ2.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 28/45



N–S example I: flow over a step

Streamlines of the mean flow field (top) and plot of the
mean pressure field (bottom):

µ = 1/50, σ = µ/10

−1 0 1 2 3 4 5
−1

0

1

−0.3

−0.2

−0.1

0

0.1

Efficient linear algebra | Edinburgh Workshop 2017 – p. 29/45



Variance of the magnitude of flow field (top) and variance of
the pressure (bottom)

−1 0 1 2 3 4 5
−1

0

12

4

6

8

x 10
−4

Efficient linear algebra | Edinburgh Workshop 2017 – p. 30/45



Stochastic discretisation methods

• Monte Carlo Methods

• Perturbation Methods

• Stochastic Galerkin Methods

• Stochastic Collocation Methods

• Stochastic Reduced Basis Methods

• ...

Efficient linear algebra | Edinburgh Workshop 2017 – p. 31/45



Stochastic discretisation methods

• Monte Carlo Methods

• Perturbation Methods

• Stochastic Galerkin Methods

• Stochastic Collocation Methods

• Stochastic Reduced Basis Methods

• ...

Key points

If the number of random variables describing the input
data is small then Stochastic Galerkin and Stochastic
Collocation methods can outperform Monte Carlo.

If software for the deterministic problem is to be useful
for Stochastic Galerkin approximation then specialised
solvers need to be developed.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 31/45



LINEAR ALGEBRA

Efficient linear algebra | Edinburgh Workshop 2017 – p. 32/45



Stochastic Galerkin discretisation I

Ingredients

• Picard iteration;

• standard finite element spaces Xh
E and Mh;

• a suitable finite-dimensional subspace Sk ⊂L2
ρ(Λ),

where Λ := ξ(Ξ), Λ∋ y.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 33/45



Stochastic Galerkin discretisation I

Ingredients

• Picard iteration;

• standard finite element spaces Xh
E and Mh;

• a suitable finite-dimensional subspace Sk ⊂L2
ρ(Λ),

where Λ := ξ(Ξ), Λ∋ y.
Discrete formulation

Find ~un+1
hk ∈ Xh

E ⊗ Sk and pn+1
hk ∈Mh ⊗ Sk satisfying:

E

[

ν(y)
(
∇~un+1

hk ,∇~v
)]

+E

[(
~unhk · ∇~un+1

hk , ~v
)]

−E

[(
pn+1
hk ,∇ · ~v

)]

= 0

E

[(
∇ · ~un+1

hk , q
)]

= 0

for all ~v ∈ Xh
0 ⊗ Sk and q ∈Mh ⊗ Sk.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 33/45



Stochastic Galerkin discretisation II

Discrete formulation

Find ~un+1
hk ∈ Xh

E ⊗ Sk and pn+1
hk ∈Mh ⊗ Sk satisfying:

E

[

ν(y)
(
∇~un+1

hk ,∇~v
)]

+E

[(
~unhk · ∇~un+1

hk , ~v
)]

−E

[(
pn+1
hk ,∇ · ~v

)]

= 0

E

[(
∇ · ~un+1

hk , q
)]

= 0

for all ~v ∈ Xh
0 ⊗ Sk and q ∈Mh ⊗ Sk.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 34/45



Stochastic Galerkin discretisation II

Discrete formulation

Find ~un+1
hk ∈ Xh

E ⊗ Sk and pn+1
hk ∈Mh ⊗ Sk satisfying:

E

[

ν(y)
(
∇~un+1

hk ,∇~v
)]

+E

[(
~unhk · ∇~un+1

hk , ~v
)]

−E

[(
pn+1
hk ,∇ · ~v

)]

= 0

E

[(
∇ · ~un+1

hk , q
)]

= 0

for all ~v ∈ Xh
0 ⊗ Sk and q ∈Mh ⊗ Sk.

Sets of basis functions

Xh
0 = span

{
(φi(~x), 0), (0, φi(~x))

}nu

i=1
;Mh = span {ψj(~x)}np

j=1;

Sk = span {ϕℓ(y)}kℓ=0.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 34/45



Stochastic Galerkin discretisation III

The linear system at the (n+ 1)st Picard iteration is

(

Fn
ν BT

B 0

)(

αn

βn

)

=

(

fn

gn

)

with

F
n
ν =

(

Fn
ν 0

0 Fn
ν

)

, B =
(

G0 ⊗ Bx1
G0 ⊗ Bx2

)

and

Fn
ν := (µG0 + σG1)⊗ A+

k∑

ℓ=0

Hℓ ⊗Nℓ,

Bx1
, Bx2

are discrete representations of the first derivatives.

The system dimension is: (nu + np)(k+ 1)× (nu + np)(k+ 1).

Efficient linear algebra | Edinburgh Workshop 2017 – p. 35/45



(1-1) block: Fn
ν := (µG0 + σG1)⊗A+

∑k
ℓ=0Hℓ ⊗Nℓ.

• Fn
ν is a non-symmetric matrix.

• convection matrices Nℓ (ℓ = 0, . . . , k) are given by

[Nℓ]ij = (~unhℓ(~x) · ∇φi, φj) i, j = 0, . . . , nu.

where ~unhℓ are the ‘spatial coefficients’ in the expansion
of the lagged velocity field,

~unhk(~x, y) =
k∑

ℓ=0






∑nu

i=1 ~u
n
iℓ φi(~x)

︸ ︷︷ ︸

~un
hℓ(~x)




ϕℓ(y).

Efficient linear algebra | Edinburgh Workshop 2017 – p. 36/45



(1-1) block: Fn
ν := (µG0 + σG1)⊗A+

∑k
ℓ=0Hℓ ⊗Nℓ.

• Fn
ν is a non-symmetric matrix.

• convection matrices Nℓ (ℓ = 0, . . . , k) are given by

[Nℓ]ij = (~unhℓ(~x) · ∇φi, φj) i, j = 0, . . . , nu.

• G0, G1 and Hℓ are all (k + 1)× (k + 1) matrices:

G0 := [G0]ℓs = E [ϕs(y)ϕℓ(y)] ,

G1 := [G1]ℓs = E [y ϕs(y)ϕℓ(y)] ,

Hℓ := [Hℓ]ms = E [ϕℓ(y)ϕs(y)ϕm(y)] .

Efficient linear algebra | Edinburgh Workshop 2017 – p. 37/45



(1-1) block: Fn
ν := (µG0 + σG1)⊗A+

∑k
ℓ=0Hℓ ⊗Nℓ.

• Fn
ν is a non-symmetric matrix.

• convection matrices Nℓ (ℓ = 0, . . . , k) are given by

[Nℓ]ij = (~unhℓ(~x) · ∇φi, φj) i, j = 0, . . . , nu.

• G0, G1 and Hℓ are all (k + 1)× (k + 1) matrices:

G0 := [G0]ℓs = E [ϕs(y)ϕℓ(y)] ,

G1 := [G1]ℓs = E [y ϕs(y)ϕℓ(y)] ,

Hℓ := [Hℓ]ms = E [ϕℓ(y)ϕs(y)ϕm(y)] .

If {ϕℓ(y)}kℓ=0 are scaled Legendre polynomials on Λ, then

• G0 = H0 = I, G1 = H1 is sparse (2 non-zeros per row);

• Hℓ is dense for ℓ ≥ 2.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 37/45



Ideal preconditioning

(

F BT

B 0

)

P−1 P
(

αu

αp

)

=

(

fu

fp

)

An ideal preconditioner is given by

(

F BT

B 0

)(

F−1 F−1BTS−1

0 −S−1

)

︸ ︷︷ ︸

P−1

=

(

I 0

BF−1 I

)

.

For an efficient preconditioner we need to construct a
sparse approximation to the “exact” Schur complement

S−1 = (BF−1BT )−1

Efficient linear algebra | Edinburgh Workshop 2017 – p. 38/45



Preconditioning I

Rearrange the (1-1) block:

Fn
ν = (µG0 + σG1)⊗A+

∑k
ℓ=0Hℓ ⊗Nℓ

= I ⊗ (µA+N0) + σG1 ⊗ A+
∑k

ℓ=1Hℓ ⊗Nℓ

and define

F0 := (µA+N0).

Efficient linear algebra | Edinburgh Workshop 2017 – p. 39/45



Preconditioning I

Rearrange the (1-1) block:

Fn
ν = (µG0 + σG1)⊗A+

∑k
ℓ=0Hℓ ⊗Nℓ

= I ⊗ (µA+N0) + σG1 ⊗ A+
∑k

ℓ=1Hℓ ⊗Nℓ

and define

F0 := (µA+N0).

A natural candidate for PF is the block-diagonal
mean-based approximation:

PF = F0 :=

(

I ⊗ F0 0

0 I ⊗ F0

)

.

This is a good approximation when σ
µ is not too large.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 39/45



Preconditioning II

Replacing Fn
ν by F0 in the Schur-complement gives

S ≈ BF
−1
0 B

T

= (I ⊗Bx1
)(I ⊗ F−1

0 )(I ⊗BT
x1
) + (I ⊗Bx2

)(I ⊗ F−1
0 )(I ⊗ BT

x2
)

= I ⊗ (Bx1
, Bx2

)F−1
0 (Bx1

, Bx2
)T =: I ⊗ S0 =: S0 = PS .

Efficient linear algebra | Edinburgh Workshop 2017 – p. 40/45



Preconditioning II

Replacing Fn
ν by F0 in the Schur-complement gives

S ≈ BF
−1
0 B

T

= (I ⊗Bx1
)(I ⊗ F−1

0 )(I ⊗BT
x1
) + (I ⊗Bx2

)(I ⊗ F−1
0 )(I ⊗ BT

x2
)

= I ⊗ (Bx1
, Bx2

)F−1
0 (Bx1

, Bx2
)T =: I ⊗ S0 =: S0 = PS .

S0 is the Schur-complement corresponding to the
deterministic problem with

• viscosity µ

• convection coefficient ~u0hk (the mean component of
velocity at the previous Picard step)

Efficient linear algebra | Edinburgh Workshop 2017 – p. 40/45



Preconditioning III

Replacing Fn
ν by F0 in the Schur-complement gives

S ≈ BF
−1
0 B

T

= (I ⊗ Bx1
)(I ⊗ F−1

0 )(I ⊗BT
x1
) + (I ⊗ Bx2

)(I ⊗ F−1
0 )(I ⊗BT

x2
)

= I ⊗ (Bx1
, Bx2

)F−1
0 (Bx1

, Bx2
)T =: I ⊗ S0 =: S0 = PS .

To apply P
−1
S in each GMRES iteration requires (k + 1)

solves with S0. This can be done

• exactly (ideal preconditioner); or

• inexactly with the deterministic approaches:
– pressure convection–diffusion approximation (PCD)
– least–squares commutator approximation (LSC).

Efficient linear algebra | Edinburgh Workshop 2017 – p. 41/45



Flow over a step

0 20 40 60

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
s
id

u
a
l 
re

d
u
c
ti
o
n

 

 
id e al
PC D

L SC

0 20 40 60

10
−8

10
−6

10
−4

10
−2

10
0

iteration number
re

s
id

u
a
l 
re

d
u
c
ti
o
n

 

 
id e al
PC D

L SC

GMRES convergence for a coarsened grid (left) and for a
reference grid (right) (µ = 1/50; σ = 2µ/10).

Efficient linear algebra | Edinburgh Workshop 2017 – p. 42/45



Typical GMRES iteration counts

Coarse grid Fine grid

E[Re] k = 2 4 6 k = 2 4 6

σ = µ/10 67 14 14 14 14 14 15

Ideal σ = 2µ/10 70 18 20 21 14 20 21

σ = 3µ/10 74 25 28 29 25 28 29

σ = µ/10 67 37 38 39 37 39 39

PCD σ = 2µ/10 70 43 44 50 44 48 50

σ = 3µ/10 74 53 56 61 54 58 62

Efficient linear algebra | Edinburgh Workshop 2017 – p. 43/45



What have we achieved?

♥ Black-box implementation: no parameters that have to
be estimated a priori.

♥ Optimal complexity: essentially O(n) flops per
iteration, where n is dimension of the discrete system.

♥ Efficient linear algebra: convergence rate is
independent of h. Convergence is also robust with
respect to the spectral approximation parameter k as
long as the variance is not too large relative to the
mean.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 44/45

http://www.manchester.ac.uk/ifiss/


What have we achieved?

♥ Black-box implementation: no parameters that have to
be estimated a priori.

♥ Optimal complexity: essentially O(n) flops per
iteration, where n is dimension of the discrete system.

♥ Efficient linear algebra: convergence rate is
independent of h. Convergence is also robust with
respect to the spectral approximation parameter k as
long as the variance is not too large relative to the
mean.

Find out for yourself ...

• (S)IFISS MATLAB Toolbox

Efficient linear algebra | Edinburgh Workshop 2017 – p. 44/45

http://www.manchester.ac.uk/ifiss/


What is the payoff?

Efficient linear algebra | Edinburgh Workshop 2017 – p. 45/45

https://doi.org/10.1137/130916849
https://doi.org/10.1137/15M1027048


What is the payoff?
Efficient h-p adaptivity . . .

Alex Bespalov, Catherine Powell & David Silvester.
A posteriori error estimation for parametric operator
equations with applications to PDEs with random data.
SIAM J. Sci. Comput, 36:A339–A363, 2014.

Alex Bespalov & David Silvester.
Efficient adaptive stochastic Galerkin methods for
parametric operator equations.
SIAM J. Sci. Comput, 38:A2118–A2140, 2016.

Efficient linear algebra | Edinburgh Workshop 2017 – p. 45/45

https://doi.org/10.1137/130916849
https://doi.org/10.1137/15M1027048

	part I $|$ 1991
	part I $|$ 1991

	part II $|$ 2011
	 
	References I
	Buoyancy driven flow
	Buoyancy driven flow

	``Smart Integrator'' (SI)
	 
	Trapezoidal Rule (TR)
time discretization
	Linearization
	Adaptive time stepping components
	Finite element matrix formulation
	Preconditioning strategy
	Schur complement approximation -- I
	Schur complement approximation -- II
	 
	References II
	Steady-state flow with random data
	N--S example I: flow over a step
	 Stochastic discretisation methods
	 Stochastic discretisation methods

	 
	Stochastic Galerkin discretisation I
	Stochastic Galerkin discretisation I

	Stochastic Galerkin discretisation II
	Stochastic Galerkin discretisation II

	Stochastic Galerkin discretisation III
	Ideal preconditioning
	Preconditioning I
	Preconditioning I

	Preconditioning II
	Preconditioning II

	Preconditioning III
	Flow over a step
	Typical GMRES iteration counts

